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Abstract

Face recognition is a very complex classification problem due to nuisance variations in different conditions.
Most face recognition approaches either assume constant lighting condition or standard facial expressions,
thus cannot deal with both kinds of variations simultaneously. Principal Component Analysis (PCA)
cannot handle complex pattern variations such as illumination and expression. Adaptive PCA rotates
eigenspace to extract more representative features thus improving the performance. In this paper, we
present a way to extract various sets of features by different eigenspace rotations and propose a method
to fuse these features to generate nonorthogonal mappings for face recognition. The proposed method is
tested on the Asian Face Database with 856 images from 107 subjects with 5 lighting conditions and 4
expressions. We register only one normally lit neutral face image and test on the remaining face images
with variations. Experiments show a 95% classification accuracy and a 20% reduction in error rate. This
illustrates that the fused features can provide significantly improved pattern classification.
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1 Introduction

Face recognition has attracted considerable atten-
tion from psychophysicists, neuroscientists and en-
gineers for more than 50 years. Current research
on face recognition has been focused on dealing
with face image variations in lighting conditions,
facial expressions, and pose. Two main approaches
have been proposed for illumination invariant face
recognition. One is to abstract features that are
less sensitive to illumination change, such as edge
maps of an image [1, 2]. Yet edge features gen-
erated from shadows are highly related to illumi-
nation changes and have a signification impact on
recognition. The other approach is to construct
a low dimensional subspace for face images taken
under different lighting conditions [3, 4]. This ap-
proach is based on an assumption that surface of
human face is Lambertian reflected and convex and
the method requires several images of the same face
taken under specific lighting source directions to
construct the model of the given face. Thus, it is
hard for these systems to deal with cast shadows
and they cannot handle face recognition problems
when only one gallery image is available per person.

As for expression invariant face recognition, one
approach is to morph images to be the same shape
as the one used for training [5]. Unfortunately, it
is not guaranteed that all images can be morphed
correctly. For example an image of a face wearing

sunglasses cannot be morphed to a neutral face
image because of the lack of texture information
near the eyes. Another approach is to use optical
flow to estimate pixel displacement between two
images [6, 7]. However, it is difficult to learn the
local motions within feature space to determine the
expression changes of each face, since different per-
sons express a certain expression in different ways.
Martinez [8] proposed a weighting method that
weights independently those local areas which are
less sensitive to expressional changes. But features
that are insensitive to expression changes may be
sensitive to illumination changes as noted in [9].

We proposed a method Adaptive Principal Compo-
nent Analysis (APCA) [10] for robust face recogni-
tion with lighting and expression variations. We
then extended it to pose invariant face recogni-
tion [11] in 2006. In this paper, we introduce a
new method to further improve the performance
of APCA by extracting various sets of features
through different space rotations and by fusing them
to generate a set of nonorthogonal features for face
recognition. In section 2, we briefly explain the
APCA method. Then we discuss the details of
space rotation for generating different sets of fea-
tures. We then discuss feature fusion for nonorthog-
onal mapping in section 3. Section 4 is devoted
to the experimental results. Finally, we present
conclusions and future work in section 5.
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2 Adaptive Principal Component
Analysis

APCA is a linear pattern classification algorithm
that inherit merits from both Principal Component
Analysis (PCA) and FLD (Fisher Linear Discrimi-
nant) by warping the face subspace according to
the within-class and between-class covariance of
samples. We first apply PCA on face images to
extract eigenfaces. Consequently, every face im-
age is projected into a face subspace with reduced
dimensionality to form a m- dimensional feature
vector sj,k with k = 1, 2, ...,Kj denoting the kth

sample of the class Sj . Then the face subspace is
warped by the following three steps:

• Space Rotation: The feature space is rotated
according to the overall within-class covari-
ance. The rotation matrix R is a set of eigen
vectors obtained by applying singular value
decomposition to the overall within-class co-
variance matrix.

• Whitening Transformation: The subspace is
whitened according to the eigen values λi(i =
1, 2, ...,m) of the features in rotated face sub-
space with a whitening power p. Consequently,
the whitening matrix is:

Z = diag{λp1, λp2, ..., λpm} (1)

• Eigenface Filtering: Eigen-features are weigh-
ed according to the identification-to-variation
value ITVi(i = 1, 2, ...,m) with a filtering
power q. The ITV is a ratio measuring the
correlation with a change in person versus a
change in variation for each of the eigenfaces.
It is defined as follows:

ITVi =
1
M

∑M
j=1

1
K

∑K
k=1 |si,j,k −$i,k|

1
MΣMj=1

1
K

∑K
k=1 |si,j,k − µi,j |

,

$i,k =
1
M

M∑
j=1

si,j,k, (2)

µi,j =
1
K

K∑
k=1

si,j,k, i = [1, ...,m],

where si,j,k denotes the ith element of the face
vector of the kth sample for class (person) Sj . Then
the filtering matrix Γ is defined by:

Γ = diag{ITV q1 , ITV q2 , ...ITV qm}, (3)

The whitening power p and filtering power q are
determined empirically by searching the two di-
mensional domain of the following cost function.
We define the distance between two face vectors

sj,k and sj′,k′ as the Euclidean distance of their
transformed vectors:

djj′,kk′ = ‖ZΓ(sj,k − sj′,k′)‖2. (4)

The cost function OPT is a combination of er-
ror rate and the ratio of between-class distance to
within-class distance follows:

OPT =
∑M
j=1

∑K
k=1

∑
m( djj,k0djm,k0

), (5)

∀m ∈ djm,k0 < djj,k0,m ∈ [1...m].

The experimental results on face images in the
Asian Face Database [12] with both illumination
and expression variations show that APCA per-
forms significantly better than PCA, PRM [13] and
FLD. For more details of the APCA algorithm
please refer to [10].

3 Fusing Features in Rotated
Eigen Space

Although the APCA classifier can deal with illumi-
nation and expression, there is still scope to further
improve performance. In this section, we propose
another method to improve the APCA classifier
by fusing features after controlled feature space
rotation.

3.1 Space Rotation for Complementary
Misclassification

In the APCA algorithm, space rotation is very im-
portant because it improves the representativeness
of features. Figure 1 shows the effect of rotation
on the ITV distribution of features. The X axis in

Figure 1: ITV distribution in original and rotated

spaces for face images with both illumination and

expression variations.

figure 1 is the ITV value and the Y axis is the per-
centage of the number of features with the corre-
sponding ITV value. The higher the ITV value of a
feature, the more discriminative it is for classifica-
tion. After space rotation, most features are more
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discriminative with an ITV value greater than 2.
Hence, whitening and eigen filtering become more
efficient leading to improved discriminability of the
warped space and higher classification accuracy of
the classifier. The experimental results in [10] show
that after rotation, the performance of both APCA
and PRM are significantly enhanced.

However, for complex face recognition problems
with different face variations, a single space rota-
tion may not completely distinguish all classes cor-
rectly even though it achieves better performance.
Different rotations of the face subspace may re-
sult in different classification errors. If we use the
complementary pattern classification information
in different space rotations, we are able to improve
the performance. This idea is similar to combining
classifiers for complex pattern classification when
unpredictable variations and numerous classes are
involved [14]. We illustrate this effect in figure 2.
Sub-figure A shows two class distributions in the
original space. Axes in black are the main axes
in the original space and axes in dotted lines and
dotted-broken lines are two pairs of the main axes
of two rotated spaces respectively. Points a1 and
a2 are two samples for class A and similarly points
b1 and b2 are two samples belonging to class B.
Sub-figure B and D show the distribution of two
classes in the corresponding rotated spaces. We
can see that with only space rotation, classification
performance in different spaces with nearest neigh-
bor rules does not change — sample a1 in class A
and b1 in class B are very likely to be misclassified.
While after whitening and eigen filtering, classifica-
tion errors may vary. Misclassified samples change
from a1 of class A and b1 of class B in one ro-
tated space to a2 and b2 in another rotated space.
Consequently, classification errors of two classifiers
with different space rotation are complementary to
each other. That is, there always exists a classi-
fier that can recognize a certain sample correctly.
Appropriate combination of these classifiers would
improve the performance.

3.2 Reverse Space Rotation

After generating different classifiers by space ro-
tation, we introduce reverse space rotation so that
features extracted from different rotated spaces can
be merged. It is meaningless to add two features
from separate spaces directly, because features in
different rotated spaces represent different patterns.
However, these features are not completely iso-
lated. They are highly correlated by the rota-
tion of the same eigen space. Reverse rotation can
transform features of the rotated space back to the
corresponding features in the original eigen space,
which can be easily fused. Moreover, reverse rota-
tion can induce nonorthogonal mapping between

the original space and the rotated space, which is
preferable for complex pattern classification.

Given a vector v and corresponding rotation ma-
trix R, whitening matrix Z, and filtering matrix Γ,
the projected vector ṽ in warped space is:

ṽ = ZΓRv, (6)

RTR = E, (7)

where E is a unit matrix.

After reverse rotation of the warped space, the
vector in the new space is described by:

v′ = R−1ZΓRv. (8)

The transformation matrix Λ = R−1ZΓR is very
likely to be nonlinear. Assume the basis vectors of
Λ are orthogonal, then ΛTΛ should be a diagonal
matrix. However, the following equation shows
that Λ is diagonal only when ZΓ = kE.

ΛTΛ = (R−1ZΓR)TR−1ZΓR (9)
= RTΓTZTRRTZΓR
= RTΓTZTZΓR
= RT (ZΓ)2R.

Hence, rotating each warped space in reverse can
bring about linearly dependant features.

3.3 Fusing Features

Reverse rotation does not change the performance
of the classifiers which are trained to minimize clas-
sification errors. However, classifiers are optimized
individually and patterns are clustered diversely
in each subspace. We needs to exploit complemen-
tarity and diversity of those classifiers to combine
nonorthogonal features from different subspace to-
gether to derive improved discriminative features.

By reverse space rotation, we can merge features
directly in the original space. But different rotated
spaces are warped separately, we need to normalize
the space to achieve uniform gain. Because we are
using the nearest neighbor rule for classification,
measurement of the distance in rotated warped
space should be in the same scale. That is space
should be normalized with a scale ς as the follow-
ing:

ς =
1√

Σmi=1λ
2p
i ITV

2q
i

. (10)

After this space normalization, the sum of the co-
efficients square for all the features is equal to one,
that is

ς||ZΓ||2 = 1. (11)

Then we fuse features for the normalized spaces.
Without losing generality, we only consider fusing
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Figure 2: Merge features by space rotation.

features with two different rotations. Suppose we
rotate the original feature space differently for two
classifiers C1 and C2 according to rotation ma-
trix R1 and R2 respectively. The matrices Z1 and
Z2 are two whitening matrices for corresponding
rotated space. The matrices Γ1 and Γ2 are the
filtering matrices. Then vector v in original space
is projected into corresponding spaces by:

ṽ1 = Z1Γ1R1v (12)
ṽ2 = Z2Γ2R2v.

We then rotate the warped space in reverse as
follows:

v′1 = R−1
1 ṽ1 (13)

v′2 = R−1
2 ṽ2.

Now, elements of v′1 and v′2 represent the projection
on the same features and can be added directly.

v′ = v′1 + v′2 (14)
= R−1

1 ṽ1 +R−1
2 ṽ2

= R−1
1 Z1Γ1R1v +R−1

2 Z2Γ2R2v

= RT1 Z1Γ1R1v +RT2 Z2Γ2R2v

= (RT1 Z1Γ1R1 +RT2 Z2Γ2R2)v
= ∆v

The final transformation matrix is nonorthogonal,
since

∆T∆ = (RT1 Z1Γ1R1 +RT2 Z2Γ2R2)T (15)
∗(RT1 Z1Γ1R1 +RT2 Z2Γ2R2)

= [(RT1 Z1Γ1R1)T + (RT2 Z2Γ2R2)T ]
∗(RT1 Z1Γ1R1 +RT2 Z2Γ2R2)

= (RT1 Γ1Z1R1 +RT2 Γ2Z2R2)
∗(RT1 Z1Γ1R1 +RT2 Z2Γ2R2)

= RT1 Γ1Z1R1R
T
1 Z1Γ1R1

+RT1 Γ1Z1R1R
T
2 Z2Γ2R2

+RT2 Γ2Z2R2R
T
1 Z1Γ1R1

+RT2 Γ2Z2R2R
T
2 Z2Γ2R2

= RT1 (Z1Γ1)2R1 +RT1 Γ1Z1R1R
T
2 Z2Γ2R2
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+RT2 Γ2Z2R2R
T
1 Z1Γ1R1

+RT2 (Z2Γ2)2R2

is not a diagonal matrix. Therefore, by fusing
features by rotating the warped space back into
the original space, we bring about nonorthogonal
features which have great functional significance in
biological sensory systems [15].

Figure 2 illustrates the procedure and effect of our
proposed fusing strategy. Sub-figure A to E show
the effect of rotation and corresponding whitening
and filtering on pattern clustering in two differ-
ent rotated spaces. Sub-figure F and G show the
distribution after normalizing warped space. Sub-
figure H and I are the results by reverse rotating
the subspaces back. Comparing H, I and A, we can
see how different the distribution of classes is in
the new space and the original space. Sub-figure J
plots the distribution by combining features of two
new spaces depicted in sub-figure H and I together.
It is apparent that in this new distribution derived
from nonorthogonal mappings of the original space,
exemplars tends to be more scattered, which leads
to higher classification accuracy.

4 Experimental Results

We test our proposed classifier combination method
on the Asian Face Database [12]. It consists of
856 facial images under 5 different standardized
illuminations and 4 variant facial expressions cor-
responding to 107 subjects. The size of each image
is 171 by 171 pixels with 256 gray levels per pixel.
Face images are aligned according to their eye po-
sitions. We divide the database into three nearly
equal-sized data sets. For test 1, we use data set
1 (288 out of 856 images) to construct the eigen
face space by applying PCA on the sample images.
We then generate two different base classifiers C1

and C2 by rotating the face space according to the
within class variance of sample images from data
set 1 and data set 2 separately. Finally, we use data
set 3, which contains all unseen images, to test our
base classifiers and the combined classifier. We
only register normal lighting neutral images and
use the rest images with lighting and expression
variations for testing. This experiment is done
based on a three-fold cross validation rule and the
results are the average of all three tests.

Figure 3 plots the percentage of error rate of base
classifiers and fused classifiers in different number
of features. We can see that among three classi-
fiers, the merged classifier always performs the best
and achieves the lowest error rate. Classifier C1 is
preferable to classifier C2 regardless of the number
of eigen features, because classifier C2 is rotated
and optimized on the same data set, it tends to be

Figure 3: Classification error rate of individual classi-

fiers and combined classifier in a single space by fusing

features.

more overfitted to the training data than classifier
C1. This is also the reason why with an increase
in the number of features used for classification the
error rate of classifier C2 does not decrease steadily.
On the contrary, performance of classifier C1 and
the merged classifier improved monotonically with
the number of eigen features increasing. More-
over, even though performance of classifier C2 is
not as stable as classifier C1, the merged classifier
still achieves the best performance with an error
rate around 20% less than that of the better base
classifier C1 constantly regardless of the number of
features used.

Table 1: Comparison of classification accuracy

# of Merged
Features PCA FLD PRM APCA APCA

20 59.7% 75.5% 77.1% 91.4% 92.9%
30 62.7% 83.1% 83.1% 92.9% 93.9%
40 64.3% 91.5% 86.5% 95.0% 96.1%

Figure 4: Nonorthogonality of the features derived by

fusing features from different rotated spaces.

Figure 4 shows the nonorthogonality of those fea-
tures generated by fusing features from two base
classifiers. The cone located at the mth row and
nth column in the figure represents the dot product
of feature m and feature n. We can see that along
the diagonal there exist very high cones and the
height of these cones is proportional to the weight
of corresponding features. Other cones represent
the dot product between two different features.
There exist non-zero dot product besides the di-
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agonal, so these features are not orthogonal. In
order to show this effect clearly, we set the dot
products to be their absolute values. Hence, all the
dot products are greater than or equal to zero. The
result verifies that by the reverse rotation of spaces
to fuse features we can introduce nonorthogonal
features, which are helpful for face classification.

5 Conclusion and Future Work

In this paper, we developed a method to fuse fea-
tures from different APCA classifiers for face recog-
nition. We rotate the feature spaces differently
based on the observation that various rotations
will result in diverse classification errors. We then
normalize the face space to normalize the distance
measure and reverse rotate the space to merge the
features. The experimental results on face recogni-
tion show that merged classifiers outperform cor-
responding base classifiers by 20%. In addition, re-
verse space rotation and feature fusion can induce
nonorthogonal mapping that benefits pattern clas-
sification. However, currently we control the space
rotations based on choosing different training data
and only merge features from two rotated spaces.
Our future work may involve controlling rotation
by angle or classification error to generate multiple
subspaces and then fuse them successfully.
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