
Time To Live: Temporal
Management of Large-Scale RFID

Applications

Xue Li
Jing Liu

Quan Z. Sheng
Weicai Zhong

October 2008

Technical Report SSE-2008-02

Division of Systems and Software Engineering Research
School of Information Technology and Electrical Engineering

The University of Queensland
QLD, 4072, Australia

http://www.itee.uq.edu.au/∼sse

Time To Live: Temporal Management of

Large-Scale RFID Applications

Xue Li #, Jing Liu ∗1, Quan Z. Sheng $, Weicai Zhong ∗

#School of Information Technology & Electrical Engineering, The University of Queensland, Australia
∗Institute of Intelligent Information Processing, Xidian University, China

$School of Computer Science, The University of Adelaide, Australia
1
xueli@itee.uq.edu.au

Abstract— In coming years, there will be billions of RFID
tags living in the world tagging almost everything for tracking
and identification purposes. This phenomenon will impose a
new challenge not only to the network capacity but also to the
scalability of event processing of RFID applications. Since most
RFID applications are time sensitive, we propose a notion of Time

To Live (TTL), representing the period of time that an RFID
event can legally live in an RFID data management system, to
manage various temporal event patterns. TTL is critical in the
“Internet of Things” for handling a tremendous amount of partial
event-tracking results. Also, TTL can be used to provide prompt
responses to time-critical events so that the RFID data streams
can be handled timely. We divide TTL into four categories
according to the general event-handling patterns. Moreover, to
extract event sequence from an unordered event stream correctly
and handle TTL constrained event sequence effectively, we design
a new data structure, namely Double Level Sequence Instance
List (DLSIList), to record intermediate stages of event sequences.
On the basis of this, an RFID data management system, namely
Temporal Management System over RFID data streams (TMS-
RFID), has been developed. This system can be constructed as a
stand-alone middleware component to manage temporal event
patterns. We demonstrate the effectiveness of TMS-RFID on
extracting complex temporal event patterns through a detailed
performance study using a range of high-speed data streams and
various queries. The results show that TMS-RFID has a very
high throughout, namely 170,000 - 870,000 events per second
for different highly complex continuous queries. Moreover, the
experiments also show that the main structure to record the
intermediate stages in TMS-RFID does not increase exponentially
with the number of events. These illustrate that TMS-RFID not
only has a high processing speed, but also has a good scalability.

I. INTRODUCTION

The size and characteristics of RFID (Radio Frequency

Identification) data pose many new challenges to the current

data management systems. RFID events have their own charac-

teristics that cannot be supported by traditional event systems

[1], [2], [3]. RFID Application Level Event (ALE) standard

proposed by EPCglobal1, a common interface to process

raw RFID events, also emphasizes the importance of RFID

data stream processing. Since RFID data are time-dependent,

dynamically changing, in large volumes, and carrying implicit

semantics, a general RFID data processing framework is re-

quired to process high volume RFID data streams in real time,

1http://www.epcglobalinc.org

and automatically transform the physical RFID observations

into the virtual counterparts linked to business applications.

Among various RFID applications, simple and complex

event detection plays an important role. Several event pro-

cessing systems that execute complex event queries over real-

time streams of RFID readings have been proposed in recent

years [2], [3], [4], [5]. The complex event queries in these

systems can filter and correlate events to match with specific

patterns, and transform the relevant events into high-level

business events for the use of external applications.

However, most RFID applications have time restrictions on

target events. An event is valid only if it happens within

or after a time limit. For example, in general cases, it is

required in an airport that a baggage must arrive at a specified

place to wait for being loaded onto a flight 30 minutes

before this flight is scheduled to take off. Unfortunately, this

kind of time-restriction issues are largely ignored by most

of the current event processing systems and left as separate

or individual application problems. SASE [3] can extract a

target event sequence according to the prescribed sequence

order in a query, or check whether a target event finishes

within a prescribed period of time. But SASE cannot restrict

the temporal distance between any two successive events.

Although Wang et al. [2] proposed several temporal operators

and related constructs that can restrict the temporal distance

between two events, these operators can only detect a sequence

with two events or the same type of events.

We perceive that it is useful to develop an novel RFID

data management system that can handle various temporal

event patterns, both simple and complex, with time restrictions.

Since temporal event patterns restrict that events can only

be valid within a certain period of time, we identify a new

time notion, namely Time To Live (TTL), to cover all kinds

of complex temporal event patterns, including those can be

processed in existing systems.

In the Internet, TTL is an important concept that helps the

Internet to discard the datagrams that may not be able to reach

their destinations. RFID is widely believed as a promising

technology to create an “Internet of Things” in the near future.

As a result, we suggest that TTL in RFID applications should

become an important notion in the “Internet of Things”, to

help the “Internet of Things” to be free from a large amount

of partial event-tracking results and make prompt responses to

time-critical events.

All available RFID systems have a time notion, i.e., times-

tamps, which are assigned to RFID data by RFID readers

when tags are read. Timestamps indicate the time points that

events occurred in the real world, while TTL indicates the time

restrictions that target events should satisfy. Thus, in addition

to timestamps, we advocate that TTL should become another

important time notion for the RFID data management.

When processing complex events, it is general that the

order of arriving events may not match with the order of the

occurrence of the events in the real world. The problem, named

as Unordered Event Stream (UnES), can be caused by network

routing delay or by an arbitrary selection of records when

a single tag is read by multiple readers simultaneously. An

analogue problem can be found in the Internet communications

when a datagram arrives at the system application level being

out of sequence. Existing works address the UnES problem in

two ways: one is to simply ignore the problem by assuming

that the events enter into the system with the same order

of their occurrences in the real world, such as SASE [3].

The other is to sort events according to their timestamps

before extracting complex events patterns from them, such as

Cayuga [6].

Both approaches, however, have disadvantages. For the first

approach, since RFID readers distribute widely and each one

may have a delay, it is obvious that events cannot always enter

into the system in the order of their occurrences. Moreover,

RFID tags can be read by different readers simultaneously,

but the readers may send these primitive events to the system

in different times. Also, even after the events enter into the

system, they may still be subject to the queuing of different

processes. Clearly, ignoring the UnES problem is impractical

to most RFID applications. For the second approach, they

requires the time point that an event enters into the system

must be no later than a bound, cope with all applications by

the same bound. If there are many applications simultaneously

handled by the system, this single bound cannot be sufficient

to deal with the combined effect of all incoming data.

To solve the UnES problem, we have developed a data

structure, Double Level Sequence Instance List (DLSIList),

to record the unordered event streams so that the system can

extract sequence patterns from an unordered event stream. To

avoid the size of the intermediate stages growing exponen-

tially, an algorithm has also been developed to maintain and

update DLSIList by using TTL.

Our contributions in this paper can be summarized as

follows:

• A novel notion of TTL: TTL is a novel concept used

to enforce the time restrictions in RFID applications.

The main advantage of TTL is that it allows the con-

struction of a generic mechanism to handle all kinds of

time restrictions. In addition, we design and illustrate a

variety of TTL queries that may appear in different RFID

applications.

• An effective solution to the UnES problem based on

TTL: A new data structure, namely DLSIList, is designed

based on TTL to mitigate the exponential growth of

partial-events tracking results, as well as to extract the

complex events effectively.

• A prototype system for handling TTL queries: We

have developed a prototype system, Temporal Manage-

ment System over RFID data streams (TMS-RFID) that

implements the ideas proposed in this paper. TMS-RFID

has been developed as a stand-alone component that is

adaptable for different event processing systems. We also

demonstrate the effectiveness and efficiency of TMS-

RFID in handling large-scale of high-speed RFID data

streams.

The remainder of this paper is organized as follows. Section

2 overviews related work. TTL is introduced in Section 3. TTL

query language is presented in Section 4. The algorithm based

on TTL for solving the unordered event stream problem is de-

scribed in Section 5. The system architecture of TMS-RFID is

presented in Sections 6. The results of a detailed performance

study are reported in Section 7. Section 8 concludes this paper.

II. RELATED WORK

Although RFID technology has existed for more than 50

years, it poses many new challenges for data processing and

management in recent years when RFID tags are applied in

large-scale applications, such as missed and unreliable RFID

readings, redundant RFID data, in-flood of RFID data, spatial

and temporal management of RFID data. Chawathe et al. [1]

present a brief introduction to RFID technology and highlight

several data management challenges. The importance of event

processing for RFID data is pointed out by Palmer [7].

Wu et al. [3] propose a stream-based RFID event processing

system, namely SASE. SASE can efficiently execute monitor-

ing queries over RFID data streams, and is the first proposed

model for RFID event processing. However, SASE cannot

control time intervals between two successive events. Since

many applications require two successive primitive events in

a target complex event satisfying some time intervals, the

ability of controlling such intervals is extremely important.

Moreover, SASE assumes that all events are totally ordered

by their timestamps. Such an assumption is too restrictive and

would not be true for most RFID applications.

Wang and Bai et al. [2], [4], [5] address the problem of

complex event processing over RFID data stream from the

viewpoint of ER model and SQL-based stream query language.

Wang et al. [5] propose an expressive temporal-based data

modeling of RFID data, using a Dynamic Relationship ER

Model, and the method on how to use rules to transform RFID

data from observations into the data model. Wang et al. [2]

further formulate a declarative rule based approach to provide

support of automatic RFID data transformation between the

physical world and the virtual world. Such approach is capable

of detecting complex temporal-pattern-based high level events.

Among the four proposed temporal complex event construc-

tors, SEQ and TSEQ can only detect sequences of two events,

while TSEQ and TSEQ+ can only detect sequences of the

same type of events. Although TSEQ and TSEQ+ can control

time intervals between two events, TSEQ is only for two events

and TSEQ+ is only for the same type of events. Bai et al. [4]

extend a SQL-based stream query language with temporal

operators and related constructors and use several example

scenarios to illustrate the power of the proposed language.

Rizvi et al. [8] discuss the system architecture and general

issues in processing RFID data and propose a system, namely,

HiFi. HiFi aggregates events along a tree-structured network

on various temporal and geographic scales.

Mansouri-Samani and Liu et al. [9], [10] also consider

temporal restrictions. However, those temporal restrictions

cannot be used to support the special RFID events such as

temporal sequence and temporal negation.

Finally, Demers and Brenna et al. [6], [11] propose a sys-

tem, Cayuga, to process complex events in publish/subscribe

systems. Cayuga offers a powerful expressive language similar

to the one required in RFID data management systems. Cayuga

can deal with a wide range of complex event patterns, includ-

ing sequence and Kleene closure patterns. However, Cayuga

cannot control time intervals between two successive events.

For the UnES problem, Cayuga sorts events according to their

timestamps before extracting complex events patterns from

them, using the technique proposed by Srivastava et al. [12].

III. TIME TO LIVE

Most RFID applications have time restrictions on target

events. However, many partial results would not be able to

reach their final stages because of the time restrictions. We

therefore need a mechanism to time out RFID events, either

simple or complex, to reduce the size of partial results, and

thereby to achieve a high scalability in dealing with infinite

RFID data streams.

A. RFID Event Model

RFID data are presented to system in terms of events.

Some events may only need single readings, while the others

may need multiple readings over a period of time at different

locations [2], [3], [4]. The RFID event model serves as a basis

for TTL.

Definition 1 (Event, Event Type). An event is an occurrence of

interest happening in a particular time and location in the real

world and is recorded in RFID data management systems. An

event type is a template that prescribes a class of events that

consists of a set of attributes and the values of these attributes.

Each event has an event type and a set of values corresponding

to the attributes of this event type. 4

Events can be divided into different types according to

applications. We adopt the definitions of events from EPC

Information Services (EPCIS) standard2. That is, each core

event type has the fields that represent four key dimensions of

any EPCIS event: (i) the object(s) or other entities that are the

subject of the event; (ii) the date and time; (iii) the location

at which the event occurred; and (iv) the business context.

2http://www.epcglobalinc.org.

These four dimensions usually represent “what, when, where,

and why”, respectively. Here, we encode the information of

all four dimensions into the attributes of an event.

Definition 2 (Primitive Event). A primitive event is an RFID

reader observation. In particular, the time attribute of each

primitive event is a timestamp, representing the time point

that an RFID reader reads an RFID tag. 4

Definition 3 (Complex Event). A complex event is a pattern

of primitive events and happens over a period of time. 4

A complex event usually is composed of a few primitive

events, and has a start time and an end time.

B. TTL Taxonomy

Definition 4 (Time To Live). Time To Live, denoted as TTL,

is the period of time that an event can legally live in an RFID

data management system. 4

In RFID applications, both primitive and complex events

are detected by RFID readers in many different situations:

• Single event: A primitive event is detected by a single

RFID reading.

• Event sequence: A complex event that involves the same

or different event type is read in a certain order within a

time period by different readers.

• Repeating events: RFID tags can be detected at different

locations and time points with a fixed number of times.

• Periodical events: A number of successive RFID readings,

or the period of times that a sequence of events can be

detected.

After carefully analyzing various RFID applications, we

divide TTL into four categories.

Category 1: Absolute TTL

Definition 5 (Absolute TTL). Absolute TTL, denoted as TTLa,

is the period of time that a primitive event can enter into RFID

data management systems. 4

TTLa specifies the period of time that an RFID tag can live

in the physical world. After that period, even if the primitive

events generated by that tag are sent to the system again, the

system would not recognize them any more or would raise

alarms to advice user that the tag is invalid but still used in

the physical world.

EXAMPLE 3.1: Suppose each one-time only train ticket is

attached with an RFID tag. This kind of RFID tag can only

be valid within the period of time that a passenger travels

from place A to B, and cannot be reused. After the passenger

arrives B, the primitive events corresponding this tag will be

labeled as invalid in the system.

EXAMPLE 3.2: In pharmacy, drugs have expiry dates. Sup-

pose bottles of medicines are attached with RFID tags. This

kind of RFID tag can also only be valid within the expiry dates,

and be used only once. After the expiry date, if the medicine

is still on the shelf, the system should raise an alarm.

Although both at train stations and in pharmacy stores,

there are many RFID readers, and one RFID tag can generate

many primitive events with different timestamps, there is a

unique period of time related to each RFID tag. This period

of time is TTLa. In other words, TTLa of the primitive events

in Example 3.1 is the period of time that the train moves

from A to B, while that of Example 3.2 is the expiry date.

Obviously, TTLa indicates the life span of the tagged objects

in the physical world.

Since the number of tags in the physical world will increase

dramatically, if a system just tries to process all tags it is

reading, it would be worn down quickly. The main function

of TTLa is in fact to help the system to distinguish between

the tags that are still in use and the tags that cannot be used

any more. As a result, the workload can be reduced in later

processing steps.

One may argue that we can kill the tags if they cannot

be used any more, and there is in fact a “kill” feature in

the EPCglobal Architecture Framework3. However, the “kill”

feature in EPCglobal Architecture Framework is only a part

of a comprehensive privacy policy, not aimed at reducing

the workload of systems. In addition, what would happen if

someone physically reproduces the tags with the same EPC

values of the tags that have been killed? Since these fake

tags have the same EPC values of the killed ones, the system

would be easily cheated. We therefore strongly advocate that

it is important to ensure that dead tags cannot be recreated at a

system logic level. TTLa is designed for meeting this purpose.

TTLa can be assigned when tags are physically generated and

recorded in the system when the tags are first read. In some

cases, TTLa can also be opened until users notify the system.

Category 2: Relative TTL

Definition 6 (Relative TTL). For primitive events, Relative

TTL, denoted as TTLr, is the period of time that a primitive

event is valid in one application. For complex events, TTLr
is the period of time that a complex event can last. 4

For primitive events, TTLr specifies the period of time that

RFID tags can stay in a particular application. In Examples 3.1

and 3.2, the tags can only be used once. There are still many

situations where each tag can be used in many applications.

Each application may generate different types of events, and

each type of events may have different time restrictions. TTLr
is used to denote the period of time for each application

that the tags are involved in. After that period, they can be

reassigned to other applications.

EXAMPLE 3.3: In building access control, suppose each

visitor is assigned an RFID tagged card when he comes.

Visitors can only stay in the building for a prescribed period

of time, T , based on their purposes. When visitors leave the

building, cards are taken back, and will be reassigned to other

visitors in the future.

In this example, an RFID tag can be used many times, and

each time its valid usage time (i.e., TTLr) is different. Clearly,

TTLr in this example is the period of time that a visitor can

stay in the building, which helps systems to find out over-

staying visitors.

For complex events, TTLr specifies the time period that this

complex event can occupy. That is, TTLr is the time restriction

3http://www.epcglobalinc.org/standards/architecture/.

on the start and end time of this complex event.

Since TTLa stands for the life span in the physical world

of the RFID tag, each primitive event can only be associated

with one TTLa. In contrast, each type of event can have several

different TTLr depending on the applications. An event can

have both the restriction of TTLa and TTLr simultaneously

in some applications. Such tags can be assigned to more than

one application during their life span, and each application

may have a different TTLr.

Category 3: Periodical TTL

Definition 7 (Periodical TTL). Periodical TTL, denoted as

TTLp, is the time restrictions on the interval between two

successive primitive events in a periodically occurred events

sequence. The primitive events in the sequence have the same

event type. 4

In some applications, systems need to check event se-

quences. These events belong to either the same event type or

different event types. The intervals between any two successive

events can be identical, or can be different. TTLp is designed

for the cases that the events belong to the same event type and

the intervals between any two successive events are identical.

In other words, TTLp controls the period that the same type

of events occurs.

EXAMPLE 3.4: Suppose a kind of machine, e.g. an air-

plane, can be used for many years, but some parts have a

shorter life span, and must be replaced in a regular basis.

If an RFID tag is attached to each of such parts, the system

should determine when a part needs to be replaced according

to the readings of RFID readers.

In this example, each time a reader reads an RFID tag

attached to such parts, an event will be sent to the system.

However, since these parts only need to be replaced periodi-

cally, the system does not need to process the events generated

within that period. In this case, TTLp is the interval between

two replacements of the same part. Usually, TTLp requires

that the events in the sequence belong to the same event type.

The events in the sequence can be primitive or complex.

It should be noted that the applications that TTLa and TTLr
are applied are different from those of TTLp. The former

only involves a single event, while the latter involves an

event sequence. In fact, Example 3.4 is a kind of regular

events detection. Such an application involves more than

one occurrences of the same type of events, and any two

consecutive occurrences of the events must be within some

time interval.

Category 4: Sequential TTL

Definition 8 (Sequential TTL). Sequential TTL, denoted as

TTLs, is the time restrictions on the intervals between any

two successive primitive events in an event sequence. 4

Similar to TTLp, TTLs is designed for an event sequence,

but has no limitation on the event types and the intervals

between two successive events. In essence, TTLp can be

viewed as a special case of TTLs, since TTLs has fewer

restrictions on the event types and the intervals. It can have

or have not restrictions on the intervals.

Fig. 1. Time restrictions in Exam-
ple 3.5

Fig. 2. Internal relationship
among different categories of TTL

EXAMPLE 3.5: Suppose many students do an experiment

in a laboratory. There are four steps, namely, A, B, C, and

D, to finish this experiment, and these four steps must be

performed in the correct order and satisfy the time restriction

in Figure 1. That is, the interval between A and B must be

smaller than a time interval, T1, the interval between C and

D must be larger than a time interval, T2, and smaller than T3

(T2 < T3), there is no limitation on the interval between B and

C, and the whole experiment must be finished within a given

time period, T4. It is difficult for a teacher to watch whether

each student do the experiment in correct order and intervals.

If each student takes an RFID reader on his wrist, and the

reagents or equipments in each step are attached with RFID

tags, then the sequence of steps can be detected as a sequence

of RFID readings, which can be generated when students’

RFID readers are very close to the reagents or equipments.

Thus, the system can watch the experimental process of each

student according to these RFID readings.

Example 3.5 is a kind of event sequence detection with

intervals restrictions. Such an application involves different

types of events which occurred in a prescribed order, and there

is or is no limitation on the intervals between two successive

events. And there can also have a time restriction on the whole

sequence, such as T4 in Example 3.5. In this example, different

types of events will be sent to the system in different steps,

and the system needs to check whether the interval between

two successive events is valid. Each interval is a kind of TTLs.

Each event in the sequence can also have TTLa and TTLr, and

TTLr can also act on the whole event sequence. Both TTLp
and TTLs are attached to each occurrence of the event in the

sequence, which prescribes when the next event will happen.

To summarize, on the basis of analysing wide range of RFID

applications, we have identified four categories of TTL: (i)

TTLa: the life span an RFID tag can have; (ii) TTLr: the

period of time in applications related only to one event, the

event can be primitive, such as T in Example 3.3, and can

also be complex, such as T4 in Example 3.5; (iii) TTLp: the

interval between two successive events within a periodically

occurred event sequence; (iv) TTLs: the interval between two

successive events within an event sequence. The objects that

each category of TTL can exert to are shown in Table 1.

From an implementation viewpoint, although we design four

categories of TTL, there are some internal relations among

different categories, as shown in Figure 2. That is, TTLa can

be viewed as a special case of TTLr, while TTLp can be

viewed as a special case of TTLs.

Generally speaking, no matter which category of TTL is, all

TABLE I

OBJECTS THAT TTL CAN EXERT TO

Objects Event Event Sequence
Simple Complex Same Different

type type

TTLa
√

× × ×
TTLr

√ √
× ×

TTLp × ×
√

×
TTLs × ×

√ √

TTL represents the time that the system should take an action

in an application. The actions can be an alert, a warning, or

something else that is related to applications. Such kinds of

actions are usually caused by TTLa or TTLr, which are not

related to event sequences. The actions can also be determining

whether an expected event occurred. Such kinds of actions are

usually caused by TTLp and TTLs, which are related to event

sequences.

IV. TTL QUERY LANGUAGE

In this section, we present the TTL query language and

illustrate how this language can be used to support a range

of emerging RFID applications. Since our purpose is not

designing a new language, but enhancing the temporal man-

agement ability of the available languages, we leverage the

available complex event query languages developed for active

databases [13], [14], [15] and RFID data management sys-

tems [2], [3], [4].

Our TTL query language is a declarative language, which

can be used to specify how individual events are filtered, and

how multiple events are correlated via time-based and value-

based conditions. Its overall structure is as follows:

[DEFINE 〈 event type1=specification,

event type2=specification,

......

event typen=specification〉]
EVENT 〈event pattern〉

[WHERE 〈conditions for attribute values〉]
[TTLA 〈a list of events〉

[{operations for invalid TTLa}]]
[TTLRP 〈a list of events〉

[{operations for invalid TTLr of

primitive events}]]
[TTLRC 〈a period of time〉]
[TTLP 〈a period of time〉]
[TTLS 〈a list of period of times〉]

The latter five clauses are specific for TTL queries. Both

TTLRP and TTLRC are TTLr, but for primitive events and

complex events, respectively. Among the five TTL clauses,

TTLA and TTLRP clauses have restrictions on events, while

the three others have restrictions on the period of time.

Furthermore, TTLRC clause restricts the time of the whole

sequence while TTLP and TTLS clauses restrict the time

between two successive events in the sequence. The TTL

query language can capture a wide range of RFID applications

related to temporal restrictions.

EXAMPLE 4.1: Let us visit again the application in Exam-

ple 3.1. Suppose there are several RFID readers at the check-in

counter, and the event type of the primitive events generated

by these readers is TICKET-CHECKIN. When a passenger

passes these places, his/her ticket needs to be checked. The

query can be expressed as:

EVENT TICKET-CHECKIN

TTLA {Raise an alarm: cannot check in}
When a ticket is sold, its corresponding TTLa is saved in a

central database. This query checks TTLa when a TICKET-

CHECKIN type of event is received. If its TTLa is invalid, an

alarm will be raised, and the passenger cannot check in.

EXAMPLE 4.2: For the application in Example 3.3, sup-

pose many RFID readers are installed in a building, and the

event type of the primitive events generated by the tags on

cards is CARD. When the card belongs to a visitor, TTLr needs

to be checked. The query can be expressed as:

EVENT CARD

WHERE Type=Visitor

TTLRP {Raise an alarm: over staying visitor}
Similarly, when a card is assigned to a visitor, its TTLr has

been saved in a database. This query checks all visitors’ TTLr
to prevent from over-staying visitors.

EXAMPLE 4.3: For the application in Example 3.4, sup-

pose the event type of the primitive events generated by the

tags on the special part of this machine is SPECIAL-PART.

The query can be expressed as:

EVENT SEQ+(SPECIAL-PART)

WHERE [ID]

TTLP 1 year

Here the SEQ+ is for event sequence pattern in TTLp, and

the WHERE clause is used to make sure that it is the same

part. Since it is a special part, each time the system receives

such an event, the system will check its last repairing record

to see whether 1 year has past.

EXAMPLE 4.4: See the application in Example 3.5. Sup-

pose the event types of the primitive events generated by

different steps are A, B, C, and D. The query can be expressed

as:
EVENT SEQ(A a, B b, C c, D d)

WHERE (b.ID=a.ID)∧(c.ID=a.ID)∧ (d.ID=a.ID)

TTLRC T4

TTLS (0, T1); ; (T2, T3)

Here the SEQ is for event sequence pattern in TTLs. a, b,

c, and d are the events. The WHERE clause ensures the four

steps come from the same student. TTLRC clause is used to

restrict the whole process. Although there is no limitation on

the interval between B and C, the second “;” in TTLS clause

is still required.

EXAMPLE 4.5: Here, we give an example for negation.

Suppose in airport, a baggage must arrive at a specified

place to wait for being loaded onto an airplane within 60

minutes after this baggage is checked in. If no such an event,

an alarm will be raised accordingly. Suppose the event type

of the primitive events generated by RFID readers at check-

in counters are CHECKIN, and that at the specified place is

WAIT-LOADED. The query can be expressed as:

EVENT SEQ(CHECKIN x, !WAIT LOADED y)

WHERE x.ID=y.ID

TTLS (0, 60) minutes

V. ALGORITHM FOR UNORDERED EVENT

STREAM PROBLEM BASED ON TTL

For SEQ processing, a system can only send out query

results after a complete sequence is received. There is a huge

amount of intermediate stages to be stored. The system needs

to check the order of the incoming events. The order required

by a query is always based on the order that events occurred

in the real world recorded as timestamps. However, the order

that events enter into the system does not necessarily reflect

the order of their occurrences. As a consequence, the system

has to extract event sequences from an unordered event stream.

The problem is defined as the following:

Definition 9 (Unordered Event Stream). An event stream is

E = (et1,t′1 , et2,t′2 , . . . , eti,t′i , . . .). The list (t1, t2, . . . , ti, . . .)
contains timestamps, and the list (t′1, t

′
2, . . . , t

′
i, . . .) contains

the times that the events are processed by the system. They

satisfy t1 ≤ t2 ≤ . . . ≤ ti ≤ . . ., t′1 ≤ t′2 ≤ . . . ≤ t′i ≤ . . .,

t1 ≤ t′1, t2 ≤ t′2, . . . , ti ≤ t′i, . . . If ∃eti,t′i , etj ,t′j , ti ≤ tj and

t′i > t′j , then E is an unordered event stream (UnES). 4

In the sequel, we propose a new data structure and an

algorithm to deal with the UnES problem, illustrated by

comprehensive examples.

A. Double Level Sequence Instance List

Definition 10 (Sequence Instance, Partial Sequence Instance).

Given a SEQ pattern, SEQ(EventType1, EventType2, . . . ,

EventTypen), and n events in the input event stream, e1, e2,

. . . , en. If the event types of e1, e2, . . . , en are EventType1,

EventType2, . . . , EventTypen, respectively, and

e1.timestamp < e2.timestamp < . . . < en.timestamp

(1)

and e1, e2, . . . , en are also satisfy WHERE and TTLS clauses,

then (e1, e2, . . . , en) is a sequence instance, denoted as SI ,

and (ei, ei+1, . . . , ej) (1 ≤ i ≤ j ≤ n) is a partial sequence

instance, denoted as PSI . 4

In query processing, the system needs to find out all

sequence instances from the input event stream. Any sequential

parts of a sequence instance are partial sequence instances,

which satisfy the corresponding conditions in the query. From

another viewpoint, sequence instances are composed of partial

sequence instances. Therefore, we can first record partial

sequence instances, and then use them to compose sequence

instances. To this purpose, we design the following structure

for recording such information.

Definition 11 (Double Level Sequence Instance List).

Given a SEQ pattern, SEQ(EventType1, EventType2,

. . . , EventTypen), a double level sequence instance list,

namely DLSIList, is defined as follows:

DLSIList = {
PSIList=(PSIList2, PSIList3, . . . , PSIListn);

LP = (LP2 , L
P
3 , . . . , L

P
n);

SIList = {SI1,SI2, . . . ,SIm};
}

PSIList has (n-1) components, and each one is a list of

partial sequence instances with single event belonging to the

same event type, that is,

PSIListi = {e1, e2, . . . , eLP
i
}, 2 ≤ i ≤ n (2)

Where LPi is the number of components in PSIListi, and

the event type of each component is EventTypei in the SEQ

pattern. Each component of SIList will form a sequence

instance, and has an attribute, namely Changed, to indicate

whether new event has been added into this component. For

each event in SI1, SI2, . . . , SIm, another two attributes are

appended when it is added into SIList. That is, systemstamp,

which indicates the time that this event is processed by

the system, and First, which indicates whether this event is

contained in the former components. That is, for 1 ≤ j < i 4

If (ei ∈ SIi) ∧ (ei.F irst = ture), then ei 6∈ SIj (3)

Intuitively, DLSIList has two lists: one for partial se-

quence instances, and the other for sequence instances. PSIList

is used to store single event so that the system can handle

UnES problems. SIList is used to store intermediate results

in different stages, which may form the final results in the

future. What should be noted is that events can only be

added into a component of SIList one by one in the order

defined by the SEQ pattern. Another point should be noted

is that PSIList starts from 2, not 1. This is because the

first event in the sequence can go into SIList directly. There

are three new attributes appended to different components in

DLSIList, and they are designed for helping the updating

process in this module. Before added into DLSIList, each

event has an attribute, timestamp, which is assigned by RFID

readers. After events get into DLSIList, another attribute,

systemstamp, will be appended to them. Timestamp indicates

the time an event occurs in the real world, while systemstamp

indicates the time an event is processed by the system (after

all transmission delays). Both of them help the system to

deal with UnES problems. Here, we assume the clock of

each reader is synchronized, and clock synchronization of all

readers and the system is out of the scope of this paper. In the

following, PSIListi,j represents the jth event in PSIListi,

and SIi,j represents the jth event in SIi.

B. The Algorithm

When a SEQ pattern is received, a new DLSIList will

be created. At the beginning, the DLSIList is empty. As

the events come, the DLSIList is updated and query results

are sent to user when some sequence instances are obtained.

The main technique is the cooperation between PSIList and

SIList in the DLSIList. Events are first used to update

SIList, and then stored in PSIList to wait for being checked

in the future. After a component in SIList is changed,

PSIList is checked to see whether former events can make

this component grow further.

Although the cooperation between PSIList and SIList

can solve the UnES problem, the sizes of PSIList and

SIList may grow dramatically. Their sizes can be reduced by

exploiting TTL. When the conditions in TTL clauses indicate

that some components in PSIList and SIList are useless,

they are deleted. The details are given in Algorithm 1. Some

details are explained as follows.

Algorithm 1: Algorithm for the UnES problem based on TTL

//Initialize a new DLSIList

1: If (receive a SEQ pattern from Query Analyzer)

2: {
3: Create a DLSIList;

4: PSIList2 ← ∅; . . . ; PSIListn ← ∅; L
P
2 ← ∅;

5: SIList← ∅; m← 0;

6: }
//Update the DLSIList when a new event comes

7: While (a new event e comes)

8: {
9: Indexe ← Event type of e in the sequence pattern;

e.systemstamp← SystemTime; e.F irst← True;

10: Set Changed to False for all components in SIList;

//Add e into SIList

11: If (Indexe = 1) m++; SIm ← (e, ∅2, ∅3, . . . , ∅n);

SIm.Changed← True;

12: If (1 < Indexe ≤ n)

13: For (i = 1; i ≤ m; i++)

14: If (SIi,Indexe−1 6= ∅)∧
(SIi,Indexe−1.F irst = True)∧
(SIi,Indexe−1 and e satisfy TTLS clause)

15: {
16: If (SIi,Indexe = ∅) SIi,Indexe ← e;

SIi.Changed← True;

17: Else m++;

SIm ← (SIi,1, . . . ,SIi,Indexe−1, e,

∅i,Indexe+1, . . . , ∅i,n);

SIm,1.F irst← False; . . . ;

SIm,Indexe−1.F irst← False;

SIm.Changed← True;

18: }
//Check PSIList

19: For (i = Indexe + 1; i ≤ n; i++)

20: For(j = 1; j ≤ LPi ; j++)

21: For (each SIk in SIList whose Changed is True)

22: If (SIk,i−1, PSIListi,j satisfy TTLS clause)

23: {
24: If (SIk,i = ∅) SIk,i ← PSIListi,j ;

SIk.Changed← True;

25: Else m++;

SIm ← (SIk,1, . . . ,SIk,i−1, PSIListi,j ,

∅k,i+1, . . . , ∅k,n);

SIm,1.F irst← False; . . . ;

SIm,Indexe−1.F irst← False;

SIm.Changed← True;

26: }
//Add e into PSIList

27: If (1 < Indexe ≤ n) LPIndexe + +;

PSIList
Indexe,L

P
Indexe

← e;

//Reduce the size of PSIList

28: For (i = 2; i ≤ n; i+ +)

29: For (each event PSIListi,j in PSIListi)

30: If (no valid events in PSIListi−1)∧
(future events cannnot satisfy TTLS clause)

31: Delete PSIListi,j ; LPi −−;

//Reduce the size of SIList

32: For (each component SIi in SIList)

33: If (current system time cannot satisfy the TTLS

clause for the last non-empty event SI i)∨
(SIi does not satisfy TTLRC clause)

34: Delete SIi from SIList ; m−−;

//Check the results in SIList

35: For (each changed component SIi in SIList)

36: If (SIi,n 6= ∅) Send out this sequence; SIi,n ← ∅;
37: }

The conditions in Line 14 make sure that the available

events in a component of SIList satisfy the query. Let

the restriction in TTLS clause on the intervals between

any two successive events are (LIndexe−1, UIndexe−1), then

e.timestamp must satisfy:

SIi,Indexe−1.timestamp + LIndexe−1 ≤ e.timestamp ≤

SIi,Indexe−1.timestamp + UIndexe−1 (4)

Since the events may come in different orders, the system

needs to check PSIList to see previous events for these

changed components (Line 21). If a component and an event in

PSIList satisfy the condition in Line 22, this event is added

into the component. The condition in Line 22 is similar to that

of Line 14:

SIk,i−1.timestamp + Li−1 ≤ PSIListi,j .timestamp ≤

SIk,i−1.timestamp + Ui−1 (5)

Events in PSIList are waiting for events which are in

front of them in the SEQ pattern but come later than them. If

the system time indicates that no such events will come, the

corresponding events in PSIList can be deleted to reduce

the size of PSIList. There are two conditions need to be

checked (Line 30). The first one checks whether there is an

event, PSIListi−1,k in PSIListi−1 which satisfies

PSIListi−1,k.timestamp + Li−1 ≤

PSIListi,j .timestamp ≤

PSIListi−1,k.timestamp + Ui−1 (6)

If yes, PSIListi,j cannot be deleted. The second one needs

to check the system time. Let the current system time is

SystemTime, and the maximum delay between the time that an

RFID tag is read and the time that the corresponding primitive

event is processed is Delay. If SystemTime and PSIListi,j
satisfy

SystemTime > PSIListi,j .timestamp− Li−1 +Delay

(7)

then no former events will come and PSIListi,j can be deleted.

If Delay is unknown or too long, Systemstamp can be used as

the criterion instead, so that the size of the intermediate results

can be reduced.

Since (Delay ≥ PSIListi,j .Delay) and

(PSIListi,j .timestamp+PSIListi,j .Delay =
PSIListi,j .Systemstamp), the condition can be changed to

SystemTime > PSIListi,j .Systemstamp− Li−1 (8)

If a component SIi already has j events, it is waiting for the

(j+1)th event. Since events in PSIList have been checked, if

the system time indicates that no such events will come, SIi
can be deleted to reduce the size of SIList. The condition is

SystemTime > SIi,j .timestamp + Uj +Delay (9)

If Delay is unknown or too long, since (Delay ≥
SIi,j .Delay) and (SIi,j .timestamp + SIi,j .Delay =

SIi,j .Systemstamp), then condition can be changed to

SystemTime > SIi,j .Systemstamp + Uj (10)

If a query has a TTLRC clause, the system still needs to check

the interval between the first event and the existing last event

in SIi. If the current interval does not satisfy TTLRC clause,

SIi can be deleted now.

Generally speaking, Algorithm 1 shows that TTL is useful

for reducing the size of intermediate results and increasing the

system’s scalability.

C. Example Application

An example application is given to illustrate the executive

process of Algorithm 1. Suppose a query is:

EVENT SEQ(A,B,C,D)

TTLRC 60

TTLS (0, 5); ; (10, 40)

The time unit is second, and the processing for other time

units is similar. This query is the event sequences of a, b, c,

d, belonging to event types A, B, C, D, and satisfy the time

restrictions in TTLRC and TTLS clauses. Given that the event

stream is (a1,2, b5,7, a15,21, a16,21, b18,20, c19,19, b21,22, a25,31,

c28,31, d30,32, b30,30, c55,56, d62,62, c65,66, d77,77, d78,79),

where the first number of each event is timestamp and the

second is systemstamp, and Delay=6s. The events came in the

order of systemstamp, and the executive process of Algorithm

1 is shown in Figure 3.

When a1,2 arrives, since it is the first event of the SEQ

pattern, a new component with a1,2 as the first event is added

into SIList, and its Check is assigned to True, see Figure 3(b).

When b5,7 arrives, first, it matches with the first component

of SIList, and added into this component, then it is added

into PSIList to wait for future events, see Figure 3(c).

When c19,19 arrives, it is added into both the first component

of SIList and PSIList. Then, since the current system time

is already 19, according to the second condition in Line 30

and (7), all future a events cannot match with b5 any more,

so b5 is deleted from PSIList, see Figure 3(d).

When b18,20 arrives, no component of SIList can match

with it, so it is just added into PSIList (Figure 3(e)). When

a15,21 arrives, a new component is added into SIList. b18 and

c19 came before a15, and are stored in PSIList, now they are

added into the new component (Figure 3(f)).

When a16,21 arrives, a new component is added into SIList

and b18 and c19 are added into the new component (Fig-

ure 3(g)). When b21,22 arrives, the third component of SIList

matches with it, but this component already has a b event, so

a new component is created, and a16 is copied to and b21 is

added to this new component (Figure 3(h)).

When b30,30 arrives, since the current system time is already

30, b18 and b21 are deleted from PSIList. Although there is

no restriction on the interval between B and C, the current

system time indicates that no b events before c19 will come,

so c19 is also deleted, see Figure 3(i).

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o)

(p) (q)
(r)

Fig. 3. The executive process of Algorithm 1 for the example in Section V-C

When a25,31 arrives, a new component is added into SIList

and b30 is added into the new component (Figure 3(j)). When

c28,31 arrives, all the first four components of SIList match

with it. But the first three components already have a c event,

so three new components are created. Then c28 is added into

PSIList (Figure 3(k)).

When d30,32 arrives, three query results are obtained. Since

(7) indicates that no future c events can match with d30 any

more, so d30 is not added into PSIList (Figure 3(l)). When

c55,56 arrives, although the last three components match with

it, their First is not True. Then c55 is added into PSIList.

The current system time is 56, so b30 and c28 are deleted from

PSIList (Figure 3(m)).

When d62,62 arrives, the 6th component of SIList does

not satisfy TTLRC clause when the system reduces the size

of SIList, and is deleted (Figure 3(n)). When c65,66 arrives,

five new components are created. When the system reduces the

size of SIList, since the current system time is already 66,

the first three components do not satisfy (9), and are deleted.

The first new component does not satisfy TTLRC clause, and

is also deleted (Figure 3(o)).

When d77,77 arrives, nine components of SIList match

with it. But only the second and last satisfy the conditions, and

the other ones do not satisfy TTLRC clause. Thus, two new

query results are obtained (Figure 3(p)). When the last event,

d78,79, arrives, five new components are created. But only the

second and last new components satisfy the conditions, and

the three others do not satisfy TTLRC clause (Figure 3(q)).

Finally, the obtained ten query results are shown in Figure 3(r).

Fig. 4. System architecture of TMS-RFID

VI. SYSTEM ARCHITECTURE

An RFID data management system, namely Temporal Man-

agement System over RFID data streams (TMS-RFID), has

been developed based on TTL, and the system architecture is

shown in Figure 4.

TMS-RFID consists of i) three databases: the Event Type

Database, the Query Database, and the Central Database,

and ii) six modules: the Filter and Cleaner, the Event Type

Checker, the Query Checker, the Query Analyzer, the Event

Processor, and the Intermediate Results Updater. TMS-RFID

takes the input of queries and an infinite RFID data stream

and outputs the query results of events that match with the

queries.

In general, there are three independent information flows in

TMS-RFID, namely the Database Control Flow, the Query

Flow, and the Data Flow. The first one is for administrators

to manage the three databases. The second one represents

the process where TMS-RFID handles queries submitted by

users. Queries are sent to the Query Analyzer, which updates

the Query Database, Event Type Database, and Intermediate

Results Updater.

Data Flow in TMS-RFID flows from receiving primitive

events captured by RFID readers to publishing query results

to users. The process is shown in Figure 5. The raw RFID

data are first filtered and cleaned, and then the events are sent

to the Event Processor, waiting for being processed. When

receiving the list of queries related to the events, the Event

Processor starts to process the queries. First, queries that are

not related to event sequences are processed, followed by the

queries that are related to event sequences. Both query results

will be sent to users, and the Central Database will be updated

if the query results require updating the information of TTLa.

The function of each database and module is introduced in

detail as follows.

Fig. 5. Data flow Fig. 6. Event Processor

Event Type Database: This database is used to record the

event types in TMS-RFID, and the main function is to provide

the information of event type for the Event Type Checker when

it needs to determine the event type of an incoming event.

Some event types are defined by administrators, while some

are defined by queries. The Event Type Database is controlled

and updated by both administrators and the Query Analyzer.

Query Database: This database is used to record the queries

lodged from users, and the main function is to provide the

available queries for the Query Checker when it needs to

determine the queries that an event type is involved. Since

what the Query Checker required is the list of queries related

to an event type, the Query Database saves and organizes the

submitted queries according to the event types. This database

is controlled and updated by administrators and the Query

Analyzer.

Central Database: This database serves as the traditional

database, recording the information extracted from event

streams. On the other hand, it is used to record the information

of TTLa and TTLr for all primitive events that enter into the

system. Since TTLp and TTLs are for complex events and only

used when the system checks the intermediate results, there

is no need to save them in database. The Central Database is

controlled and updated by administrators and the Intermediate

Results Updater.

Query Analyzer: The main function of this module is

to analyze the input queries. Since queries are expressed

in a query language, the Query Analyzer needs to compile

the query language. According to the analyzing results, the

Query Analyzer needs to update the Query Database and the

Event Type Database. If the new query involves a sequence,

the Query Analyzer needs to notify the Intermediate Results

Updater about the checking of the new sequence.

Filter and Cleaner: The main function of this module is

to filter and clean the raw RFID readings, which focuses on

dealing with missed readings, unreliable readings, and data

redundancy. After RFID readings are processed, they are sent

to the Event Type Checker and the Event Processor.

Event Type Checker: The main function of this module

is to get the event type of the incoming event, and send the

event type to the Query Checker for further operations.

Query Checker: This module matches a list of queries with

the incoming events, and sends the list to the Event Processor

so that it can check whether the incoming events meet the

requirements of the available queries.

Event Processor: This module processes the queries in the

list sent by the Query Checker one by one according to the

incoming event. Usually, there are two kinds of conditions in

a query that need to be checked for a single event: (i) attribute

values, and (ii) TTLa or TTLr. If a query needs to extract an

event sequence, the third kind of conditions, TTLp or TTLs,

are needed to be checked. However, in this case, the conditions

will be checked in the Intermediate Results Updater, and the

Event Processor only needs to send the incoming event to the

Intermediate Results Updater. The flowchart that the Event

Processor processes a query is shown in Figure 6. For an

incoming event, the related queries that do not involve an event

sequence will be processed in the Event Processor, and the

results will be sent to users. Additionally, if the results require

the system to update TTLa of some events, the Event Processor

will update the Central Database accordingly. The queries

that involve an event sequence will be processed further in

Intermediate Results Updater.

Intermediate Results Updater: This module is especially

designed for queries that need to extract event sequences. For

SEQ+, all events belong to the same event type, and each time

the system receives a valid event, query results must be sent

out. Thus, for each instance of a sequence, the Intermediate

Results Updater only needs to record the last event, and to

check whether the next event is valid. When the Intermediate

Results Updater receives a SEQ pattern, it will create a new

double level sequence instance list (DLSIList). When new

events come, it will update the DLSILists. When some

intermediate stages reach the final stages, the Intermediate

Results Updater will send the results to user. If the results

require the system to update TTLa for some events, this

module will update the Central Database correspondingly.

VII. SYSTEM EVALUATION

A. Experimental Setup

We implemented the techniques presented in the previous

sections in Visual C++. All experiments were performed on a

PC with a Pentium IV 2.8GHz processor and 512MB memory.

An event generator is developed to create a stream of events

to be input into TMS-RFID. The number of events generated

per second ranges from 1000 to 5000, and Delay=5s. There

are 20 event types and 5 attributes (A1, A2, A3, A4, A5) for

each event type in addition to the timestamp. The occurrences

of event types accord with Zipf distribution, with the key

characteristic of Zipf distribution being set to 0. For each

attribute, the number of possible values this attribute can take

is chosen from the range of [10, 10000]. The time for event

generation is not counted in the performance metric. Each

time, after the event generator has generated events for 10

seconds, these events are sent to the system according to their

delay. The stop criterion is whenever more than 10 million

events have been processed.

To generate a query, the event types in EVENT clause are

chosen from 20 event types according again to Zipf distri-

bution, with the key characteristic is set to 0. The WHERE

clause requires that all events in the same sequence must have

the same attribute values on attribute A1. In TTLS clause, the

lower bound Li is chosen from the range of [0, 5] in second,

and the upper bound Ui is chosen from the range of [Li,

Li+10], where 1 ≤ i < n.

The above setting ought to be reasonable for a large-scale

application that would have continuous TTL queries to events

detected by a few thousands of RFID readers with a quarter

of million tags moving around in the real world.

B. Experimental Results

We put emphasis on testing TMS-RFID’s performance on

handling queries with SEQ pattern because such queries are

the most complicated, which need to check not only the time

restrictions but also the order of sequence.

1) Experiment on domain size: Since the WHERE clause

requires that all events in the same sequence must have the

same attribute values on A1, the domain size of A1 will affect

the performance. Thus, this set of experiments is executed to

test the effect of the domain size of A1 on the performance

of TMS-RFID. The sequence length is set to 2, 3, 4, 5, and

6, respectively. The domain size of A1 increases from 500 to

10000 in step of 500, and the results are shown in Figure 7.

For different sequence lengthes, the throughput of TMS-

RFID always achieves to a stable level when the domain size

of A1 increases. When the sequence length is 2, the through-

put always stabilizes at about 870,000 events/sec. When the

sequence length is 3, the throughput increases from about

230,000 to 470,000 events/sec, and when the domain size

of A1 is larger than 4000, the throughput stabilizes at about

450,000 events/sec. Similar performances are obtained for the

sequence length being 4, 5, and 6, which stabilize at 300,000

events/sec, 210,000 events/sec, and 170,000 events/sec, respec-

tively. To summarize, Figure 7 shows that when the domain

size of A1 is larger than about 2000, TMS-RFID always has

a high throughput.

Figure 8 further shows the throughput changing with the

number of events. The domain sizes are set to 500, 1000, 5000,

, and 10000, and the sequence lengthes are set to three longer

ones, namely 4, 5, and 6. The results show that whatever the

domain size and sequence length are, the performance of the

system can reach a stable level quickly.

2) Experiment on sequence length: The longer the se-

quence length is, the more intermediate stages are. Thus, this

set of experiments is executed to test the effect of the sequence

length on the performance of TMS-RFID. The domain size of

A1 is set to 500, 1000, 5000, 10000, and the sequence length

increases from 2 to 6, and the results are shown in Figure 9.

Figure 9 shows that TMS-RFID scales very well with the

sequence length when the domain size of A1 is 1000, 5000,

Fig. 7. The effect of the domain
size of A1

(a) (b) (c)

Fig. 8. Throughput of TMS-RFID, and the sequence length is (a) 4, (b) 5, (c) 6

Fig. 9. The effect of the sequence
length

(a) (b) (c)

Fig. 10. The size of DLSIList, and the sequence length is (a) 4, (b) 5, (c) 6

and 10000, respectively. When the domain size of A1 is 500,

the throughput of TMS-RFID drops a large level for the

sequence length being 5 and 6, but still scales well for the

sequence length being 2, 3, 4.

3) Scalability of TMS-RFID: The main intermediate results

of TMS-RFID are stored in DLSIList, and the size of DLSIList

has a great effect on the performance of TMS-RFID. If its

size increases exponentially with the number of events, the

system could not handle RFID data streams with huge amount

of events. This set of experiments is therefore performed to

check the size DLSIList. Since DLSIList includes two lists:

PSIList and SIList, the number of components in these two

lists is shown in Figure 10. Here, the sequence length is set

to three longer ones, namely 4, 5, and 6. The domain size

of A1 is set to 500 since the above experiments on domain

size shows that this is the most difficult case. The results show

that whatever the sequence length is, although the sizes of both

PSIList and SIList fluctuate with the number of events, they

stabilize at a fixed level, and do not increase exponentially.

This demonstrates that TMS-RFID is quite scalable.

VIII. CONCLUSIONS

The ability of RFID technology for precisely identifying

objects at low-cost and non-line-of-sight creates many new

and exciting application areas. This wide range of applications

will make RFID an integral part of our daily lives. Despite

the obvious potential, RFID also presents a new challenge

on efficiently processing large-scale and time sensitive RFID

events. In this paper, we presented TMS-RFID, a system for

temporal management of RFID applications over high-speed

RFID data streams. The key idea behind TMS-RFID is a novel

notion of TTL, which is used to control the time restrictions in

various RFID applications. To solve the problem of unordered

event stream (UnES), we developed a new data structure,

namely DLSIList, to mitigate the exponential growth of

the intermediate results when processing RFID queries. We

demonstrated the effectiveness of TMS-RFID in a detailed

performance study. The results illustrate that TMS-RFID is

capable of processing high-speed RFID data streams with a

good scalability.

Compared with other systems such as SASE [3], HiFi [8],

and Cayuga [11], TMS-RFID provides a unique add-on mid-

dleware component to deal with the TTL queries with a

solution to the UnES problem, which is one step further

towards deployment of large-scale RFID applications.

IX. ACKNOWLEDGMENTS

This work is partially funded by the Australian ARC Dis-

covery Project Grant DP0558879.

REFERENCES

[1] S. S. Chawathe et al., “Managing RFID Data,” in VLDB’04, Canada,
2004.

[2] F. Wang et al., “Bridging Physical and Virtual Worlds: Compex Event
Processing for RFID Data Streams,” in EDBT’06, Germany, 2006.

[3] E. Wu et al., “High-Performance Complex Event Processing over
Streams,” in SIGMOD’06, USA, 2006.

[4] Y. Bai et al., “RFID Data Processing with a Data Stream Query
Language,” in ICDE’07, Turkey, 2007.

[5] F. Wang et al., “Temporal Management of RFID Data,” in VLDB’05,
Norway, 2005.

[6] A. Demers et al., “Towards Expressive Publish/ Subscribe Systems,” in
EDBT’06, Germany, 2006.

[7] M. Palmer, “Seven principles of effective
rfid data management.” [Online]. Available:
http://www.objectstore.com/docs/articles/7principles rfid mgmnt.pdf

[8] S. Rizvi et al., “Events on the Edge,” in SIGMOD’05, USA, 2005.
[9] G. Liu et al., “A Unified Approach for Specifying Timing Constraints

and Composite Events in Active Real-time Database Sysems,” in
RTAS’98, USA, 1998.

[10] M. Mansouri-Samani et al., “GEM: A Generalized Event Monitoring
Language for Distributed Systems,” Distributed Systems Engineering,
vol. 4, no. 2, 1997.

[11] L. Brenna et al., “Cayuga: A High-Performance Event Processing
Engine,” in SIGMOD’07, China, 2006.

[12] U. Srivastava et al., “Flexible Time Management in Data Stream
Systems,” in PODS’04, France, 2004.

[13] S. Chakravarthy et al., “Composite Events for Active Databases: Seman-
tics, Contexts and Detection,” in VLDB’94, Chile, 1994.

[14] N. H. Gehani et al., “Composite Events Specification in Active
Databases: Model and Implementation,” in VLDB’92, Canada, 1992.

[15] D. Zimmer et al., “On the Semantics of Complex Events in Active
Database Management Systems,” in ICDE’99, Australia, 1999.

