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A New Discrete Analytic Signal for Reducing

Aliasing in the Discrete Wigner–Ville Distribution
John M. O’ Toole, Mostefa Mesbah, Boualem Boashash

Abstract—It is not possible to generate an alias-free discrete
Wigner–Ville distribution (DWVD) from a discrete analytic
signal. This is because the discrete analytic signal must satisfy
two mutually exclusive constraints. We present, in this article, a
new discrete analytic signal that improves on the commonly used
discrete analytic signal’s approximation of these two constraints.
Our analysis shows that—relative to the commonly used signal—
the proposed signal reduces aliasing in the DWVD by approx-
imately 50%. Furthermore, the proposed signal has a simple
implementation and satisfies two important properties, namely,
that its real component is equal to the original real signal and
that its real and imaginary components are orthogonal.

Index Terms—discrete Wigner–Ville distribution (DWVD),
analytic signal, discrete Hilbert transforms, antialiasing, time–
frequency analysis

I. INTRODUCTION

Neither time- nor frequency-domain based methods are

suitable for analysing nonstationary signals. Time–frequency

methods, which represent the signal in the joint time–

frequency domain, provide appropriate analysis tools—they

are able to display the time-varying frequency content which

characterise nonstationary signals.

The Wigner–Ville distribution (WVD) is an example of

a time–frequency domain representation. The distribution is

one of the more widely studied types of time–frequency

representations, and is known as the fundamental distribution

in the class of quadratic time–frequency distributions [1]. The

WVD uses the analytic associate of the real-valued signal,

rather than the real-valued signal itself [2]. The WVD is free

from cross-term artefacts—present when the real-valued signal

is used—between the positive and negative components in the

distribution [3].

A. Analytic Signals

We can form the analytic signal z(t), associated with real-

valued signal s(t), by eliminating the negative frequency

components of s(t) [1, pp. 13]. In this process, no information

is lost as the spectrum of s(t) is (conjugate) symmetrical about

the origin for negative and positive frequencies. The spectral

definition of the analytic signal implies that z(t) is a complex

signal. Apart from its one-sided spectral definition, the analytic

signal has two important properties [4]. The first, which we

call the recovery property, states that the real component of the

analytic signal is equal to the original real-valued signal. Thus,
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the original signal is recoverable from the analytic signal as

ℜ[z(t)] = s(t). The second, which we call the orthogonality

property, states that the real and imaginary components of the

analytic signal are orthogonal. That is, the inner product of

the real and imaginary parts is zero, 〈ℜ[z(t)],ℑ[z(t)]〉 = 0

The discrete WVD (DWVD) requires a discrete analytic

signal. (We use the term discrete analytic signal to refer to a

discrete version of the continuous analytic signal, even though

this discrete signal is not an analytic function of a continuous

complex variable [4].) Various methods for forming discrete

analytic signals exist. We classify these methods as either

time-domain [5], [6] or frequency-domain [4], [7] based

methods. The most commonly used approach [3], [8]–[10]

for generating discrete analytic signals for the DWVD is a

frequency-domain method [4]. This method, which can be

simply implemented, results in a discrete analytic signal that

satisfies the recovery and orthogonality properties.

B. An Alias-free Discrete Wigner–Ville Distribution

The DWVD is discrete in both the time and frequency

directions—a requirement for digital signal processing appli-

cations [9]. The DWVD is formed from either a discrete-time

signal z[n] or its discrete Fourier transform (DFT) counterpart

Z[k]. To obtain an alias-free DWVD, the N -point discrete

signal must satisfy two constraints [11]. First, Z[k] must

be zero at the Nyquist frequency term and for all negative

frequencies—that is, Z[k] = 0 for N/2 ≤ k ≤ N − 1. (The
segment N/2 < k ≤ N−1 represents the negative frequencies

and k = N/2 represents the Nyquist frequency.) Second, z[n]
must be zero for the second half of its time duration—that is,

z[n] = 0 for N/2 ≤ n ≤ N − 1. To satisfy this condition and

maintain the integrity of the signal, we replace the N -point

signal z[n] with the 2N -point zero-padded signal zc[n] [5].

Thus, the two (modified) constraints required for an alias-free

DWVD are

zc[n] = 0, for N ≤ n ≤ 2N − 1, (1)

zc[k] = 0, for N ≤ k ≤ 2N − 1, (2)

where zc[k] is the DFT of zc[n]. We shall refer to (1) as the

time-constraint and (2) as the frequency-constraint.

Unfortunately, the zero-padding procedure used in (1) in-

troduces energy at negative frequencies, thus violating the

frequency-constraint of (2). In fact, this requirement for a

simultaneous finite-time duration, finite-bandwidth constraint

is a theoretical impossibility [12]. Nevertheless, any energy

in either of these regions will produce aliasing in the DWVD

[11].
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C. A New Discrete Analytic Signal

We present, in this article, a new discrete analytic signal

based on the commonly used discrete analytic signal [4].

Like the commonly used signal, which we refer to as the

conventional discrete analytic signal, the proposed signal

satisfies the time-constraint of (1) but only approximates the

frequency-constraint of (2). We measure this approximation by

quantifying the amount of energy in the ideally-zero region

in (2). We use this measure to compare the performance of

the proposed and conventional discrete analytic signals. In

addition, we numerically compare, using a number of signals,

the amount of aliasing energy in the DWVD of the two discrete

analytic signals.

We found that the proposed signal, relative to the conven-

tional signal, reduces aliasing in the DWVD by approximately

one-half. This result agrees with our initial result—that the

proposed signal, relative to the conventional signal, better ap-

proximates the frequency-constraint of (2). Also, the proposed

signal satisfies the recovery and orthogonality properties and

can be computed simply using DFTs.

II. DISCRETE ANALYTIC SIGNALS FOR THE DISCRETE

WIGNER–VILLE DISTRIBUTION

A. Discrete Wigner–Ville Distribution

To compute the DWVD of an N -point real-valued discrete

signal s[n], we first form the 2N -point discrete analytic signal

zc[n] from s[n]. Then, we use zc[n], or its DFT associate Zc[k],
to define the DWVD [11] as

W [n, k] =
2N−1∑

m=0

zc[m]z∗c [n − m] e−jπ(m−n/2)k/N (3)

=
1

2N

2N−1∑

l=0

Zc[l]Z
∗

c [k − l] e jπ(l−k/2)n/N . (4)

The signals zc[n] and Zc[k] are periodic in 2N . We present this

particular DWVD definition here as it satisfies more desirable

mathematical properties than other DWVD definitions [5],

[10], [11]. The implications, however, arising from the choice

of analytic signal are the same regardless of the DWVD

definition. To generate zc[n] from s[n] involves a number of

steps, which we describe in the next subsection.

B. Discrete Analytic Signals

1) Desirable Properties: There is no unique definition

for a discrete analytic signal. The discrete definition should,

however, conserve as many properties inherent to the contin-

uous analytic signal as possible. Marple [4] proposed that a

discrete analytic signal should at least satisfy the recovery and

orthogonality properties.

We detail these two properties as follows. For a discrete

analytic signal z[n], associated with the N -point real-valued

signal s[n], the recovery property is

ℜ
(
z[n]

)
= s[n], for 0 ≤ n ≤ N − 1 (5)

and orthogonality property is

N−1∑

n=0

ℜ
(
z[n]

)
ℑ

(
z[n]

)
= 0. (6)

(We shall refer to the discrete analytic signal simply as an

analytic signal when the context is clear.)

2) Review: We classify existing methods for forming ana-

lytic signals as either time- or frequency-domain based meth-

ods. First, we look at two time-domain based methods. One

method uses dual quadrature FIR filters to jointly produce the

real and imaginary components of z[n], as described in [6].

The resultant analytic signal satisfies the orthogonality prop-

erty but not the recovery property [4]. The other method forms

the analytic signal using the relation z[n] = s[n] + jH(s[n]),
by approximating the Hilbert transform operation H(·) with

an FIR filter [6]. The resultant analytic signal satisfies the

recovery property but not the orthogonality property.

Next, we look at two frequency-domain based procedures.

One method forms the analytic signal by setting the negative

frequency samples to zero [4]. This method, originally pro-

posed in discrete Hilbert transform form by Čı́žek [13] and

Bonzanigo [14], uses the DFT and inverse DFT (IDFT) to

switch between the time and frequency domains. The method,

which we shall refer to as the Čı́žek–Bonzanigo method,

satisfies both properties. The other frequency-domain based

method [7] is a modified version of the Čı́žek–Bonzanigo

method; it has the additional step of zeroing an extra single

value of the continuous spectrum in the negative frequency

range. The method satisfies the recovery property but not the

orthogonality property.

Comparative to the other methods, the analytic signal pro-

duced by the Čı́žek–Bonzanigo method is particularly attrac-

tive for the following reasons:

• its negative frequency samples are exactly zero;

• it preserves the recovery and orthogonality properties;

• it has a simple implementation [4]—no filter design [6] or

selection of an arbitrary frequency point [7] is necessary.

The commonly used procedure for obtaining an analytic

signal for a DWVD uses the Čı́žek–Bonzanigo method. The

complete procedure, for the N -point real-valued signal s[n],
is as follows [3], [8]–[10]:

1) take the DFT of signal s[n] to obtain S[k];
2) let Ẑc[k] = Ĥc[k]S[k], with Ĥc[k] defined as

Ĥc[k] =






1, k = 0 and k = N
2 ,

2, 1 ≤ k ≤ N
2 − 1,

0, N
2 + 1 ≤ k ≤ N − 1;

3) take the IDFT of Ẑc[k] to obtain ẑc[n] (of length N );

4) let zc[n] equal ẑc[n] zero-padded to length 2N ; we call

zc[n] the conventional analytic signal.

The last step ensures that zc[n] satisfies the time-constraint

of (1), and therefore not the frequency-constraint of (2). In

addition, the Čı́žek–Bonzanigo method does not zero the

Nyquist frequency term, which also violates the frequency-

constraint.
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III. PROPOSED DISCRETE ANALYTIC SIGNAL

The procedure to form the proposed analytic signal zp[n]
[15], from the N -point real-valued signal s[n], is as follows:

1) zero-pad s[n] to length 2N ; call this sa[n];
2) take the DFT of sa[n] to obtain Sa[k];
3) let

Za[k] = Ha[k]Sa[k] (7)

where Ha[k] is defined as

Ha[k] =






1, k = 0 and k = N,

2, 1 ≤ k ≤ N − 1,

0, N + 1 ≤ k ≤ 2N − 1;

(8)

4) take the IDFT of Za[k] to obtain za[n];
5) and lastly, force the second half of za[n] to zero

zp[n] =

{
za[n], 0 ≤ n ≤ N − 1,
0, N ≤ n ≤ 2N − 1.

Steps 2 to 4 implements the Čı́žek–Bonzanigo method on

the zero-padded signal sa[n] [16]. We, therefore, do the

zero-padding process before we generate the signal za[n],
unlike the procedure for zc[n], where we do the zero-padding

process last. The last step ensures that zp[n] satisfies the time-

constraint of (1), although at the expense of the frequency-

constraint of (2).

We can easily show that, like the conventional analytic

signal, the proposed signal satisfies the recovery and orthog-

onality properties presented in Section II-B.1.

A. Time-Domain Analysis

The two analytic signals are related to the 2N -point real-

valued signal sa[n] as follows:

zc[n] =
(
sa[n] ⊛ hc[n]

)
ut[n] (9)

zp[n] =
(
sa[n] ⊛ ha[n]

)
ut[n] (10)

where ⊛ represents circular convolution. The time-reversed

and time-shifted step function ut[n] is defined as ut[n] =
u[N−1−n], where u[n] represents the unit step function. The

impulse function ha[n] is the IDFT of the frequency-response

function Ha[k], defined in (8). We can show that this impulse

function equates to

ha[n] =

{
δ[n], n even,
j

N cot ( πn
2N ), n odd,

where δ[n] is the Kronecker delta function. The relation

between the two convolving functions hc[n] and ha[n] is

hc[n] = ha[n] + ha[n + N ]. (11)

The presence of ut[n] in (9) and (10) guarantees that zc[n]
and zp[n] both satisfy the time-constraint.

To highlight the differences between the two analytic sig-

nals, we use the N -point impulse signal s[n] = δ[n] as an

example. As both analytic signals preserve the real-valued

signal, only the imaginary components for the signals are

plotted in Fig. 1. As expected, the imaginary parts of zc[n] and
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Fig. 1. Imaginary part of the conventional and proposed analytic signals
formed from the N -point impulse signal, where N = 64.

zp[n] are zero for N ≤ n ≤ 2N − 1, because the presence

of ut[n] in (9) and (10) guarantee that both signals satisfy

the time-constraint. Also, zc[n] has a significant negative

component around n = N − 1, whereas zp[n] does not. The

relation in (11) explains this difference.

B. Frequency-Domain Analysis

In the frequency domain, the two analytic signals as a

function of Sa[k] are

Zc[k] =
(
Sa[k]Hc[k]

)
⊛ Ut[k] (12)

Zp[k] =
(
Sa[k]Ha[k]

)
⊛ Ut[k]. (13)

where Sa[k] is the DFT of sa[n] and Ut[k] is the DFT of ut[n].
The frequency-response function Hc[k] is

Hc[k] =

{
2Ha[k], k even,

0, k odd,
(14)

with Ha[k] defined in (8). Because of the convolution with

Ut[k] in (12) and (13), neither Zc[k] nor Zp[k] satisfy the

frequency-constraint.

To illustrate the difference between the two analytic signals’

spectra, we use the impulse signal once more. These results

are displayed in Fig. 2. For this signal Sa[k] = 1 for all values

of k. Neither signal satisfies the frequency-constraint. The

conventional analytic signal’s approximation—comparative to

the proposed analytic signal—of the frequency-constraint,

however, is marred by significant oscillation between the odd

and even values of k. The oscillatory nature of Hc[k] causes
this behaviour, as described by (14).

IV. PERFORMANCE OF PROPOSED ANALYTIC SIGNAL

In this section, we examine the performance of the proposed

analytic signal—relative to the conventional analytic signal—

at approximating the frequency-constraint of (2).
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Fig. 2. Discrete spectra of the two analytic signals formed from the test
impulse signal.

A. Relative Performance

We use the signals’ spectral energy, at the Nyquist and

negative frequencies, as a relative performance measure. The

following proposition describes this measure.

Proposition 1: The spectral energy relation of Zp[k] and

Zc[k], at Nyquist and negative frequencies, is

2N−1∑

k=N

∣∣Zp[k]
∣∣2

=
1

2

2N−1∑

k=N

∣∣Zc[k]
∣∣2 +

1

2

(∣∣Zp[N ]
∣∣2 −

∣∣∣Ẑ[0]
∣∣∣
2

− C

)
(15)

where Ẑ[k] = Za[k] − Zp[k], with Za[k] defined in (7), and

C =





0, N even,

2
∣∣∣Ẑ[N ]

∣∣∣
2

, N odd.

Proof: See Appendix I.

From (15), we see that the energy relation between Zp[k]
and Zc[k] is dependent on the value of Za[k] and Zp[k] at

k = 0 and k = N . If the second term in the right hand side

of (15) is small, relative to the first term, then we can rewrite

(15) as
2N−1∑

k=N

∣∣Zp[k]
∣∣2 ≈

1

2

2N−1∑

k=N

∣∣Zc[k]
∣∣2 . (16)

This equation states that the spectral energy for Zp[k] is

approximately half of the spectral energy for Zc[k] in the

specified range. We numerically verify this approximation in

the next subsection using a number of test signals.

B. Numerical Examples

This section provides examples to confirm the approxima-

tion in (16). To start, we define the ratio

η =

∑2N−1
k=N

∣∣Zp[k]
∣∣2

∑2N−1
k=N

∣∣Zc[k]
∣∣2

.

Next, we compute this ratio with six different signal types:

an impulse function, a step function, a sinusoidal signal, a

TABLE I

PERFORMANCE RATIO MEASURES COMPARING THE

PROPOSED WITH THE CONVENTIONAL ANALYTIC

SIGNAL.

η η

Signal Type (N even) (N odd)

Impulse 0.5078 0.4711

Step 0.4137 0.4136

Sinusoid 0.4595 0.5709

NLFM 0.5055 0.4999

WGNac 0.5883 (0.0976) 0.5319 (0.0983)

EEGb 0.4184 (0.0671) 0.4155 (0.0650)

a 1000 realisations used. b 1000 epochs used.
a,b Values are in the form, mean (standard deviation).

nonlinear frequency modulated signal (NLFM) signal, white

Gaussian noise (WGN), and a real-world signal. This last

signal is an electroencephalogram (EEG) recording from a

newborn baby. The length N for each signal was arbitrarily

set to even values between 14 and 2048; 1 was added to this

value to obtain N odd.

The results, in Table I, for most of the test signals confirm

the approximation stated in (16). The exceptions to this include

the WGN realisations, where the mean ratio value is < 0.6,
and the sinusoidal signal when N is odd, where the ratio value

is also < 0.6.
In addition, we plot, in Fig. 3, the spectra of the conventional

and proposed analytic signals using two of the tests signals: the

sinusoidal signal with N = 14, and an EEG epoch with N =
99. Note, from Fig. 3 and Fig. 2, that the amount of energy in

the negative spectral region is signal dependent, but the ratio

η comparing the analytic signals remains approximately the

same.

V. REDUCED ALIASED DWVD

This section compares the performance of the analytic

signals by their contribution to aliasing in the DWVD.

A. Aliasing in the DWVD of zp[n]

To begin, we recall how we quantify aliasing in the discrete-

time domain. Consider a continuous-time signal y(t), bandlim-

ited in the frequency-domain to the region |f | < 1/2T . We

sample y(t), with sampling period T , to obtain the discrete-

time signal y[n]. This signal y[n] is alias free because the

periodic copies in the frequency domain for y[n] do not

overlap. Now consider another discrete signal y1[n], obtained
by sampling y(t) with sampling period T1 = 2T . This discrete

signal y1[n] is aliased because the periodic copies in the

frequency-domain do overlap. If we know the spectral content

for y(t), then we are able to measure the spectral periodic

overlap for y1[n], and are therefore able to quantify the aliasing
in y1[n]. Similarly, to evaluate aliasing in the DWVD, we

measure spectral content in a specific region of the doppler–

frequency domain.

The asymmetrical doppler–frequency function of the ana-

lytic signal Z[k], defined as

K[l, k] = Z[l]Z∗[k − l]
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Fig. 3. Discrete spectra comparing the two analytic signals for two test
signals: (a) a sinusoidal signal, and (b) an EEG epoch. The inset plots show
a portion of the negative frequency axis with a reduced magnitude range.

is used to form the DWVD in (4). If we assume that Z[k] satis-
fies the frequency-constraint of (2), then the nonzero content

(or energy) in K[l, k] is contained within a specific region.

Any energy, however, outside this region results in aliasing

in the DWVD. We refer to this undesirable phenomenon as

spectral-leakage.

As Zc[k] does not satisfy the frequency-constraint, its

doppler–frequency function Kc[l, k] contains spectral-leakage.
This is true also for the doppler–frequency function of Zp[k],
Kp[l, k]. We quantify this spectral-leakage by summing the

squared error over this region, where the ideal here is zero.

Accordingly, to asses the relative merit of the proposed ana-

lytic signal, we use the ratio squared error measure

µ =
α(Kp)

α(Kc)

where α(K) is a measure of the two-dimensional spectral-

leakage for K[l, k], defined as

α(K) =
2N−1∑

k=0

2N−1∑

l=N

∣∣K[l, k]
∣∣2 +

2N−1∑

k=N

k−N∑

l=0

∣∣K[l, k]
∣∣2

TABLE II

PERFORMANCE RATIO MEASURES COMPARING

ALIASING IN THE DWVD OF THE PROPOSED ANALYTIC

SIGNAL WITH THE DWVD OF THE CONVENTIONAL

ANALYTIC SIGNAL.

µ µ

Signal Type (N even) (N odd)

Impulse 0.4034 0.3750

Step 0.4101 0.4099

Sinusoid 0.4545 0.5600

NLFM 0.5055 0.4998

WGNa 0.5840 (0.0984) 0.5371 (0.0996)

EEGb 0.4140 (0.0723) 0.4112 (0.0705)

a 1000 realisations used. b 1000 epochs used.
a,b Values are in the form, mean (standard deviation).

+

N∑

k=0

N∑

l=k+1

∣∣K[l, k]
∣∣2 .

As the function K[l, k] is quadratic in Z[k], cross-terms

between the positive and negatives frequencies will be present

in the resultant DWVD. These cross-terms are part of the

spectral-leakage in the doppler–frequency function, and are

therefore incorporated into the α(K) measure. We consider

these cross-terms as aliasing as they would not be present if

the frequency-constraint was satisfied.

B. Numerical Examples

We present the results in Table II for the same set of example

signals used in Section IV-B. The results for µ are not equal to

η because the doppler–frequency function K[l, k] is quadratic
in the signal Z[k]. We see from the results, however, that

µ approximates η for all test signals apart from the impulse

signal, where µ is less than η. From these results we infer that

the amount of spectral-leakage for Kp[l, k] is approximately

half of the spectral-leakage for Kc[l, k]. Hence, the amount of

aliasing present in the DWVD of zp[n] is approximately half

of the aliasing present in the DWVD of zc[n].

To show some examples of this reduced aliasing, we plot the

DWVDs of the two analytic signals using two different signals

from the test set—namely, the impulse signal and an EEG

epoch. Fig. 4 shows the two DWVDs of the impulse signal.

For this signal, the energy in the DWVD should, ideally, be

concentrated around the time sample n = 0, as δ[n] = 0
for n > 0. Fig. 4 shows that the DWVD of the proposed

analytic signal better approximates this ideal compared with

the DWVD of the conventional analytic signal.

In Fig. 5 we show the two DWVDs using the EEG epoch.

We previously plotted the spectra of the two analytic signals

for this EEG epoch in Fig. 3b. From this frequency-domain

plot, we can see that very little relative energy is present

above the normalised frequency value of 0.25. Thus, we expect
little energy in the DWVD above the frequency value 0.25.
Accordingly, from Fig. 5, we see that the DWVD of the

proposed signal has less energy in this region compared with

that for the DWVD of the conventional analytic signal.
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Fig. 4. DWVDs of the two analytic signals using the impulse test signal δ[n]: absolute value of the DWVD for the (a) conventional analytic signal, and (b)
proposed analytic signal. Both DWVDs are normalised.
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Fig. 5. DWVDs of the two analytic signals using an EEG epoch: absolute value of the DWVD for the (a) conventional analytic signal, and (b) proposed
analytic signal. To highlight the differences between the distributions, (c) and (d) display a portion of the distribution where, for this particular signal, we
expect little energy. The plot in (c) is one-half of the distribution in (a); likewise, the plot in (d) is one-half of the distribution in (b). Both DWVDs are
normalised.
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VI. CONCLUSION

The failure of a discrete analytic signal to satisfy both a

finite-time and finite-frequency bandwidth constraint causes

aliasing in the DWVD. We presented, in this article, a new

discrete analytic signal which, compared with the conventional

discrete analytic signal, better approximates these constraints

and consequently reduces aliasing in the DWVD. We showed

that DWVD of our proposed analytic signal has approximately

50% less aliasing than that for the DWVD of the conven-

tional analytic signal. The proposed signal retains two useful

attributes of the conventional signal: it satisfies the recovery

and orthogonality properties and has a simple implementation

using DFTs.

APPENDIX I

PROOF OF PROPOSITION 1

We derive the relation, for the negative spectral energy,

between the proposed and conventional analytic signals. To do

so, we decompose the energy of Zp[k] for N ≤ k ≤ 2N − 1
as follows:

2N−1∑

k=N

∣∣Zp[k]
∣∣2 =

∣∣Zp[N ]
∣∣2 +

N−1∑

k=⌊N

2 ⌋+1

∣∣Zp[2k]
∣∣2

+

N−1∑

k=⌈N

2 ⌉

∣∣Zp[2k + 1]
∣∣2 (17)

where the function ⌊x⌋ returns an integer smaller than or

equal to x, and the function ⌈x⌉ returns an integer larger

than or equal to x. We examine each part of the preceding

decomposition separately.

A. Case for k odd

First, we write Ut[k], which is the DFT of ut[n], as

Ut[k] =

{
Nδ[k], k even,

1 − j cot ( πk
2N ), k odd.

(18)

Next, we consider the energy at negative frequencies for

Zc[k]. From (12) and (14), we express Zc[k] as

Zc[k] =
1

N

N−1∑

l=0

Sa[2l]Ha[2l]Ut[k − 2l].

If we use (18) in the preceding equation, then we can write

Zc[k] for even–odd k values as

Zc[2k] = Sa[2k]Ha[2k] (19)

Zc[2k + 1] =
1

N

N−1∑

l=0

Sa[2l]Ha[2l]Ut[2k + 1 − 2l]. (20)

The even k terms for Zc[k] do not contribute to the negative

spectral energy because, from (8), Ha[2k] = 0 for 2k > N .

Thus, the energy in the negative spectral region is solely

caused by the odd k terms in Zc[k],

2N−1∑

k=N+1

∣∣Zc[k]
∣∣2 =

N−1∑

k=⌈N

2 ⌉

∣∣Zc[2k + 1]
∣∣2 . (21)

Last, we consider the energy at negative frequencies for

Zp[k]. By combining (13) and (18), Zp[k] for odd k values is

Zp[2k + 1] =
1

2
Sa[2k + 1]Ha[2k + 1]

+
1

2N

N−1∑

l=0

Sa[2l]Ha[2l]Ut[2k + 1 − 2l]. (22)

Thus, relating (22) with (20) and (7), we get

Zp[2k + 1] =
1

2

(
Za[2k + 1] + Zc[2k + 1]

)
. (23)

From (8), we know that Za[k] = 0 for k > N ; therefore, (23)

reduces to Zp[2k + 1] = Zc[2k + 1]/2 for (2k + 1) > N . If

we combine this relation with (21), then we get the negative

spectral energy relation,

N−1∑

k=⌈N

2 ⌉

∣∣Zp[2k + 1]
∣∣2 =

1

4

2N−1∑

k=N+1

∣∣Zc[k]
∣∣2 . (24)

B. Case for k even

We start by introducing a new signal ẑ[n], defined as

ẑ[n] =

{
0, 0 ≤ n ≤ N − 1,

za[n], N ≤ n ≤ 2N − 1.
(25)

The signal ẑ[n] is purely imaginary because the real part of

za[n] is zero for N ≤ n ≤ 2N − 1. We can also express ẑ[n]
as ẑ[n] = za[n] − zp[n] for all values of n. In the frequency

domain, this equates to

Ẑ[k] = Za[k] − Zp[k]. (26)

where Ẑ[k] represents the DFT of ẑ[n]. We now introduce

some properties of Ẑ[k].
We can show easily, because of the form of ẑ[n] in (25),

that
N−1∑

k=0

∣∣∣Ẑ[2k]
∣∣∣
2

=

N−1∑

k=0

∣∣∣Ẑ[2k + 1]
∣∣∣
2

. (27)

Also, because ẑ[n] is purely imaginary then following sym-

metry holds:

Ẑ[2N − k] = −Ẑ∗[k]. (28)

We express the spectral energy for Ẑ[2k], using the sym-

metrical relation in (28), as

N−1∑

k=0

∣∣∣Ẑ[2k]
∣∣∣
2

=
∣∣∣Ẑ[0]

∣∣∣
2

+ 2
N−1∑

k=⌊N

2 ⌋+1

∣∣∣Ẑ[2k]
∣∣∣
2

+ A. (29)

where A = |Ẑ[N ]|2 when N is even and A = 0 when N is

odd.

Similarly, the spectral energy at k odd values of Ẑ[k] is

N−1∑

k=0

∣∣∣Ẑ[2k + 1]
∣∣∣
2

= 2

N−1∑

k=⌈N

2 ⌉

∣∣∣Ẑ[2k + 1]
∣∣∣
2

+ B. (30)

where B = 0 when N is even and B = |Ẑ[N ]|2 when N is

odd. This concludes the segment on the properties of Ẑ[k].
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If we substitute (30) and (29) into (27), then we obtain:

N−1∑

k=⌊N

2
⌋+1

∣∣∣Ẑ[2k]
∣∣∣
2

=
N−1∑

k=⌈N

2
⌉

∣∣∣Ẑ[2k + 1]
∣∣∣
2

−
1

2

[∣∣∣Ẑ[0]
∣∣∣
2

+ A − B

]
.

Then we substitute (24), and the relation Ẑ[k] = −Zp[k] for
k > N , into the preceding equation to obtain:

N−1∑

k=⌊N

2 ⌋+1

∣∣Zp[2k]
∣∣2 =

1

4

2N−1∑

k=N+1

∣∣Zc[k]
∣∣2

−
1

2

[∣∣∣Ẑ[0]
∣∣∣
2

+ A − B

]
. (31)

C. Nyquist Frequency Terms

The Nyquist term Za[N ] is a real number, because of

the definition of Za[k] in (7); the Nyquist term Ẑ[N ] is an

imaginary number, because ẑ[n] is purely imaginary. Thus,

we rewrite (26) as

∣∣Zp[N ]
∣∣2 =

∣∣Za[N ]
∣∣2 +

∣∣∣Ẑ[N ]
∣∣∣
2

(32)

The remaining relations depend on the parity of N .

1) Case for N even: We know, from (19) and (7), that when

N is even, Zc[N ] = Za[N ]. When we combine this with (32)

we get
∣∣Zp[N ]

∣∣2 =
∣∣Zc[N ]

∣∣2 +
∣∣∣Ẑ[N ]

∣∣∣
2

. (33)

2) Case for N odd: We know, from (23), that when N is

odd, Zc[N ] = 2Zp[N ] − Za[N ]. When we combine this with

(26) we get |Zc[N ]|2 = |Za[N ]|2 +4|Ẑ[N ]|2. If we substitute

this equation into (32), then we get the relation

∣∣Zp[N ]
∣∣2 =

∣∣Zc[N ]
∣∣2 − 3

∣∣∣Ẑ[N ]
∣∣∣
2

. (34)

Finally, we are able to assemble the three parts of the

decomposition in (17). If we combine the relation for k even

in (31) with the relation for k odd in (24), and add the Nyquist

frequency relations in (33) and (34), then we get the following:

2N−1∑

k=N

∣∣Zp[k]
∣∣2

=
1

2

2N−1∑

k=N

∣∣Zc[k]
∣∣2 +

1

2

(∣∣Zp[N ]
∣∣2 −

∣∣∣Ẑ[0]
∣∣∣
2

− C

)

where C = 2|Ẑ[N ]|2 when N is odd and C = 0 when N is

even. This concludes the proof.
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[2] J. Ville, “Théorie et applications de la notion de signal analytique,”
Cables et Transmissions, vol. 2A, no. 1, pp. 61–74, 1948, in French.
English translation: I. Selin, Theory and applications of the notion of

complex signal, Rand Corporation Report T-92 (Santa Monica, CA,
August 1958).

[3] B. Boashash, “Note on the use of the Wigner distribution for time–
frequency signal analysis,” IEEE Trans. Acoust., Speech, Signal Pro-

cessing, vol. 36, no. 9, pp. 1518–1521, 1988.
[4] S. L. Marple, Jr., “Computing the discrete-time ‘analytic’ signal via

FFT,” IEEE Trans. Signal Processing, vol. 47, no. 9, pp. 2600–2603,
1999.
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