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ABSTRACT

We discuss progress towards implementing two qubit quantum gates in optics. We review the operation of an
optical quantum gate which performs all the operations of a control-NOT (CNOT) gate in the coincidence basis
with two, unentangled photons as the input and discuss its implementation.
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1. INTRODUCTION

Quantum information processing requires qubits which are strongly isolated from the general enviroment and
yet interact strongly with controlled environments such that they can be manipulated and measured accurately.
Qubits based on the polarization state of individual photons have the advantage of low decoherence rates in
free propagation and can be accurately manipulated and measured at the single qubit level. Optical down
conversion experiments have been very successful in producing and analyzing a large range of two photon
entangled states.1{3

The major source of decoherence in such systems is photon loss. However, because this results in the total
destruction of the qubit it can easily be screened for by only excepting results in which all qubits arrive at the
measurement station. This is referred to as working in the coincidence basis such that only events where two
photons are detected in the same, narrow time window are recorded. The entangled state postselected this way
may be a pure Bell state even though the total state is non-deterministic and may have experienced considerable
mixing from photon loss. This \screening" procedure results in an exponentially dropping signal with the size
of the circuit and so such systems are not scalable in the quantum computational sense in their present form.
None-the-less they provide an excellent testing ground for quantum information concepts. Useful application of
this type of technology seems much closer in the realm of quantum communications.

A key two qubit gate is the Controlled Not (CNOT) gate. A deterministic CNOT gate would require either
very high non-linearities4 or complex linear networks with detection and feedforward.5 Building on the latter
ideas a number of linear, coincidence basis CNOTs have been described with quite di�erent properties.

Sanaka et al6 have demonstrated a gate which converts entanglement in one degree of freedom; time-energy,
into CNOT gate operation on another degree of freedom; polarization. An entangled state fringe visibility of
0.44 was observed in this experiment. D�ur7 and Briegel have shown that in the presence of eÆcient, local
quantum non-demolition measurements such a techniques could be made scalable. However no practical means
is yet known for doing this in optics.

More recently Pittman et al8 have described a 3-photon CNOT gate. This gate is related to the teleportation
gate described by Knill, La
amme and Milburn (KLM)5 which uses entangled ancilla photons and detection to
implement gate operation. In the experiment a single, unentangled ancilla photon was used instead of entangled
ancilla, but the trade-o� was the need to work in the coincidence basis. An entangled state fringe visibility of
0:61 was observed.

In this paper we discuss a linear, coincidence basis gate which performs all the operations of a CNOT
gate and requires only an unentangled two photon input.9, 10 This gate is closely related to the fundamental
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Figure 1. Schematic of the gate. Dashing indicates the surface from which a sign change occurs upon re
ection. The
control modes are cH and cV . the target modes are tH and tV . the modes vc and vt are unoccupied ancillary modes.

gates described by KLM5 which are envisaged as producing the entanglement for the teleportation gates. The
simplicity and versatility of this gate suggests that in addition to being a testing ground for the ideas of KLM
it could also be a good candidate for in principle demonstrations of small scale quantum circuits and possible
applications in quantum communications. We expect to report an experimental demonstration of this gate in
the near future.

The paper is arranged in the following way. In section 2 we describe the gates construction and operation
conceptually. In section 3 we consider the e�ect of imperfections in its construction, particularly focusing on
the e�ect of beamsplitter and mode-matching errors on the gates eÆcacy as a Bell state analyzer. In section 4
we brie
y discuss a possible experimental arrangement and then conclude in section 5.

2. THE GATE

In this section we describe the two photon CNOT gate under ideal conditions.9 The gate is shown in Fig.1.
All beamsplitters, B1, B2, B3, B4, and B5, are assumed asymmetric in phase. That is, it is assumed that
the operator input/output relations (the Heisenberg equations) between the two input mode operators (ain and
bin) and the corresponding output operators (aout and bout) for the beamsplitters have the general form

aout =
p
�ain +

p
1� �bin

bout =
p
1� �ain �p

�bin (1)

where � (1� �) is the re
ectivity (transmittivity) of the beamsplitter. Re
ection o� the bottom produces the
sign change except for B1 and B2 which have a sign change by re
ection o� the top. This phase convention
simpli�es the algebra but other phase relationships will work equally well in practice. Beamsplitters B3 and B4
are both 50:50 (� = 1=2). The beamsplitters B1, B2 and B5 have equal re
ectivities of one third (� = 1=3).

We employ dual rail logic such that the \control in" qubit is represented by the two bosonic mode operators
cH and cV . A single photon occupation of cH with cV in a vacuum state will be our logical 0, which we will
write jHic (to avoid confusion with the vacuum state). Whilst a single photon occupation of cV with cH in
a vacuum state will be our logical 1, which we will write jV ic. Superposition states can also be formed via
beamsplitter interactions. Similarly the \target in" is represented by the bosonic mode operators tH and tV and
the states jHit and jV it, with the same interpretations as for the control. The use of H and V to describe the
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states of the qubits of course alludes to the usual encoding in polarization. To go from polarization encoding to
dual rail spatial encoding and vice versa in the lab requires a polarizing beamsplitter and half-wave plate. An
implementation based speci�cally on polarization encoding is discussed in section 4.

The Heisenberg equations relating the control (cH ; cV ) and target (tH ; tV ) input modes to the their corre-
sponding outputs are

cHO =
1p
3
(
p
2vc + cH)

cVO =
1p
3
(�cV + tH + tV )

tHO =
1p
3
(cV + tH + vt)

tVO =
1p
3
(cV + tV � vt)

vcO =
1p
3
(�vc +

p
2cH )

vtO =
1p
3
(tH + tV � vt) (2)

Ancillary, vacuum input modes, vc and vt, complete the network. The gate operates by causing a sign shift
in the interferometer formed by the splitting and remixing of the target modes, conditional on the presence of
a photon in the cV mode. Thus the target modes swap if the control is in the state jV ic but do not if the
control is in state jHic. This is always true when a coincidence is measured between the control and target
outputs (photons are detected at the same time). However such coincidences only occur one ninth of the time,
on average. The other eight times out of nine either the target or the control or both do not contain a photon,
that is one or both of the qubits are destroyed. This can be seen explicitly by calculating the output state of
the system in the Schr�odinger picture. Consider the general input state

j�i = (�jHHi+ �jHV i+ 
jV Hi + ÆjV V i)j00i
= (�cy

H
ty
H
+ �cy

H
ty
V
+ 
cy

V
ty
H
+ Æcy

V
ty
V
)j0000ij00i (3)

where the ordering in the kets is jncHncV ntHntV ijnvcnvti with ncH = cy
H
cH etc and we use the short hand

j1010i = jHHi etc where appropriate. For a time symmetric linear network such as that in Fig.1, the output
state can be directly obtained from the input state, Eq.3, by substituting input operators for the output
operators given by Eq.2.11 Thus we obtain

j�iout = (� cy
HO

ty
HO

+ � cy
HO
ty
VO

+ 
 cy
VO
ty
HO

+ Æ cy
VO
ty
VO
)j0000ij00i

=
1

3
f�jHHi+ �jHV i+ 
jV V i+ ÆjVHi

+
p
2(�+ �)j0100ij10i+

p
2(�� �)j0000ij11i+ (�+ �)j1100ij00i

+(�� �)j1000ij01i+ �j0010ij10i+ �j0001ij10i
�(
 + Æ)j0200ij00i� (
 � Æ)j0100ij01i+ 
j0020ij00i
+(
 � Æ)j0010ij01i+ (
 + Æ)j0011ij00i+ (
 � Æ)j0001ij01i+ Æj0002ij00ig (4)

The state postselected in the coincidence basis is then just

j�icb = �jHHi+ �jHV i+ 
jV V i+ ÆjV Hi (5)

occurring with probability one ninth. The relationship between Eq.3 and Eq.5 is a CNOT transformation.

It is also useful to look at the coincidence number expectation values, obtained directly from the Heisenberg
equations (Eq.2). These can be interpreted as the predicted output coincident count rates normalized to the
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Input hncHOntHO i hncHOntVOi hncVOntHOi hncVOntVOi
jHicjHit 1

9
0 0 0

jHicjV it 0 1
9

0 0
jV icjHit 0 0 0 1

9

jV icjV it 0 0 1
9

0

Table 1. Coincident expectation values calculated for each of the four logical basis inputs.

input pair rate. An example is given in Table 1 which shows the count rates for logical basis inputs. A more
interesting case is to use the four Bell-states,

j �i =
1p
2
(jHicjHit � jV icjV it)

j��i =
1p
2
(jHicjV it � jV icjHit) (6)

as inputs and to detect the control in the superposition basis by mixing the control outputs on a 50:50 beam-
splitter before detection:

cS1 =
1p
2
(cHO + cVO)

cS2 =
1p
2
(cHO � cVO) (7)

In Table 2 the count rates for this arrangement are presented showing the ability to distinguish all four Bell
states (albeit with non unit eÆciency). Such a Bell state analyzer could have signi�cant applications in quantum
communications. In the next section we will use this application as an example in order to investigate the e�ect
of non-optimal parameters on the gate.

Input hncS1ntHOi hncS2ntVOi hncS1ntHOi hncS2ntVOi
j +i 1

9
0 0 0

j �i 0 1
9

0 0
j�+i 0 0 1

9
0

j��i 0 0 0 1
9

Table 2. Coincident expectation values calculated in the superposition basis for the four Bell states.

3. NON-OPTIMAL OPERATION

In this section we investigate the operation of the gate under non-optimal conditions.9 The accuracy with
which the gate operates will be determined by how closely the parameters of the constructed gate correspond
to those of the idealized gate of the previous section. We can identify three potential sources of error: incorrect
beamsplitter ratios; non-unit mode matching and; timing errors. One advantage of working in the coincidence
basis is that losses and detector ineÆciency can be ignored because they take the system out of the coincidence
basis and thus their only e�ect is to reduce the count rate.

Timing Errors. Correct gate operation depends on indistinguishability of the paths taken by the two photons
through the network. This means that they must arrive simultaneously at the central beamsplitter to an accuracy
of a fraction of their coherence length. Photon coherence length in down conversion experiments is generally
determined by pre-detection frequency �ltering and can be of order one hundred wave-lengths. Locking path
lengths on this scale should not be a major problem.

Beamsplitter ratios. The e�ect of non-optimal beamsplitter ratios can be investigated by deriving the
operator equations (Eq.2) more generally, with arbitrary beamsplitter ratios. For simplicity we assume that
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Figure 2. Relative error rates, i.e. error rate/total rate, for Bell state analysis as a function of beamsplitter ratios close
to the optimum values of �0 = 1=2 and � = 1=3.

the beamspitters all came from the same \production-run" such that any deviation from the optimal value is
common. That is, we might suppose that both the 50:50 beamsplitters actually have a re
ectivity of �0 whilst
the three 1/3:2/3 beamsplitters all actually have re
ectivities �. The Heisenberg equations are then

cHO =
p
�cH +

p
1� �vc

cVO = �p�cV +
p
(1� �)�0tH +

p
(1� �)(1� �0)tV

tHO =
p
�(1� 2�0)tV + 2

p
�(1 � �0)�0tH +

p
��0cV +

p
(1 � �)(1� �0)vt

tVO = 2
p
�(1� �0)�0tV +

p
�(1� 2�0)tH +

p
(1� �)(1 � �0)cVO �

p
(1� �)�0vt

vcO = �p�vc +
p
1� �cHO

vtO =
p
(1� �)(1� �0)tH +

p
(1� �)�0tV �p

�vt (8)

In general the e�ect of varying the beamsplitter ratios is input state dependent. However for small deviations
from the optimumvalues Bell state analysis is approximately state independent and serves as a useful diagnostic.
In Fig.2 we plot the error probability in distinguishing the Bell states as a function of � and �0 in the region close
to their optimum values. The dependence of the error probability on �0 is mirror imaged between the j �i and
the j��i Bell states. However this dependence is negligible in the region close to �0 = 1=2. The dependence on �
is more pronounced. For an � of 1=3� 0:01 (and �0 of 1=2� 0:05) error rates of about 0:7% are predicted. Such
accuracy is achievable thus we conclude that errors below 1.0 % should be realistic with current beamsplitter
technology.

Mode matching errors. Mode matching in non-classical interference experiments is generally quite diÆcult
and may be identi�ed as a major contributor to non-unit visibility. Given the key role of non-classical interference
in the CNOT gate we may expect mode matching errors to be of some signi�cance.
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Figure 3. Schematic diagram of the coincidence CNOT gate including the e�ects of mode matching. The mismatch is
represented by splitting cV into two orthogonal modes cV 1 and cV 2. Ancillary modes v1, v2 and v3 interact with the
propagating mismatch.

In order to model the mismatch of input modes at the central beamsplitter, ancillary modes v1, v2 and
v3 (originally in the vacuum state) are introduced to interact with the propagating mismatch mode. The
additional output modes are labelled cVm , cHm and tVm (see Fig.3). The mode cv is assumed to be the source
of the mismatch, after having passed through some kind of optical element that has misaligned it.

cv1 =
p
� cV +

p
1� � v1

cv2 = �
p
1� � cV +

p
� v1

The parameter � quanti�es the degree of mode matching between the control and target modes at the central
beamsplitter. So long as the modes are matched reasonably well, cv1 can be considered a sort of \primary"
mode. It interacts with the output from beamsplitter B3 in the same way as for the case neglecting mode
matching. The mismatch component cv2 interacts only with the newly introduced vacuum modes.

The equations for the output modes of the quantum CNOT gate, including the e�ects of a mode mismatch,
are

vcO =
1p
3
(�vc +

p
2cH)

cHO =
1p
3
(
p
2vc + cH)

cVO =
1p
3
(�
p
�cV �

p
1� �v1 + tH + tV )

cVm =
1p
3
(
p
1� �cV �

p
�v1 +

p
2v2)

tHO =
1p
3
(
p
�cV + tH +

p
1� �v1 + vt)

tHm =
1p
3
(�
p
1� �cV +

p
�v1 +

1p
2
v2 +

r
3

2
v3)

tVO =
1p
3
(
p
�cV + tV �

p
1� �v1 � vt)
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tVm =
1p
3
(�
p
1� �cV +

p
�v1 +

1p
2
v2 �

r
3

2
v3)

vtO =
1p
3
(tH � tV � vt) (9)

Now, when measuring the coincidences, the detectors see a combination of the counts from both the primary
modes and the mismatch modes (see Fig.3). For example, when detecting coincidences of horizontally polarized
photons, the count rate becomes

hncHDntHD i = hncHO (ntHO + ntHm )i
= hncHOntHOi + hncHOntHmi and similarly,

hncHDntVDi = hncHOntVOi+ hncHOntHm i
hncVDntHD i = hncVOntHOi+ hncVOntHmi+ hncVmntHOi + hncVmntHm i
hncVDntVDi = hncVOntVOi + hncVOntVmi+ hncVmntVOi+ hncVmntVmi (10)

These moments are summarized for logical inputs in Table 3. As expected, the mode mismatch has not a�ected
the CNOT operation when the control is \o�" (i.e. when cH is occupied). In this case, there is no interaction
at beamsplitter B2 (Fig.3) and thus no non-classical interference. However, when the control is \on", the e�ects
of the mismatch are noticeable.

Input hncHDntHD i hncHDntVDi hncVDntHD i hncVDntVDi
jHicjHit 1

9
0 0 0

jHicjV it 0 1
9

0 0
jV icjHit 0 0 2

9
(1� �) 1

9

jV icjV it 0 0 1
9

2
9
(1� �)

Table 3. Coincident expectation values calculated for each of the four logical basis inputs, with mode matching �.

Interestingly, the mismatch adds extra terms rather than redistributing the probabilities of the counts
measured in the ideal case. Coincidence events which previously were disallowed due to the non-classical
interference can now appear as error events because of the mismatch. Thus the probabilities that are being
redistributed are those for the states that were not detected in the ideal case (the states which had been
postselected out).

We now consider the performance of the gate as a Bell state analyzer in the presence of mode mismatch. As
in the ideal case, another beamsplitter is added to the outputs of the control qubit. Another ancillary mode v4
must be added to interact with the mismatch mode cVm .

The beamsplitter outputs are given in the Heisenberg picture by

cS1O =
1p
2
(cHO + cVO )

cS1M =
1p
2
(v4 + cVm )

cS2O =
1p
2
(cHO � cVO )

cS2M =
1p
2
(v4 � cVm ) (11)

Each detector receives counts from both of the modes incident on it, so the expectation values must be
combined in a similar way to Eq. 10. The coincidence count rates are given in Table 4. Using � = 1 yields the
perfectly matched case calculated previously (see Table 2). The error probability for Bell state discrimination
is plotted in Fig.4. For small mismatch the error is approximately equal to the percentage mismatch. Clearly
good Bell state discrimination will require accurate mode matching to the central beamsplitter.

Proc. of SPIE Vol. 5161     167

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 11/18/2015 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



Mode matching, ξξξξ

Bell states

Error probability

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.2 0.4 0.6 0.8 1

P
ro

b
ab

ili
ty

Figure 4. Relative error rates as a function of mode matching for the four Bell states.
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Figure 5. Schematic of experimental CNOT optical circuit. The displaced Sagnac con�guration gives interferometric
stability without active locking. The various components are PBS: polarizing beamsplitter; HPW�: half-wave plate
oriented at � and; SB: state biasing element. The state biasing elements balance the classical interference in the circuit
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Input hncS1ntHD i hncS2ntHD i hncS1ntVDi hncS2ntVDi
j +i 1

18
(1 +

p
�) 1

18
(1�p

�) 1
18
(1� �) 1

18
(1� �)

j �i 1
18
(1�p

�) 1
18
(1 +

p
�) 1

18
(1� �) 1

18
(1� �)

j�+i 1
18
(1� �) 1

18
(1� �) 1

18
(1 +

p
�) 1

18
(1�p

�)
j��i 1

18
(1� �) 1

18
(1� �) 1

18
(1�p

�) 1
18
(1 +

p
�)

Table 4. Coincident expectation values calculated in the superposition basis for the four Bell states when there is mode
mismatch present.

4. EXPERIMENTAL ARRANGEMENT

The gate arrangement depicted in Fig.1 is composed of two classical interferometers coupled non-classically,
representing quite an experimental challenge. To avoid the requirement of active stabilization we have opted for
a displaced Sagnac arrangement as shown in Fig.5. By making a displaced polarization Sagnac both classical
interferometers are superimposed in the single interferometer. The non-classical coupling between them is
achieved via a wave-plate inserted into only one arm. By orienting this beamsplitter at 17.5 degrees the mixing
is equivalent to a 1=3 beamsplitter. The 50:50 beamsplitters on the target mode are similarly implemented via
half-wave plates oriented at 22.5 degrees on the polarization encoded target in and target out beams. The losses
needed to balance the classical interferometers (beamsplitters B1 and B5 in Fig.1) can be introduced by state
biasing elements outside the interferometer. Strictly these should be polarization dependent loss elements, but
for demonstration purposes simple polarization rotations will suÆce.

We have been able to achieve high stability and good mode matching with this arrangement and expect to
demonstrate CNOT operation in the near future.

5. CONCLUSION

Before KLM it was thought that any non-trivial two qubit gate in optics would require very strong Kerr non-
linearity. Now it is known that non-trivial coincidence basis gates can be built from relatively simple linear
networks and that, in principle, these gates can made scalable by the inclusion of additional ancilla photons
(and considerable increase in circuit complexity and technical requirements). Our aim is to demonstrate such
a gate with high �delity and stability which will not only demonstrate the KLM principles but also may �nd
applications in quantum communications and small scale demonstrations of quantum optical circuits.12, 13
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