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Abstract 

Irregularities in intracellular traffic in axons caused by mutations of molecular motors may lead to 

“traffic jams”, which often result in swelling of axons causing various neurodegenerative 

diseases. The purpose of this paper is to suggest a model of the formation of traffic jams in axons 

during molecular-motor-assisted transport of intracellular organelles utilizing transport equations 

developed in Smith and Simmons [1], which describe the motion of intracellular particles under 

the combined action of diffusion and motor-driven transport. According to this model, large 

intracellular organelles are transported in the cytoplasm by a combined action of diffusion and 

motor-driven transport. In an axon, organelles are transported away from the neuron’s body 

toward the axon’s terminal by kinesin-family molecular motors running on tracks composed by 

microtubules; old and used components are carried back toward neuron’s body by dynein-family 

molecular motors. Binding/detachment kinetic processes between the organelles and microtubules 

are specified by first rate reaction constants; these lead to coupling between the three organelle 

concentrations. 
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Nomenclature 

0D  dimensionless diffusivity of a free particle, 
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D  diffusivity of a free particle 

−k  dimensionless binding rate to microtubules for particles that move in the negative 

direction, 
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 first order rate constants for binding to microtubules for particles that move in the 

positive (+) and negative (−) directions, respectively 

±′k  dimensionless detachment rate from microtubules for particles that move in the positive 

(+) and negative (−) directions, respectively, 
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0±′k  dimensionless detachment rate from microtubules for particles that move in the positive 

(+) and negative (−) directions for the case when concentration of particles riding on 

microtubules is very low 

±′k
~
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±n~  concentration of particles moving on microtubules in the positive (+) and negative (−) 

directions, respectively 

0N  dimensionless concentration of free particles maintained at 0=x , 
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0
~
N  constant concentration of free particles maintained at 0~ =x  

LN  dimensionless concentration of free particles maintained at Lx = , 
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~

 constant concentration of free particles maintained at Lx
~~ =  

t~  time 

−v  dimensionless velocity of a particle moving on a microtubule toward the cell body, 
+

−

ν~
~v

 

0−v  dimensionless velocity of a particle moving on a microtubule in the negative (−) direction 

for the case when concentration of particles riding on microtubules is very low 

±v~  velocity of a particle moving on a microtubule in the positive (+) and negative (−) 

directions, respectively 

x  dimensionless particle displacement in the axon, 
+

+
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~~
 

x~  particle displacement in the axon 

 

Greek symbols 

0σ  degree of loading at 0~ =x  

Lσ  degree of loading at Lx
~~ =  
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1. Introduction 

Neurons are highly specialized cells that have long arms (processes). If the arm transmits 

electrical signals, it is called an axon, whereas if it receives electrical signals, it is called a 

dendrite (Fig. 1, Alberts et al. [2]). Axons in a human body can be up to one meter in length. 

Axons support little synthesis of proteins or membrane, therefore materials must be constantly 

imported from the synthetically active cytoplasm of the cell body (Hurd and Saxton [3]) and 

transported to arms’ terminals. Diffusion is not a sufficiently fast mechanism for transporting 

large intracellular particles (organelles), such as large protein particles or intracellular vesicles 

carrying different types of cargo. This is because according to Einstein’s relation that determines 

the diffusivity of small particles due to the Brownian motion, the diffusivity is inversely 

proportional to the particles’ radius, which means that larger particles have smaller diffusivity. To 

overcome the diffusion limitation, intracellular transport in axons and dendrites relies on the 

“railway system”: large intracellular particles attach themselves to molecular motors (specialized 

proteins that as a result of a chemical process, usually ATP hydrolysis, undergo conformational 

changes “walking” along intracellular filaments, such as microtubules) that transport them along 

microtubules. 

All microtubules (MT) in an axon have the same polarity (their plus ends point toward the axon 

terminal); the microtubules do not stretch the entire length of the axon so that the continuous path 

along the axon is composed by short overlapping segments of parallel microtubules. Transport 

vesicles loaded with specific proteins are carried away from the neuron body toward the synapse 

(the axon terminal) by kinesin-family molecular motors (this family of molecular motors is 

responsible for the transport on microtubules toward their plus-ends). Used and old intracellular 

organelles are carried from the axon terminal toward the body of the neuron by dynein-family 

molecular motors (this family of molecular motors is responsible for the transport on 

microtubules toward their minus-ends). In dendrites the microtubule polarities are mixed; some of 

them point their plus ends toward the dendrite tip and some point those toward the neurons’ body. 

Therefore, in a dendrite, depending on the polarity of a particular microtubule, transport in a 

certain direction (to the neuron’s body or away from it) can be carried out by either kinesin or 

dynein molecular motors (Alberts et al. [2], Pollard and Earnshaw [4]). 

Irregularities in intracellular traffic in axons caused by mutations of molecular motors may lead to 

“traffic jams”, which may result in swelling of axons causing various neurodegenerative diseases 

(Hurd and Saxton [3], Goldstein [5], Martin et al. [6]). Hurd and Saxton [3] published electron 

micrographs of cross-sections through axonal swellings. The micrographs show that the 
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swellings, caused by traffic jams induced by a mutation of a gene encoding the force-producing 

heavy chain of the kinesin molecular motor, are packed with mitochondria, large multi-vesicular 

bodies, and other types of intracellular organelles. 

The purpose of this paper is to suggest a model of the formation of traffic jams in axons during 

molecular-motor-assisted transport of intracellular organelles utilizing transport equations 

developed in Smith and Simmons [1] which describe motion of intracellular particles under the 

combined action of diffusion and motor-driven transport. According to this model, the organelle 

either diffuses freely in the cytosol or moves on a filament at a motor velocity; the organelle can 

bind to or detach from a filament. Depending on the type of a molecular motor (or several 

motors) attached to the particle, the motion along the microtubule can occur in either direction. 

Dinh et al. [7] presented numerical solutions of Smith-Simmons equations to describe 

intracellular trafficking of adenoviruses between the cell membrane and cell nucleus. Other 

relevant aspects of intracellular transport of cell organelles and vesicles along microtubules are 

considered in [8-15]. 

 

2. Governing equations 

The molecular-motor-assisted transport equations suggested in Smith and Simmons [1] are 

( ) −−++−+ ′+′++−
∂
∂

=
∂
∂

nknknkk
x

n
D

t

n ~~~~~~~
~

~~
~
~

02
0

2

0
0      (1) 

( )
x

nv
nknk

t

n
~

~~
~~~~

~
~

0 ∂
∂

−′−=
∂
∂ ++

+++
+        (2) 

( )
x

nv
nknk

t

n
~

~~
~~~~

~
~

0 ∂
∂

−′−=
∂
∂ −−

−−−
−        (3) 

where 0
~
D  is the diffusivity of a free particle; t~  is the time; 0

~n  is the free particles concentration; 

+n~  is the concentration of particles moving on microtubules in the positive direction (away from 

the cell body); −n~  is the concentration of particles moving on microtubules in the negative 

direction (toward the cell body); x~  is the linear coordinate along the axon; −v~  is the velocity of a 

particle moving on a microtubule toward the cell body (in an axon this is the motor velocity 

generated by a dynein-family molecular motor), −v~  is negative; +v~  is the velocity of a particle 

moving on a microtubule away from the cell body (in an axon this is the motor velocity generated 
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by a kinesin-family molecular motor), +v~  is positive; +k
~

 and −k
~

 are the first order rate constants 

for binding to microtubules for particles that move in the positive and negative directions, 

respectively; and +′k
~

 and −′k
~

 are the first order rate constants for detachment from microtubules 

for particles that move in the positive and negative directions, respectively. 

Equations (1)-(3) to be solved subject to the following boundary conditions: 

0~ =x   00
~~ Nn =  00

~~ Nn σ=+      (4) 

Lx
~~ =   LNn

~~
0 =  LL Nn

~~ σ=−      (5) 

where 0
~
N  and LN

~
 are fixed concentrations of particles at 0~ =x  and Lx

~~ = , respectively; and 

0σ  and Lσ  are the degrees of loading at 0~ =x  and Lx
~~ = , respectively. 

Since the time scale for the development of neurodegenerative diseases (for the formation of 

traffic jams) is large, the transient terms in equations (1)-(3) are neglected, and axonal transport is 

considered at steady-state conditions. 

According to the Pi theorem, the maximum variable reduction is equal to two (the number of 

dimensions describing the variables, length and time). Dimensionless variables are introduced as 

follows: 
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In order to simulate traffic jams in axons, two physical modeling approaches are investigated: 

1. The increase of concentration of particles riding on microtubules results in decreasing the 

molecular motor velocity; this behavior may be related to mutations of genes coding the structure 

of molecular motors. The slowdown is modeled here by the exponential functions: 

( )+++ −= Anvv exp~~
0 , ( )−−− −= Anvv exp~~

0      (8) 

where 0
~

+v  and 0
~

−v  are values of +v~  and −v~  for the case when concentration of particles riding on 

microtubules is very low. 
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2. Alternatively, it may be a better physical approach to assume that molecular motor 

velocity is independent of particle concentration (this is done by setting A = 0 in Eq. (8)), but as 

number densities of organelles riding on microtubules ( +n  and −n ) increase, the probability of 

them falling off the microtubules and becoming free particles increases. Indeed, molecular motors 

operate in a very noisy environment (constantly experiencing thermally excited collisions with 

water molecules); organelles with attached molecular motors compete for the same space close to 

the microtubule [16]. Therefore, it is reasonable to assume that the increase of number density 

concentration of intercellular particles riding on a microtubule results in larger probability for a 

molecular motor to fall off the microtubule thus increasing the detachment rate constants, ±′k
~

. 

This is modeled by representing the detachment rate constants as: 

( )+++ ′=′ Bnkk exp0 , ( )−−− ′=′ Bnkk exp0      (9a) 

where 0+′k  and 0−′k  are values of +′k  and −′k  for the case when concentration of particles riding 

on microtubules is very low. 

This should be particularly true in the regions occupied by axonal swelling. An organelle-filled 

axonal swelling can be modeled by locally increasing the value of constant B in the region 

occupied by the swelling. For example, if the swelling is located in the region 21 xxx ≤≤ , this 

can be modeled by the following step function: 

10 xx <≤  and 21 xxx ≤< : 0=B       (9b) 

21 xxx ≤≤ : 0BB =         (9c) 

where 0B  is a positive constant. 

Under these assumptions, the dimensionless steady-state governing equations are 
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The dimensionless boundary conditions are 

0=x   00 Nn =  00Nn σ=+      (13) 

Lx =   LNn =0  LL Nn σ=−      (14) 

The dimensionless flux of intracellular organelles is 

( ) ( ) −−−++ −+−+−= nAnvnAn
dx

dn
Dj expexp 0

0
0     (15) 

By adding equations (10), (11), and (12) and integrating the result once with respect to x it is 

readily proven that for the steady-state situation j is a constant (independent of x). 

Finite difference approximation is used to solve the non-linear system of equations, i.e. equations 

(10)-(12), iteratively subject to the appropriate boundary conditions, i.e. equations (12) and (13). 

As seen, two boundary conditions are available for the second order differential equation, 

equation (10), when solved for n0. On the other hand, while one of the first order equations, 

equation (11), has its only boundary condition at x=0, the other one, when solved for n-, is solved 

subject to a known value at the other end of the axon, i.e. at x=20. Hence, equation (10) is 

discretized by a Central Difference Scheme (CDS) while a Forward/Backward one is 

implemented for equation (11)/(12). Uniform grids of size ∆x=0.02 are used. Grid independence 

is verified by running the most stringent cases (associated with the highest B or the lowest A 

values) on different grid sizes. It is observed that moving ∆x from 0.02 to 0.01, the change in the 

results is less than 1%. The convergence criterion (maximum relative error in the values of the 

dependent variables between two successive iterations) in all runs is set at 10-7. As a test on the 

accuracy of the numerical procedure the results are compared (successfully) with those obtained 

by a numerical solution of the same equations using the Mathematica software package for the 

case when the system of equations is linear, i.e. A=B=0.  

 

3. Results and Discussion 

In the light of Dinh et al [7], the detachment rate constants, ±′k
~

, for trafficking adenoviruses of 

type 2 in HeLa cells are estimated as 0.5 1−s . The corresponding binding rates, 1
~ =±k , are taken 

to be equal to 1 1−s  based on [1]. According to [1], typical molecular motor velocities are 

1~ ±=±v  µm/s; the Einstein relation for a 1- µm sphere in water gives 4.0
~

0 =D  µm2/s. 

Estimations of transport properties for different types of organelles are also given in Table 1 of 
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[9] and in supplementary material for [12] and are not repeated here. A relatively short axon 

whose length is 20 µm is modeled in this research. This explains the choice of dimensionless 

parameter values summarized in Table 1. 

Figures 2(a)-(c) display dimensionless number density concentrations of free particles, 0n , riding 

on microtubules toward the neuron body, −n , and particles riding on microtubules away from the 

neuron body, +n . The effect of slowing down the molecular motor velocity as number density 

concentration of particles riding on microtubules increases is investigated. Computations are 

performed for B=0 (the detachment rates from microtubules, ±′k , are assumed to remain constant, 

independent of organelle concentration) for various values of A (see Eq. (8)). A traffic jam for +n  

is evident in Fig. 2(c); it occurs at approximately x = 2.0. The traffic of organelles toward the 

axon terminal becomes more jammed as A increases. This is as expected because larger A 

corresponds to more significant slowdown of molecular-motor-assisted transport as density of the 

traffic increases. This is similar to the formation of a cluster of cars in traffic flow [17], with the 

difference that traditional traffic flows are essentially unsteady, and clusters of cars (traffic jams) 

often form in a homogeneous flow and are highly dynamic objects. Traffic jams in the 

intracellular flow of organelles, on the contrary, are steady-state objects because of a large 

timescale involved in their formation. As one can see from Table 2, this traffic jam results in the 

reduction of the dimensionless flux of intracellular organelles, j, (see Eq. (15)) thus reducing the 

supply of proteins to the axon terminal (synapse, see Fig. 1), which eventually may lead to a 

disruption of normal functioning of the neuron. 

Figures 3(a)-(c) are similar to Figs. 2(a)-(c), but they investigate the possible effect of an 

organelle-filled axonal swelling (positioned in the region of 1110 ≤≤ x ) on organelle transport in 

axons. The effect of axonal swelling is modeled by locally increasing the value of constant B in 

the region occupied by the swelling (see Eqs. (9b,c)). The traffic jam in the region of axonal 

swelling, 1110 ≤≤ x , is clearly visible. Table 3 shows that this traffic jam results in reducing the 

flux of organelles toward axon terminal; the reduction becomes more significant as 0B  increases. 

 

4. Conclusions 

This research demonstrates that modified Smith-Simmons equations are capable of modeling 

traffic jams in molecular-motor-assisted transport of intracellular organelles in axons. Two 

approaches to modeling traffic jams in axons are discussed: 
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1) Traffic jam is obtained by assuming that the increase of concentration of particles riding on 

microtubules results in decreasing the molecular motor velocity; this behavior may be related to 

mutations of genes coding the structure of molecular motors. 

2) It is also shown that traffic jam can be caused by the assumption that as number density of 

organelles riding on microtubules increases, the probability of them falling off the microtubules 

and becoming free particles increases. 

This is particularly true in the regions occupied by axonal swelling, where organelles with 

attached molecular motors compete for the same limited space close to the microtubule. The 

effect of an organelle-filled axonal swelling is modeled by locally increasing the value of constant 

B in the region occupied by the swelling. It is shown that traffic jam results in reducing the flux of 

organelles toward axon terminal, which may eventually lead to a disruption of normal functioning 

of the neuron. 
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Figure captions 

 

Fig. 1. Schematic diagram of a neuron cell with a dendrite and axon; also, a traffic jam in the 

axon resulting from crowding of organelles at a certain location in the axon.  

Fig. 2. Effect of slowing down the molecular-motor assisted transport along microtubules (see Eq. 

(8)) on number density concentrations of free particles, 0n  (a), particles riding on microtubules 

toward the neuron body, −n  (b), and particles riding on microtubules away from the cell body, 

+n  (c). Computed for B=0. 

Fig. 3. Effect of increasing the detachment rate from microtubules (see Eq. (9a-c)) on number 

density concentrations of free particles, 0n  (a), particles riding on microtubules toward the 

neuron body, −n  (b), and particles riding on microtubules away from the cell body, +n  (c). 

Computed for A=0, B is increased locally in the region 10<x<11 (the value of B in this region is 

set to 0B ), otherwise B=0. 
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Table 1. Dimensionless parameters utilized in computations 

Parameter Description Value 

0D  Diffusivity of free particles 0.4 

−k  Binding rate to the microtubules that 

transport particles in the negative 

direction (toward the cell body) 

1 

0±′k  Detachment rate from microtubules for 

particles that move in the positive (+) 

and negative (−) directions for the case 

when concentration of particles riding 

on microtubules is very low 

0.5 

L  Axon length 20 

0N  Concentration of free particles at 0=x  0.1 

LN  Concentration of free particles at Lx =  0.01 

0−v  Motor speed of a particle moving on a 

microtubule in the negative (−) direction 

for the case when concentration of 

particles riding on microtubules is very 

low 

−1 

 

0σ  Degree of loading at 0=x  0.1 

Lσ  Degree of loading at Lx =  0.1 
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Table 2. Effect of the traffic jam due to velocity decrease at larger concentration of organelles 

riding on microtubules on the flux of the organelles toward the axon terminal, computed for B = 0 

A j 

0 0.0087 

0.1 0.0086 

1 0.0083 

7 0.0063 

 

Table 3. Effect of the traffic jam due to increased probability of the organelles to fall off the 

microtubules on the flux of the organelles toward the axon terminal, computed for A = 0 

B in the region 10<x<11 (B=0 otherwise) j 

1 0.0087 

10 0.0085 

50 0.0073 

75 0.0068 
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Fig. 1. Schematic diagram of a neuron cell with a dendrite and axon; also, a traffic jam in the 

axon resulting from crowding of organelles at a certain location in the axon.  
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Figure 2 
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Figure 3 


