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ABSTRACT

This paper examines the fundamental resolution limit of particle positioning with optical tweezers due to the
combined effects of Brownian motion and optical shotnoise. It is found that Brownian motion dominates at low
signal frequencies, whilst shotnoise dominates at high frequencies, with the exact crossover frequency varying
by many orders of magnitude depending on experimental parameters such as particle size and trapping beam
power. These results are significant both for analysis of the bandwidth limits of particle monitoring with optical
tweezers and for enhancements of optical tweezer systems based on non-classical states of light.
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1. INTRODUCTION

Optical tweezers have many fundamental and commercial applications,1 ranging from trapping and transporta-
tion of cold atoms,2 to investigations of cellular structure3 and the properties of DNA.4 Many of these applications
are enabled by their ability to monitor the position of particles with sub-nanometer resolution.5–7

Optical tweezers, in their essence, consist of a tightly focused laser beam. In the process of scattering photons
a particle in the beam experiences momentum kicks which, if the particle has a refractive index greater than that
of the surrounding medium, trap it near the focus of the beam.8 Interactions of the particle with its surrounding
media result in Brownian motion, and consequently uncertainty in the position of the particle. This Brownian
motion, as well as motion of the particle due to external forces, can be observed from measurements performed on
the forwards and backwards scattered light fields.6 These measurements are typically implemented with spatially
segmented (split) detectors, with uncertainty governed by shotnoise due to the quantisation of the detected field.
Hence, the resolution of particle positioning is fundamentally limited both by Brownian motion of the trapped
particle and by shotnoise. This paper examines the relative magnitudes of these two noise sources, and the
parameter regimes in which each dominates.

Vector diffraction theory9,10 based numerical calculations are performed to model the optical tweezers trap-
ping and scattered fields in the limit of small particle size. The relative magnitudes of Brownian motion and
shotnoise can then be established. We examine the dependence of each noise source on detection frequency,
particle radius, particle refractive index, and trapping beam power and focusing. At low signal frequencies
Brownian motion dominates for typical experimental parameters. However, the relative contribution from shot-
noise increases with detection frequency such that at sufficiently high frequencies shotnoise is always dominant.
The crossover frequency between these two regimes was found to vary significantly depending on the exact ex-
perimental parameters, ranging from kHz to GHz. This research contributes to the understanding of bandwidth
limits of optical tweezers based particle position measurements, and is a first step towards the enhancement of
optical tweezers based biological measurements using non-classical states of light.11,12
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Figure 1. Setup of optical tweezers based particle position measurement. A beam tightly focused by objective lenses forms
the optical tweezers and generates a large gradient force trapping a particle at its waist. For a particle smaller than the
wavelength, a dipole is induced and light is emitted in the form of radiation. This scattered light is imaged using an
appropriate lens onto a split detector, which performs the particle position measurements.

2. METHODOLOGY

2.1 Modelling the system

The two fundamental limits to accuracy of particle positioning with optical tweezers are Brownian motion and
shotnoise. Brownian motion is a function of environmental parameters, such as temperature and viscosity of the
medium surrounding the trapped particle, and optical trap stiffness, which itself depends on the trapping field in
the region of the particle. The shotnoise is a function of the detection configuration and the scattered field and
hence also dependent on the trapping field magnitude at the particle position. To fully model the fundamental
limits of particle positioning with optical tweezers, we must therefore determine the trapping and scattered fields,
as well as the detected signal.

A bright trapping beam is focused by a high numerical aperture (NA) objective lens to form a highly focused
waist, defined to be at r(x, y, z) = (0, 0, 0). A particle in the beam will experience dipole forces which in
combination with dissipative forces trap it in the vicinity of the waist. In general, the spatial profile of the
scattered field from the particle is complicated but in the limit that the particle size is much less than the
wavelength can be approximated by dipole scattering.13 By monitoring this scattered field, information can be
gathered about the position of the particle. In a conventional optical tweezers setup, the particle position is
monitored by split detection of the interference between the trapping beam and the scattered field along the axis
of the trapping beam (defined as the z-direction in figure 1). We consider a theoretically simpler architecture
here and monitor only the off-axis scattering from the particle. As we will show in a later publication, this setup
provides significantly enhanced signal-to-noise ratio.14 Although we do not consider the conventional optical
tweezers setup here, our results are directly applicable to that case with only the shotnoise contribution scaling
by a constant factor.14

2.1.1 Modelling the trapping field

We begin by assuming that the trapping beam is x-polarised (as defined in figure 1), has a TEM00 modeshape
at 1064 nm and is well-collimated prior to the objective lens. The electric field just prior to the objective lens
can then be expressed as

Et(rL) = E0 exp
−ρ

w2
0

x̂ (1)
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where rL = (x, y, zL), zL is the location of the lens on the z-axis, ρ = x2 + y2 and w0 is the waist of the beam.
The amplitude E0 is related to the total power in the trapping beam, Pt, by

E0 =

�
2Pt

πw2
0

. (2)

Unless otherwise specified, we choose a trapping beam power Pt = 0.5 W.

Due to the strongly focused beams required to provide sufficient gradient forces to trap particles in optical
tweezers, the paraxial approximation is not valid and scalar diffraction theory cannot accurately predict the
trapping field distribution9 . To model the beam after the objective lens, we use a vector diffraction approach
formalised by Richards and Wolf,10 decomposing the field into a set of plane-waves, each with a unique wave-
vector k, amplitude A(k), phase eiΦ(k) and polarisation êk. In general, the electric field can then be represented
by an integral over all space

E(r) =
� π

−π

� π

0
A(k) expi[k·r+Φ(k)] êk dθ dφ . (3)

Prior to the objective lens, the trapping field is collimated and hence Φt(kt) = 0. Propagation through the
objective lens causes a position dependent phase shift and a rotation of the electric field polarisation. For
focusing by an ideal lens, we have after the lens

Φ(k) = k · rL , (4)

for the phase and

êk =
(êI · n̂⊥)n̂⊥ + (êI · n̂0

‖)n̂′
‖

|(êI · n̂⊥)n̂⊥ + (êI · n̂0
‖)n̂′

‖|
, (5)

for the polarisation, where êI = x̂ is the polarisation of the trapping field prior to the lens and

n̂⊥ = �kout × kin (6)

n̂0
‖ = �kin × n̂⊥ (7)

n̂′
‖ = �kout × n̂⊥ (8)

where kin is the input wave-vector, kout is the output wave-vector, n̂⊥ is the unit vector perpendicular to the
plane of incidence, n̂0

‖ the unit vector orthogonal to the plane spanned by n̂⊥ and kin and similarly n̂′
‖ the unit

vector orthogonal to the plane spanned by n̂⊥ and kout.

It follows that the final form of the electric field integral at the waist of the trapping beam is

Et(r) =
� π

−π

� π

0
At(kt)ei[kt·r+Φt(kt)] dθ dφ êt(kt) . (9)

The value for At(kt) is found numerically, defined by imposed boundary matching conditions set by the Gaussian
input beam. In the model, we set the lenses as having NA = 1 and being perfectly transmissive so no power is
lost. It is worth noting here that we have done calculations for NA �= 1 and arrived at qualitatively identical
results.

The integral in Eq. (9) is solved numerically to give the electric field distribution of the trapping beam. Note
since the Gaussian beam is an approximate solution to Maxwell’s equations, it is not possible to find a solution
to them which completely matches the field behaviour after the lens. In general, a boundary condition is chosen
to define the field. In our case, we choose the Gaussian field just before the objective lens as the boundary
condition. This approach has been shown to be satisfactory.15
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2.1.2 Modelling the scattered field

Now that the trapping beam has been defined, we can perform the same treatment on the electric field scattered
by the particle to obtain the spatial profile of the field arriving at the detector and hence determine both the
particle position signal and the shotnoise. As the particle moves away from the beam waist, the scattered field
distribution is displaced in the opposite direction. By monitoring this shift in position, the displacement of the
particle in the beam is able to be inferred. As mentioned earlier, we consider only particles with radii a much
smaller than the optical wavelength (a � λ) and hence model the scattered field by dipole radiation which has
an electric field given by16

ES(r) =
eiksr

−iksr

ik3
s

4πεm
êr × êr × p , (10)

where the dipole moment of the particle p is given by

p = 4πεma3 ε1 − ε2
ε1 + 2ε2

E0 , (11)

with êr(x, y, z) the unit vector from the particle to the point r(x, y, z). ε1 and ε2 are the dielectric constants
of the particle and the surrounding environment respectively. The dielectric constant and refractive index of a
material are related by ε = n2. For simplicity, we assume the particle motion is confined to the x-axis, with a
displacement from the centre of the trap of ∆x. Hence the field experienced by the dipole is E0 = Et(∆x, 0, 0),
obtained from the calculated electric field distribution of the trap field.

We once again apply the vector diffraction formalism and decompose the scattered field into a set of plane
waves. Each wave is propagated through an imaging lens to the image plane, giving the integral for the scattered
field at the image plane as

Es(r) =
� π

−π

� π

0
As(ks) ei[ks·r+Φs(ks)] ês(ks) dθ dφ , (12)

where where ks is the wave-vector of the scattered field. As before, the amplitude As(ks) is determined numeri-
cally and defined by the boundary matching condition from the intial scattered fields. The phase Φs(ks) is given
by

Φs(ks) = ks · rI , (13)

where rI(x, y, z) is the focal point of the imaging lens. The lens is chosen such that the distance from the lens to
the particle is twice its focal length (F), giving an image the same distance (2F) away on the other side of the
lens. Hence we find that the final polarisation is given by

ês(ks) = (êI(kI)x,−êI(kI)y, êI(kI)z) , (14)

where the initial scattered field polarisation êI(kI) is

êI(kI) =�̂er × êr × p, (15)

as defined in Eq. (10). The electric field of the scattered light at the image plane is then solved numerically as
before.

We choose the detector position to match the image plane of the imaging lens. The average intensity incident
on the detector is then given by

Ps = 〈S〉 · ŷ (16)

=
1
2
Re {Es × H∗

s} · ŷ . (17)

The magnetic field Hs is easily obtained by decomposing into a set of plane-waves analogous to the electric field,
where the magnetic and electric fields of a plane electromagnetic wave are related by

H =
k × E
Ωµ0

(18)
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with Ω = 2πν, the angular frequency of the light. Hence at the image plane, the magnetic field of the scattered
light is obtained by numerically solving the integral

Hs(r) =
� π

−π

� π

0
Bs(ks) ei[ks·r+Φs(ks)] ês(ks) dθ dφ , (19)

where Bs(ks) is the magnetic field amplitude of each plane-wave.

The output signal from each half of the split detector is proportional to the number of incident scattered
photons per second

NA =
1

h̄ω

� ∞

−∞
dy

� ∞

0
dx

1
2
Re (Es × Hs

∗) · ŷ (20)

NB =
1

h̄ω

� ∞

−∞
dy

� 0

−∞
dx

1
2
Re (Es × Hs

∗) · ŷ (21)

where the subscripts A and B label the two halves of the split detector. We have taken the detector to be much
larger than the focal spot in the imaged field such that all the light arriving at the image plane is detected. The
final output signal is proportional to the photon number difference per second

∆N = NA − NB . (22)

The total number of photons arriving at the image plane per second is of course

N = NA + NB , (23)

and is related to the total power scattered by the dipole, Ps, in the forward direction by

N =
Ps

hν
. (24)

Ps is defined by17

Ps =
k4a6π

η

�
ε1 − εm

ε1 + 2εm

�2

|Et(∆x, 0, 0)|2 (25)

where η =
�

µ0ε
−1
0 .

2.2 Particle positioning uncertainty due to shotnoise
The split detector is initially aligned such that when the particle is at the origin, the signal is zero. Figure 2
shows the photon number difference per second between two halves of a split detector measuring the scattered
field as obtained from our numerical calculations. The scattered power is dependent on |Et(∆x, 0, 0)|2 which for
large particle displacements causes a roll-off in detected signal as can be seen in figure 2. A linear relationship
exists between detector signal and particle position for small displacements on either side of the origin. Hence
we can define in this region of small displacement

∆N = ξ∆x (26)

where ξ is the slope of the signal about the origin. As mentioned earlier, we assume that the particle is only ever
displaced along the x-axis, although this is easily generalisable to displacements along both the y- and z- axes.

Rearranging in terms of displacement, we can take the variance of both sides to give
�
(∆x)2

�
S

= ξ−2
�
(∆N)2

�
(27)

For shotnoise limited light, the variance
�
(∆N)2

�
is just the total number of photons incident on the detector

per second, N , giving the particle positioning variance due to shotnoise as
�
(∆x)2

�
S

=
N

ξ2
(28)
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Figure 2. Typical signal measured using a split detector with particle position within the optical tweezers. Here we have
used a particle of radius 100 nm with refractive index of 1.4, placed in a 0.5 W trapping beam with a waist of 4 µm.

2.3 Particle positioning uncertainty due to Brownian motion
A particle trapped in optical tweezers is buffeted by thermal motion of the surrounding fluid giving rise to
Brownian motion. The Langevin equation describing the system is as for a weak trapping potential18

ẍ(t) = − β

m
ẋ(t) − ks

m
x(t) +

√
f

m
γ(t) , (29)

where β is the drag coefficient, ks the trap stiffness, m the mass of the particle and f , the coefficient of the
random motion γ, representing the amplitude of the buffeting by thermal motion. The Fourier transform of this
equation provides a power spectral density response of the particle position with driving frequency ω

−ω2x(ω) =

�
f

m
γ(ω) − iω

β

m
x(ω) − ks

m
x(ω) , (30)

where β, f and m are given by

β = 6πaη (31)
f = 12πaηkBT (32)

m = ρ

�
4
3
πa3

�
(33)

and η is the viscosity of the medium surrounding the particle, T the temperature, ρ the density of the particle
and a the radius of the dipole, which we have assumed spherical. For our calculations we assume the particle is
submerged in water giving η = 10−3 Pa·s, at a temperature of 20◦C. The particle is assumed to be fused silica
with a density ρ = 2.2 g/mol. The spring constant ks is derived from the gradient force acting on the particle19

F(r) = 2πn2
2ε0a

3

�
m2 − 1
m2 + 2

�
∇|Et

2(r)| , (34)

where n2 is the refractive index of surrounding fluid and m is the ratio of refractive indices n1
n2

. The refractive
indices unless otherwise specified are n1 = 1.456 for the particle and n2 = 1.333 for the surrounding fluid.
The value of |Et

2| here is given by the electric field of the trapping beam at the particle position as previously
calculated. Thus for displacements in the x-direction

ks =
dFx

dx
. (35)
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Rearranging Eq. (30) for x, using β′ = β
m , f ′ = f

m , k′
s = ks

m and neglecting to explicitly denote the frequency
dependence we get

x =
√

f ′ γ

(k′
s − ω2) + iωβ′ . (36)

The variance of the Brownian motion is then
�
(∆x)2

�
B

=
f ′

(k′
s − ω2)2 + ω2β′2 〈γγ∗〉 (37)

=
f ′

(k′
s − ω2)2 + ω2β′2 (38)

where since Brownian motion is a stochastic process, 〈γ(t)γ(t′)∗〉 = δ(t − t′).

Assuming that the inertial forces are negligible at low driving frequencies, the critical angular frequency of
the particle is given by

ωC =
k

β
. (39)

This represents the frequency at which the amplitude of the power spectral density (PSD) response of the particle
due to Brownian motion is half the maximum.For low angular frequencies ω � ωC , the response of the particle
is constant while at higher frequencies ω � ωC , the PSD falls off with ω−2

C . This shows that the particle is not
affected by external forces with high frequencies.20

3. RESULTS

3.1 Power spectral density
The total power spectral density (PSD) of the particle positioning variance is the sum of contributions due to
both shotnoise and Brownian motion

〈(∆x)2〉 = 〈(∆x)2〉S + 〈(∆x2)〉B , (40)

since the two are independent processes. Figure 3 shows the PSD over a range of angular frequencies for three
particle sizes, along with the shotnoise and Brownian motion components. we see that at low detection frequencies
Brownian motion is always the dominant noise source. However as the detection frequency increases, the relative
magnitude of the contribution from shotnoise increases with shotnoise becoming the dominant noise source at
sufficiently high frequencies. The critical frequency for each particle size is given in the caption however note
that for (iv), the critical frequency is 13 rad s−1 and the variance is approximately constant at frequencies much
less than this. The constant regions for cases (ii) and (iii) cannot be seen at the given axis resolution.

3.2 Crossover frequency
To characterise where the contribution to the particle positioning uncertainty from shotnoise dominates over
that from Brownian motion, the angular frequency at which the two noise sources have equal magnitude was
calculated. This crossover frequency was found for varying experimental parameters including the radius and
refractive index of the particle, as well as the power and waist size of the trapping beam and is shown in figure
4. The critical frequency of each configuration is shown on the same plots for comparison.

Above the crossover frequency, shotnoise is the dominant noise source. We find that the crossover frequencies
varies dramatically with experimental parameters, with frequencies ranging from kHz to GHz. We found the
crossover frequencies increased as dipole size, trapping beam power and particle refractive index were increased.
This was expected since the dependence of N and ξ on these parameters results in scaling of the shotnoise with
1
a6 , 1

Pt
and 1

Cm
where

Cm =
�

ε1 − ε2
ε1 + 2ε2

�2

(41)

is used to denote the contribution due to material constants. In contrast, the crossover and critical frequencies
go down as the waist of the trapping beam is increased.
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Figure 3. The power spectral density of particle positioning uncertainty due to shotnoise and Brownian motion for (ii)
a = 1 nm, (iii) a = 10 nm and (iv) a = 100 nm. The shotnoise is normalised for dipole size, material refractive index and
trap beam power in each case to yield a flat line (i) independent of experimental parameters. The same normalisation
is applied to the Brownian motion. For each case, the solid line represents the total PSD, while the dot-dashed lines
indicate the contribution due to Brownian motion. The critical frequency for each particle size is (ii) 0.0013 rad s−1, (iii)
0.13 rad s−1 and (iv) 13rad s−1, respectively.

4. CONCLUSION

We have developed a vector diffraction theory model for optical tweezers based particle positioning. Using this
model, we have determined the relative magnitudes of the particle positioning error due to Brownian motion
and shotnoise for a range of experimental parameters. At low signal frequencies Brownian motion is found to
be the dominant noise source. However, at high frequencies the Brownian motion is surpassed by shotnoise.
The crossover frequency between the two regimes is found to vary by many orders of magnitude depending
on the exact experimental parameters. Our results contribute to the understanding of fundamental limits to
the bandwidth of optical tweezers based particle position measurements, and facilitate progress towards the
enhancement of optical tweezers devices using non-classical fields.
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