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Many efforts at standardising terminologies within the biological domain have resulted in 
the construction of hierarchical controlled vocabularies that capture domain knowledge. 
Vocabularies, such as the PSI-MI vocabulary, capture both deep and extensive domain 
knowledge, in the OBO (Open Biomedical Ontologies) format. However hierarchical 
vocabularies, such as PSI-MI which are represented in OBO, only represent simple 
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parent-child relationships between terms. By contrast, ontologies constructed using the 
Web Ontology Language (OWL), such as BioPax, define many richer types of 
relationships between terms. OWL provides a semantically rich structured language for 
expressing classes and sub-classes of entities and properties, relationships between them 
and domain-specific rules or axioms that can be applied to extract new information 
through semantic inferencing. In order to fully exploit the domain knowledge inherent in 
domain-specific controlled vocabularies, they need to be represented as OWL-DL 
ontologies, rather than in formats such as OBO. In this paper, we describe a method for 
converting OBO vocabularies into OWL and class instances represented as OWL-RDF 
triples. This approach preserves the hierarchical arrangement of the domain knowledge 
whilst also making the underlying parent-child relationships available to inferencing 
engines. This approach also has clear advantages over existing methods which 
incorporate terms from external controlled vocabularies as literals stripped of the context 
associated with their place in the hierarchy. By preserving this context, we enable 
machine inferencing over the ordered domain knowledge captured in OBO controlled 
vocabularies. 

1.   Introduction 

Molecular biology as a field encompasses several dynamic sub-domains 
undergoing rapid expansion with resultant rapid discovery and growth in 
acquired data. High-throughput techniques and large scale biological research, 
such as genome and transcriptome sequencing projects and expression studies, 
generate abundant data. However, a significant gap exists between data 
acquisition and knowledge discovery. These massive quantities of data are 
frequently produced through a distributed effort, and need to be integrated for 
analysis and final presentation [1, 2]. Likewise, techniques such as microarray 
expression profiling produce large quantities of raw data which must be 
recorded and described [3]. In addition to data exchange and integration issues, 
many projects in computational and systems biology focus on the analysis of 
high-level properties of biological systems. Such projects might, for example, 
compare the distribution of protein functional classes between genomes [4], or 
analyse the genetic regulatory network of an organism [5]. Such analysis 
requires the integration of heterogeneous information produced from multiple 
sources at varying levels of resolution and described using highly variable 
terminologies. Solutions to these exchange and integration challenges include 
provision of the data in delimited text files, databases, and XML documents 
conformant with a given XML schema. The semantic meaning of the data is not 
however explicit within the documents, and relies on some external definition of 
concepts and relationships in the data.  

Analysis at the level of biological systems also requires reasoning over 
large and complex data sets is beyond the ability of humans. Machine reasoning 
has the ability to uncover implicit relationships in the data, rather than simply 
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retrieving explicitly represented data, as is the case of querying a database. 
However, machine reasoning over large and complex data sets requires the use 
of appropriate and meaningful knowledge representations of the domain area 
combined with presentation of the data in machine-readable format [6]. One 
technique for implementing knowledge representation that has been readily 
adopted in biology has been the construction of bio-ontologies to establish a 
precisely (if not formally) defined way to model and express the knowledge of a 
domain in terms of defined concepts: the classes of “things”, the relationships 
that exist between these classes, and the rules or axioms that apply to these 
concepts in the domain. The need for ontology development was recognized 
almost a decade ago in the creation of perhaps the most widely adopted 
biological ontology, the Gene Ontology (GO; http://www.geneontology.org; 
[7]). 

An important consideration is why choose to create or use an ontology over 
traditional database schema, which are widely adopted knowledge 
representations in the field of molecular biology [8]. While there have been few 
successful demonstrations of automated inference using bio-ontologies, there 
are significant reasons for their adoption [9]. The key reason is that ontologies 
are designed to evolve over time and to facilitate integration of data, while 
database schemas are not [10]. Database schemas are typically considered an 
internal design decision for a given application and rarely, if ever, are schema 
from other databases reused. A specific ontology, on the other hand, is an 
external, global resource that is meant to be reused, extended and integrated 
with other ontologies. An ontology is also more expressive than a database [11]. 
Finally, databases rarely allow the preservation of data. It is still common 
simply to add attributes to an existing schema rather than splitting it logically 
due of the extent of the data migration [12]. Ontologies provide a separation 
between the actual data and the metadata or descriptions of the datasets and their 
relationships. This allows the data to be migrated independently from changes 
within the ontology [10]. 

Many types of knowledge representation exist, and there are many views of 
what constitutes machine reasoning [13]. The majority of ontologies developed 
in the biological domain to date do not take advantage of this background [14]. 
Technologies developed by the World Wide Web Consortium (W3C; 
http://www.w3.org/) to support machine reasoning include the Resource 
Description Framework (RDF; http://www.w3.org/RDF/) and Web Ontology 
Language (OWL; http://www.w3.org/2004/OWL/). Both RDF and OWL 
support machine inference across resources on the web.  
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While some bio-ontologies have been constructed using these standards, 
(see http://www.obofoundry.org) or have been converted into a form compliant 
with these standards [15], most do not take advantage of the W3C 
recommendations [14]. Many are presented as controlled vocabularies where 
concepts are represented taxonomically, and relationships are predominantly 
“is-a” or “part-of” relationships that establish the tree-like structure of the 
vocabulary. While these structures create well ordered catalogues of concepts 
relevant to a domain, they do not typically allow for the expression of rules 
defining other relationships between concepts. The end result is a simplified, 
flattened model of the domain that lacks the semantic depth or logical support to 
enable a reasoner to infer new relationships or new information. 

A significant challenge in molecular biology is to understand the molecular 
interactions that occur within cells; research in cell and structural biology shows 
that many proteins rely on a complex network of interacting partners to achieve 
their correct localization and functional state in the cell. High-quality molecular 
interaction data are largely described in journal articles using natural language. 
Because of the unstructured nature of the observations, the discipline of 
molecular interactions is covered by several overlapping ontologies. Some of 
these, such as BioPax (http://www.biopax.org) and the Protein Standards 
Initiative Molecular Interaction vocabulary (PSI-MI; http://www.psidev.info/) 
provide significant coverage over concepts relevant to the domain, while others, 
such as GO, Sequence Ontology (http://www.sequenceontology.org/) and the 
NCBI-Taxonomy (http://www.ncbi.nlm.nih.gov/) intersect with the field. This 
diverse set of overlapping ontologies, and the diversity of formats in which they 
are presented, make molecular interactions a useful test domain for strategies to 
integrate bio-ontologies and reuse domain knowledge. 

2.   Results 

The field of bio-ontology development is active, and already populated with 
a number of general and domain specific ontologies that have been developed, 
or are under development. We reviewed ontologies listed by the Open 
Biomedical Ontology Foundry (OBO Foundary; http://www.obofoundry.org/) 
and the National Center for Biomedical Ontology (NCBO; 
http://www.bioontology.org/). Of the ~70 ontologies listed at these sites, around 
three quarters are written using the OBO format [16], with the remainder using 
other formats, including OWL, Protégé files and plain text. 

OWL is specifically designed to construct ontologies that support machine 
reasoning [11]. For this reason, we choose to use OWL description logic (DL) 
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to construct a high-level ontology to integrate concepts from relevant 
biological ontologies and vocabularies not expressed in OWL. Given that 
knowledge acquisition is one of the most time consuming and necessarily 
manual parts of ontology construction, the knowledge captured in non-OWL 
ontologies constitutes a valuable resource. One approach suggested in such 
cases is to construct a new ontology using OWL [14], however this under 
estimates the value of knowledge represented in other formats. Practical 
strategies to rescue domain knowledge captured in non-OWL ontologies will 
have obvious applicability in a domain such as molecular biology where the 
majority of vocabularies are not expressed in OWL. 

We have reviewed two ontologies used to describe molecular interactions: 
the OWL ontology BioPax, and the OBO ontology PSI-MI. However it is not 
our intention to comparatively evaluate these ontologies, as has been done 
recently [17, 18]. Briefly, BioPax is designed to describe pathway rather than 
specific molecular interaction data. However of the ~40 classes and ~70 
properties that BioPax defines, many are key concepts and relationships 
necessary to describe molecular interactions. The PSI-MI vocabulary, on the 
other hand, is specifically designed to describe molecular interaction data and 
captures >800 concepts from the domain. However it is represented in OBO and 
expresses only hierarchical relationships between these classes. While BioPax 
lacks the descriptive power of PSI-MI, it is more suited for machine reasoning 
because it is represented in OWL. BioPax recognizes the value of external 
controlled vocabularies such as PSI-MI and GO, by providing a facility to 
exploit these external vocabularies through the inclusion of a class 
openControlledVocabulary. This class stores a term from an external vocabulary 
along with a cross reference holding the identifier of that term and the name of 
the vocabulary (as literal strings). 

However, it is not sufficient merely to store the data from external 
controlled vocabularies as literals - the term becomes devoid of meaning if taken 
out of the context of the concept tree within the originating vocabulary. In order 
to preserve the meaning of the term, its relationship to other terms and its place 
in the hierarchy must also be preserved. To illustrate this point, consider the 
natural language expression, “The protein Emerin is localized to the nuclear 
inner membrane” (Figure 1).  
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Figure 1 A natural language assertion decomposed into generic concepts, in green, and specific 
instances of those concepts in white. The specific instance “Emerin” is of the generic type protein, 
while the specific instance “Nuclear inner membrane” is of the generic type cellular location. The 
relationship between “Emerin” and its localisation is represented by a labeled arrow, localisation. 

This statement is composed of generic and specific concepts and 
relationships: two generic concepts, protein and cellular location, and two 
specific instances of these concepts, “Emerin”, a protein, and “nuclear inner 
membrane”, a cellular location. A relationship also exists between these two 
instances, namely, that “Emerin” has a property localisation, the value of which 
is “nuclear inner membrane”.  

The same statement could also be expressed using the BioPax ontology, as 
illustrated in Figure 2, by using the openControlledVocabulary class to include a 
term from an external vocabulary like the GO Cellular Component hierarchy.  

 
Figure 2 Expression of an assertion of subcellular location in BioPax. Classes and properties from 
the BioPax ontology are depicted in green on the left of the diagram, while the instance data 
describing the localisation of Emerin is on the right. Elipses represent classes, or instances of classes, 
while rectangles represent typed literals, in this case, strings. The term in bold, “nuclear inner 
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membrane” has been imported from the GO Cellular Component hierarchy, and is included here as 
a string. 

However, as the references to the term from the external vocabulary are all 
simple text strings, they lack context or meaning A search for proteins where the 
value of cellular_location is the string “organelle membrane” would not retrieve 
proteins where this value was “nuclear inner membrane” unless the query 
application was hard-coded with additional information about the relationship 
between these two strings. External terms used in this fashion lack meaning. 
Because of the limitation of the BioPax approach, we developed a different 
approach to include domain knowledge captured in external controlled 
vocabularies (see Figure 3).  

 
 
Figure 3 Conversion process for an OBO Controlled Vocabulary. The OBO vocabulary is converted 
into OWL-DL. This results in an OWL class hierarchy where terms from the original vocabulary 
become classes in the OWL ontology. Instance data is then created for the ontology so each class has 
a single instance comprising the vocabulary term that can then be used as an object or subject of 
triples. Outputs from this process, an OWL class hierarchy and associated instance data, are 
represented in blue. 

An external controlled vocabulary that contains relevant descriptive terms is 
converted into OWL-DL. Most frequently, the external vocabulary is in OBO 
format, so we currently use the OBO to OWL conversion application [19], 
however this process may be more generally applied to any hierarchical 
controlled vocabulary. It is important that both the class hierarchy and the 
instance data for this hierarchy are created. OWL-DL classes are used to define 
restrictions for properties within the ontology, through the specification of 
allowable domain and range values [11]. However, a class cannot also be an 
instance, and only instances may be used as the values of properties. For this 
reason, a single instance of each class is created, taking the form of the original 
term from the hierarchical vocabulary. At the end of this process, both an OWL 
ontology representing the terms from the controlled vocabulary and a set of 
instance data are available to use in conjunction with an OWL ontology, as 
shown for an excerpt from GO Slim [20] in Figure 4.  
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EmerinProtein

Cellular_location

nuclear inner membrane

Cellular_location

RDF:type

RDF:type

GO_0005575_Cellular_Co
mponent

GO_0044464_Cell_Part

GO_0016020_Membrane

GO_0031090_Organelle_
Membrane

GO_0031965_Nuclear_Me
mbrane

cellular component

cell part

membrane

organelle membrane

nuclear membrane

is_a

is_a

is_a

is_a

RDF:type

RDF:type

RDF:type

RDF:type

RDF:type

GO_0005637_Nuclear_Inn
er_Membrane

is_a

“The protein Emerin is localised to the nuclear inner membrane”

 

Figure 4 Application of the conversion process. Classes and instances used to express the statement 
are boxed in a grey dashed line. The term, “nuclear inner membrane” in bold is an instance of the 
class GO_0005637_Nuclear_Inner_Membrane, which is related to other classes in the hierarchy 
boxed in green. Domain knowledge is explicitly captured in these hierarchical relationships, so that 
the relationship of the protein “Emerin” to other cellular locations can be inferred. 

In this example, the instance “nuclear inner membrane” is used as the value 
of the cellular_location property. Not only is this value meaningful to a human 
reasoner who understands what is meant by the words, it is also meaningful to a 
machine reasoner that has access to the underlying ontology. This machine 
reasoner, when presented with the assertion that Emerin is located in the 
“nuclear inner membrane”, may correctly infer that Emerin is also located in an 
“organelle membrane”, and located in a “membrane”. By using this process to 
incorporate components of external vocabularies under a high-level extensible 
ontology, external terms become more than text labels, and enable implicit 
relationships to be extracted from explicit data. 
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3.   Discussion 

Many of the existing bio-ontologies are written in the OBO format, and 
represent a rich source of biomedical domain knowledge. By using the approach 
described here, vocabularies covering specific aspects of a domain may be 
plugged into a high level extensible OWL ontology designed to facilitate these 
modular extensions. The parent-child relationships of the new vocabulary are 
maintained, and made available to a reasoner to infer implicit relationships from 
the explicitly represented data. The current strategy used by BioPax is 
inadequate for machine reasoning. To make bio-ontologies useful for machine 
reasoning, they need to be explicitly represented in languages such as OWL. 
Converting and importing relevant hierarchies of terms and associated instances 
is one solution to maintaining the meaning of terms in controlled vocabularies.  

One concern when creating an ontology or expanding an existing ontology 
is the trade off between the ability of the ontology to express concepts in the 
domain, and to provide tractable inferencing, and the effects of this trade off are 
difficult to evaluate [21]. A strategy which we will evaluate to address this is to 
identify which branches of a given concept tree are required and only convert 
those branches, as meaning contained in the concept hierarchy outside of the 
branch would not be referenced.  

Since so many biological concepts are framed in terms of hierarchically 
inherited properties, and the majority of biological ontologies take the form of 
hierarchical controlled vocabularies, the process described here is a useful 
generic strategy for incorporating the existing wealth of ordered knowledge into 
a semantically rich ontology constructed using OWL. This will help to extend 
the utility of bio-ontologies into the arena of machine inference.  
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