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Classical flux integrals in transition state theory: Generalized
reaction coordinates

Sean C. Smith®
Department of Chemistry, University of Queensland, Qld 4072, Brisbane, Australia

(Received 15 January 1999; accepted 27 April 2999

Transition state theor¢TST) approximates the reactive flux in an elementary chemical reaction by
the instantaneous flux passing through a hypersurftmee “transition state’) which completely
divides the reactant and product regions of phase space. The rigorous classical evaluation of this
instantaneous flux is carried out as a trace in phase space: effectively a multidimensional integral.
We present an analysis of the momentum-space component of this flux integral for the case of a
generalized reaction coordinate. The classic analysis of the canonical flux by MardDkem.
Phys.41, 2624(1964)] is refined by reducing the determinant which appears in the transition state
partition function to a very simple form, facilitating the ensuing integration over coordinate space.
We then extend the analysis to provide analytic expressions for the momentum flux integrals in both
the energy-resolved, and the ener@ngular-momentum-resolved microcanonical ensembles.
These latter expressions allow substantial gains in the efficiency of microcanonical variational
implementations of Transition State Theory with generalized reaction coordinated.99@
American Institute of Physic§S0021-960609)00528-(

I. INTRODUCTION however, these are well-framed scattering calculations rather

The prediction of rate constants for elementary chemica}han TST-ba;ed methods. )
reactions involves the calculation of a potential energy sur- 1 "ere exists a wide range of reaction processes where
face (PES, followed by solution of the dynamical problem tunneling is not a dominant factor, and hence classical meth—
by evaluating the reactive flux from the reactant region to th&?ds can be profitably used to compute rate constants. In this
product region on the PES. Statistical theories are commonl§Ontext, both molecular dynami¢sD) and statistical meth-
used for approximate solution of the dynamical problem be0ds play important and complementary roles. MD gives clas-
cause, at a certain level of implementation, they are easy t&ically rigorous results, but requires complete PES informa-
apply and require minimal PES information. This “user tion, extensive sampling of the system phase space and
friendly” aspect has promoted widespread use of Transitiorfometimes very long time simulations. On the other hand,
State Theory(TST) and popularized concepts of theoretical TST and related statistical models are much easier to apply,
reaction dynamics in the broad field of chemical kinetics.requiring only sufficient PES information to evaluate the flux
The relative simplicity of the elementary TST expression forat the transition state dividing surfdegand the density of
the thermal rate constant also makes it easily parametrizegtates of any long-lived intermediates. Hence, there have
and hence it enjoys a range of uses from the prediction dpeen extensive and ongoing efforts to develop improved
rate constants to the fitting of kinetic dafeontroversy oc- techniques for implementing TST in an efficient manner
casionally arises when the latter application is confused withwhich is free of auxiliary assumptions or unnecessary param-
the former). etrizations. In the area of gas-phase chemistry, for instance,

The fact that the central component of TST, i.e., thethis has lead to sophisticated implementations of microca-
evaluation of flux at a dividing surface specified by a fixednonical variational transition state theofyVTST) to com-
value of the reaction coordinate, is intrinsically classical inpute rate constants as a function of ene(gy and angular
nature has been discussed and highlighted in many differembomentum (J) prior to ensemble averaging for radical—
ways over the yearge.g., Refs. 1-6 Thus, quantum- radical or ion-molecule reactiortd-33
mechanical complexities arise when tunneling plays a sig-  An important issue in many applications of TST is that a
nificant role in the kinetics. Approximate quantum versionsreaction coordinate should be chosen which will make the
of TST exist and have been profitably uséelg., Refs. fundamental transition state assumpti@®., no recrossing
7-12. As with other approximate quantum models, theof the dividing surfacea good one for the application at
range of reliability of these quantum TST methods is still thenand(e.g., Refs. 34, 35 Since some trial and error may be
subject of investigation. The introduction of complex absorb-jnyolved in the selection of the reaction coordinate, it is im-
ing potentials does allow rate constants to be computed rigsortant to implement the TST calculations accurately and
orously using only “local’ PES information in the region efficiently in accord with any given definition of the reaction
surrounding the barrier:~*® Both formally and in practice, coordinate. The latter probiem is the issue that is addressed
in this paper. We take the perspective of attempting to de-
dElectronic mail: smithsc@chemistry.uq.edu.au velop efficient implementations of TST which as far as pos-
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sible avoid auxiliary approximations. Thus, assuming thampproximate analysis prove under more rigorous examina-
one has details of the PES at the transition state dividingion to be exact results!
surface, the “partition function” or “sum-of-states” to be The outline of the paper is as follows. In Sec. I, we
evaluated at the transition state will be computed as a mulpresent the derivation which leads to a refinement of Marcus’
tidimensional integral in the classical phase space of the maesult for the canonical momentum flux integral with a gen-
lecular system. Our focus is the development of analytic reperalized reaction coordinate. In Sec. Ill, we focus our atten-
resentations of the necessary momentum-space flux integral&n on the important cases of recombination reactions with-
since this halves the dimensionality of the overall integralsout a barrier and the reverse simple-fission dissociation
and avoids awkward delta-function constraints in the microfeactions. We derive the expression for the canonical flux
canonical implementations of the theory. Progress has bedntegral in Sec. lll A, theE-resolved microcanonical flux in-
made in this direction in the past by several authors. In degral in Sec. llIB, and finally théz,J-resolved microca-
classic paper, Marct$showed within the context of canoni- nonical flux integral in Sec. Il C. Section IV concludes.
cal TST that for a general curvilinear reaction coordinate the
momentum-space integrals can be carried out analytically to
produce a power okgT divided by the square root of the fl. CANONICAL TST WITH A GENERALIZED
. - L REACTION COORDINATE

determinant of a certain reduced kinetic energy tensor.
Klippensteiri’ later adapted the Marcus result to energy-  In canonical TST, the rate constd(fT) can be formally
resolved microcanonical variational transition state theoryexpressed as the ratio of the thermal flux through the
(#gVTST) and applied it to the NCNO dissociation reaction transition-state-dividing surface to the canonical density of
with a bond-length reaction coordinate. Although unable tostates of the reactd(si,
extgnq the sam.e' approach EyJ-resolved mlcrocanonlgal TH 8(s— sO)SG)('s)e*H’kBT]
variational transition state theory.f ;VTST) Klippenstein k(T)= — (1)
did show how to analytically integrate out the delta functions Trip(qe "re]
for the three components of the total angular momentum anth Eq. (1) s(q) is the reaction coordinate, constrained to the
that for the energy, evaluating the remaining momentum invalues, on the dividing surfaces is the flux term an® (s)
tegrals numerically? In earlier work onug ;VTST,?"#we s a step function with value 0 f@<0 and 1 fors>0. p(q)
have shown that theE,J)-resolved momentum flux inte- is a projector onto the relevant region of the reactant en-
grals can be evaluated analytically for the specific case of 8emble (unit volume for a bimolecular reaction, or the
reaction coordinate which is the center-of-mass separation oftrongly coupled” region of the molecule’s configuration
two dissociating or recombining molecular fragments. Thisspace in a unimolecular dissociatjolVe takeq to represent
case is simpler than the generalized reaction coordinate be-convenient set of coordinatés, ,...,q,} for the molecular
cause the kinetic energy for motion along this coordinate isystem andp to represent the set of conjugate momenta.
separable. Furthermore, we introduced analytic expressions(q,p) is the system Hamiltonian, arlg; is the Boltzmann
to approximate the momentum flux integrals for a bond-constant. The traces of E¢l) are evaluated classically as
length reaction coorggnat’é. Building on these develop- integrals over the system phase space,
ments, Roberts.oet al. hgve investigated qlgebralc meth- J--J dqdps(s—sg)50 (5)eHkeT
ods for analytic evaluation of the coordinate-dependent (T)= T 2)
factors appearing in the canonical TST expressions. J---J dadpp(q)e”""e

In this work we report substantial progress toward moreRecognizing that the classical partition function for reactants
efficient rigorous implementations of canonical variationalQ is simply h™" times the denominator of E¢2) (h being
transition state theoryCVTST), ugVTST and ug ;VTST.  Planck’s constant it is convenient to writek in the “stan-
Our contribution is two-fold. First, we rederive the Marcus dard” TST form

result for canonical TST with a generalized reaction coordi- KT O
nate in a manner which leads to a simple and transparent (T)= LQ_e—Eo/kBT_ 3)
expression for the determinant of the-{1)-dimensional h Q

kinetic energy tensor which arises from analytical evaluatior]n Eq (3) EO is the critical energy for reactio('dassica”y’

of the momentum flux integral. Second, we present a detaileghe barrier height Q™ is a quantity which may be defined as
application of the approach to the evaluation of flux integrals

for the transitional modes in barrierless recombination/ +:h Y eEolkBTf dgé(s—sg)e V(@/keT
simple-fission dissociation reactions, treating the canonical, kT 0

E-resolved microcanonical artd, J-resolved microcanonical

ensembles. For these reactions, the physical nature of the xJ dp g@(g)e*Ek/kBT, (4

problem motivates the choice of radial and rigid-body angu-

lar coordinates for the two molecular fragments rather thamwhereV is the potential energy arig, is the kinetic energy.
Cartesian coordinatés, and microcanonical variational In the simple approach to deriving E@®), one assumes that
implementations of the theory have played a very importanthe kinetic energy for motion along the reaction coordinate is
role in elucidation of the reaction dynamics. Remarkably, itseparablgat least at the transition statfom the other de-
will transpire that the analytic microcanonical and canonicalgrees of freedom® Thus, the flux term involving the veloc-
expressions proposed in our earlier work on the basis of aity s along the reaction coordinate in E¢) integrates out to
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produce the characteristic prefactyT in Eq. (3), andQ™* Gij= 5ijmfl 9
is indeed a partition function in the usual sense for the de- ) )
grees of freedom orthogonal to the reaction coordinate. FoRnd the determinant @& is then

example, suppose that the kinetic energy tensor is diagonal
with respect to the momentupy, |G|=[H m; bl (10)
|
Ex=3P"Gp, (53)

Note that with this labeling schemens, _,=mg3, _;=mj3,
with =m(®, wherem is the mass of theth particle. The time
derivative of the reaction coordinasds written

GHZG”:O, |7E1 (5b)
n n
and that €,,p;) are in fact the reaction coordinageand 'SZE Eqi: Eﬂ:(Vs)TGp. (11)
momentump,, respectively.Q" then reduces to the stan- i=1 04 i=10q; m;

dard partition function for the “orthogonal” modes, In order to evaluate the integral in E(f), it will be neces-

eEo/ksT B sary to transform to a new set of momemta{v,,...,v,}
Q+:Wf j dg* dpteH /keT, (6)  such that the following conditions are satisfi¢a) the Jaco-
bian for the transformation should be a constam., inde-
whereq-={d,,....n}, P-={P2,....pn}, andH=E;(p*)  pendent of the momenteand(b) one of the momenta, which
+VH(gt; s=sg), sp being the value ot which defines the we labely,, satisfies the relation
position of the transition state. If the transition state lies at a
saddle point on the PES, this can often be regarded as a good
approximation for energies not far above the barrier, since  9%1

the saddle point is by definition a stationary point on the PESyith ¢ a constant. Conditiofs) will be satisfied if we require
and the kinetic energy tensor will be locally separable alongne transformation to be linear. Our method of satisfying
the direction of the reaction coordinate. For energies not fa&ondition(b) will further require that the transformation ma-

abovek,, trajectories crossing the barrier will not deviate yix pe orthogonal, so that the Jacobian for the transformation
far from the saddle point and so the separability of the ki-yj in fact be unity. Thus, we write

netic energy should hold quite well. However, for thermal
systems incorporating significant populations at energies V=Up; (133
markedly higher tharE, one might not expect this separa- UTU=| (13b
bility to hold. Furthermore, for reactions proceeding without '
a saddle point on the PES between reactants and producihe kinetic energy now becomes
such as the barrierless recombination/simple-fission dissocia- 1 . 1
tion classes explicitly considered in Sec. Il below, this prob-  £k— P'Gp=2v'UGUTV=3v'G*v (14
lem is exacerbated. Clearly, it is desirable to remove theand the next task is the specificatiomqfso as to satisfy Eq.
approximation of a separable kinetic energy for motion along12). This amounts to specifying the first row of the trans-
the reaction coordinate, and this is the problem which Marformation matrixU. Using Eq.(14) we have
cus addressed in his pioneering wdfk. JE

We now take a somewhat dnfferent approach. to develop 7=k _ 2 GYyi=(G*e)V, (15)
a result which is manifestly equivalent to, but simpler and  dv: 5
more physically transparent than that of Marcus. Since our

o : : . where e, is the elementary vectal,0,...,0 (for notational
principle focus is the analytic evaluation of the momentum ; o . .
flux integral, it is useful to write it as follows: convenience here and below, its dimension can be inferred

from the matrix beside which it appearéJse of Eqs(13)—
(14) then leads to

JE .
——=CS (12

1 . .
<D(T,q)=—f dps® (s)e Fx'keT,
keT IE
Tk TUGp
so that dvy €1 ’

eEo/ksT

Equating this tacs via Egs.(11) and(12) then gives
Q+=Wf dgs(s—sg)e” V@*eT d(T,q). (8

e,"UGp=c(Vs)'Gp,

It is convenient, but not absolutely necessary, to assume th@fhich then implies that
we have set up the Hamiltonian in terms of Cartesian coor- T
dinates, since in this case the kinetic energy te@arill be U'e=cVs.

diagonal which will simplify some of the ensuing equations. Thys, the first row of the transformation mattikis propor-

Since the motion of the center of mass is strictly separablgjonal to Vs. Recalling thatU must be orthogonal, one fi-
the corresponding partition function can always be factoreghgly has

out of the final resulalthough it will in any case cancel in
the expression for the rate coefficienThus, we assume UTe — Vs (16)
without loss of generality that 1
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i.e., the constant=|Vs|~ 1. The only restriction on the re- thuss=0 implies thatv,=—(3;/a;)v,). SinceG in Eq.
maining momenta,,...,v, is that they should be orthonor- (19) is positive definite,a; is positive. Thuss>0 implies

mal to v, [Eq. (13b)]. Thus, virtually any method of deter- that v,>—(8,/a;)v,, so that the step functio®(s) will

mining a set of i—1) vectors inR" orthonormal to the first
row of U will suffice to define the remaining rows of the

transformation matrix, and thence the remaining momenta.
The Lanczos algorithm is useful in this context, since it will ¢ (T, q)=

choosev,,...,v, such that the new kinetic energy ten<st

is symmetric tridiagonal, which simplifies the ensuing analy-

sis. Using the notatiom; to refer to theith row of U (i.e.,
u;=U"e), we begin by settingi; from Eq. (16) as the seed

be exactly accounted for by integration over the following
boundaries:

1 * 1
- —EL/kgT
o~ f_wdvle 1

vector for the algorithm, and generate the remaining vector§ye now substitute

in the standard mannée.g., Ref. 40,

Biliy1=(G—aj)uj—Bi_1Ui_1, (178
where
o= UiTGUi . (17b)

This three-term recursion generates a sequence of vagtors
which are orthonormal, and in terms of which the new rep-®(T,q)=

resentation of the kinetic energy tensor is tridiagonal,

a; B O 0 0
B1 ar 0 0

G*=UGU'=| O 0 (18
0 0 an-1 Pn-1
0 0 0 Br-1 ay

For later reference, note in particular the formeof:
T 1 T

a=U; GuFW(Vs) GVs

1 (& [as)\?
Sl w

The integrals of Eq(7) are now ordered as follows:

1
cD(T,q):kB—Tf dv' e Ei/kaT

Xfdyl'S®('S)ef(alviJrZﬁlvzvl)/ZkBT, (20)

wherev =(v,,...,r,) and

Ex=3(v") TGV, (219
a, B, 0 O 0
Bo asz 0 0

Gt=| O 0 (21b
0 © @n-1 PBn-1
0 0 0 Bni ap

The step functior®(s) can now be accounted for by exam-
ining the relation betweers and v»,. Recalling thatc
=|Vs|™1, one has from Eqg12) and(15) that

IE,

s=|Vs| F (22)

|Vs|(aivi+ B1va),

» J‘oo de_ -Se_(alyi+2ﬁlyzvl)/2kBT. (23)
—(Brlay)vy
=3 arvi+2B1vyv1) (249
dn JE, s
TR (24D
into Eq. (23) to give
E ” dee—Et/kBwa dye 7keT,
kgT J -« ~(B22ay)v3
Integration oversn then yields
cI)(T,q)=|Vs|j dvte E/keT (25
with
Ex =3(vH)TG* v, (263
BZ
Gt=G!— a—lelelT (26b)

The remaining integrals in E§25) can now be evaluated in
standard fashidl} to give the result

|Vs|(2mkgT)("~ 172

&(T,q)= |G+|1/2 (2739
and thence
. (27rkBT)<”_1)’2eE0’kBT
Q"= R D
e V(@/ksT|yg|
Xf dq 5(S—SO)W2—. (27b)

Equation (27b) is entirely equivalent to the result of
Marcus3® The factor |Vs| appears here because of our
slightly different definition of the momentum “conjugate”
to s [Eq. (12)]. Our present formulation, however, reveals
that a significant additional simplification can be achieved by
examination of the determinant &, since

az B3z O 0 0

[3% Bz au 0 0
6'l-le'|- L2 | o 0|

0 O an-1 PBn-1

0 0 O Bh-1 apn

This, however, is directly related to the determinantoés
follows:
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a, B, 0 0 0 tage of the intrinsic simplicity of the underlying Cartesian

B, as - 0 0 coordinate system and its associated kinetic energy t&asor
273 In rigorous implementations of the theory, the ensuing inte-
a|GT|=ay| O - - : 0 gration over coordinate space is usually carried out by Monte
0 0 - ap.1 PBna Carlo methods and the efficiency of the overall procedure is

greatly enhanced by simplifying the evaluation of the inte-

0 0 0 Bna e grand. In the present approach, one retains the flexibility to

az; B3 0 O 0 choose subsequent coordinate transformations so &s) to
By ay - 0 0 integrate analytically over external coordinates and any cy-
3 T4 clic internal coordinates, an@) minimize the numerical ef-
—,3% o - - ’ 0 fort involved in evaluatingv(q) and u(q), thus optimizing
0 0 - apq PBns the performance of the overall algorithm.
0 0 0 Bn1

IlI. RECOMBINATION/SIMPLE-FISSION DISSOCIATION

a1 B1 O 0 0 REACTIONS WITH A VARIABLY DEFINED
REACTION COORDINATE
Bl A . O O
—|o0 .. . 0 | =lc*|= We now turn to a specific class of reactions where varia-
IG*|=|G|, (28) : .
0 0 tional TST methods have played a crucial role in successful
© -1 Pa modeling and prediction of thermal and microcanonical rate
0 0 0 Bh1 ap constants®#2~*These are reactions involving unimolecular

species with one or more dissociative channels having no
pronounced chemical barridi.e., no saddle point on the
EES. Examples of such reactions include radical—radical re-
combinations, ion-molecule associations, collision-complex-
forming bimolecular reactions, and single or multichannel
simple-fission dissociation reactions. The model for these re-
actions has been described in some detail previo(sly.,
(293 Refs. 19, 22, 2) Theoretical modeling of experimentally
measured product vibrational state distributions suggests that
and the internal vibrational modes of the recombining or separat-
(27kg T) ("~ 120 kgT 12 ing fragments behave essenf[ia!ly adiabati_c_ally in the region
HD f dgd(s—sp) of the PES between the variational transition state and the
infinitely separated producfs.Thus, these so-called “con-
112 served” modes are assumed to be adiabatically decoupled
e~ V(a)/kgT (29b) from the remaining degrees of freedom, which are collec-
tively termed the “transitional modes.” The model Hamil-

Equation(29) is the main result of this section. Its utility lies tonian thus takes the form

in the fact that the coordinate-dependence of the momentum H= He+Hom+ Vimin(S). (32
flux integral, given by the terms inside the square brackets, is for th d modes i icall K .
very simple and easy to evaluate. It also lends itself to physitic for the conserved modes is typically weakly parametri-
cal interpretation in terms of an effective reduced massr cally dependent o, since the internal vibrational frequen-

instantaneous motion along the reaction coordinate. Definin§/€S ©f the fragments are typically close to their asymptotic
values. The transitional modes correlate at large separations

where we have made use of the fact t@t is related toG

by an orthogonal transformatigreq. (14)], and hence the
two matrices have the same determinant. Substitution of Eq
(10), (19) and(28) into Eq. (273 finally yields

n Js 2 U2 n 172
<1><T,q>=<2kaT><“l>’2[2 (5) m; 1}
=1 i

m;
1

n
+:

m;
=1

{3 el

w as follows; to the rotational degrees of freedom of the fragments and
. 4s(q)\? 1 their relative translational motion, and in the unimolecular
M :.21 aq; i (30) species to vibrations and overall rotation. ThHsy, for the
transitional modes is strongly dependentsoin the absence
Equation(29b) then takes the form of a well-defined barrier, it is the interplay of the entropic
N (2mkgT) (N~ V/2gEo/kgT and en_thalpic changes along the rgaction coordinate_ a_ssoci-
= ROy ated with the transitional modes which causes the variational
implementation of TST to be an important factor in the mod-
1, m? eling of these reactions. This is done at the most detailed
xf dqu—e*V(q”kBTﬁ(s— Sp). (31)  level by ug VTST, and successively more approximately

by ugVTST and CVTST®
We note that the simplicity of the above result stems from  Rigorous implementations qgig ;VTST were originally
the fact that the preceding analysis avoids full canonicatarried out for the simpler case of a reaction coordinate de-
transformation to curvilinear coordinates, focusing solely orfined as the center-of-mass separation of the two molecular
orthogonal transformations in momentum space to evaluattagments (e.g., Refs. 19, 20, 29 Although the earlier
the momentum flux integral. This allows us to take advan-implementations involved numerical integration over angular
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coordinates and momenta, the momentum flux integrals are 1 [kgT\?
now known to be analytic which considerably simplifies theQrm= (T)
procedureg®?® Investigations of a more general type of reac-
tion coordinate, defined as the separation between any two

points fixed relative to the respective frames of the two mo- X f dR dp doded, dfy dyy de, A6, dypr5(S—So)
lecular fragments, were pioneered by Klippenst&ift*For L
energies significantly above the reaction threshold, his work _J'

clearly showed that the variably defined reaction coordinate, "o dPrdpy APy dPg, APy, APy, APy, APy APy,
which might typically be the length of the forming or break- X 50 (5)e~ M /KT, (34)
ing bond, allows significant further minimization of the com-
puted reaction flux in comparison with the center-of-mas
separation reaction coordinate. Klippensteinis ;VTST al-
gorithm involved numerical integration over the angular mo-
menta and coordinatéé?*although he showed that Marcus'’
result for the canonical momentum flux discussed in Sec. |

above could be readily applied @gVTST and CVTST in of the rigid-body frame of fragment 1 andbt, 6;,1/) are
. 237 ; . . those for fragment 2Pk and the Euler momenta are conju-
this context?3”On the basis of an approximate analysis, we

) . : : (gate toR and the Euler angles as indicated. The symmetry
proposed in an earlier paper analytic expressions for the mag=

mentum flux integrals inug ;VTST with a variably defined humbers of the fragments are specified by and o5, re-

reaction coordinate, and found the computed results in exceF—peCtlvely' In the foI.Iowmg d.er.lvatlpns, we treat the most
lent agreement with Klippenstein's calculations for thegeneral case for a binary collision, i.e., two asymmetric-top

NC+NO reaction. Karas and Gilbetf,and more recently fragments. The final working equations, however, are pre-
28 . . S sented in a form which covers also the specific cases of lin-
Robertsonet al,”® have investigated canonical implementa-

: : . . ear or monatomic collision partners.
tions of the variable reaction coordinate approach. - . .

. : Some preliminary transformations, which have been de-

In this section we adapt the general treatment of Sec. Il . . . . .
. . . scribed in detail previousl§/, are necessary to bring E4)
to derive exact analytic expressions for the momentum flux C .
) . ; - . .. _Into a form which is useful for our purposes. First, the Euler
integrals associated with the transitional modes in this im- . ;
. momenta of the fragments and the orbital rotation are trans-

portant class of reactions.

formed to the corresponding principal-axis angular momen-
tum components in units df with Jacobian].. as indicated,

01072

In Eqg. (34), R is the center-of-mass separatighand 6 are
the spatially referenced Euler angles which locate the orien-
tation of the line joining the centers of masg,( 6, ,¢,) are
}he spatially referenced Euler angles locating the orientation

(P§,P 0P y;sP 6P 0,5P 4P 5P 6)

. . C 2 . .
A. Canonical momentum flux integral Je=n”sin 6y sin 6, sin 6

(J1a-J1B>J1C5J24 5J28 sJ20 51 51y)-

Given the assumed separability of the Hamiltonian into
H¢ for the conserved modes ardly, for the transitional (35)

modes[Eq. (32)}, Eq.(3) becomes The component$, andl, of the orbital angular momentum

vector | are its projections onto the “body-fixedX andy
ksT QcQru —Eg/kgT axes perpendicular to the line joining the centers of mass of
h Q e e (33 the two fragments, which defines the body-fixealxis. Note
that the principal axes of the fragments will, in general, not
coincide with each other or with the body-fixed axes. This
complication does not concern us here as there are no vector

k(T)=

whereQ. is the partition function for the conserved modes at

. + . .
the given value ofs, and Qqy is that for the transitional constraints to be accounted for; however, it will be dealt with

modes at the same value sfNote that, in the context of in Sec. Il C below where the constraint of a fixed total angu-

variational implementations of the TST formulas here an L L
o . . . ar momentum vector is imposed. In terms of these principal-
below, the energy restrictions imposed by adialfatior .
axis momenta, Eq.34) becomes

completé® decoupling of certain modes in the region of the
PES from the transition state out to infinite separation are

readily accounted for. However, to keep the notation simpleq+ :L i L

we will not explicitly consider this in the equations below. ~ ' o105 kgT (2m)°

Recall that the variably defined reaction coordinate is chosen

as the separation between two points fixed relative to the ><J dR dpd6d¢p,db, dyry dep, db, dir,6(S—Sp)
rigid-body frames of the respective fragments, which are

themselves defined either for the optimized geometry at the 1 o

given value ofs or possibly for some vibrationally averaged Xsingsin 6y Sin 6, f dpgdj;dj,dlsO(s)
geometry. In either case, the valuesadefined in this way is

independent of vibrational fluctuations associated with the x e~ Hm/keT (36)

conserved modes, so that the flux fac@ffects onlyQqy -
Thus, our analysis focuses on the quan@j, and the transitional-mode Hamiltonian is
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2
p ) ) ) ) ) ) 1
HTM:ﬁ+A1]iA+Bl]iB+C1]iC+AZJ§A+B2]§B+CZJ§C Q= aroy N7 d¢’ do dy; db; dy; dRI(s—So)
+Bo(15+15)+Vru(a) X sin @} sin g5e” V™ @’ksTd(T,q), (43
=T+ Vu(9). (87 whereN’ is the normalizing factor for integration over the

five internal angles (27°). Evaluation of the integral oveR

It is useful also at this point to make the following transfor- then gives

mations forR, u andpg, so that the kinetic energy tensor for

the transitional modes can be defined with common units . 1 1 gs\ 1
(i.e., Joulesfor all of its elements, QTM:EWJ d¢'do; dy; do, dlﬂz(ﬁ)
R=R/1m,
5 X sin @y sin gye V(D KeT (T, q)
=pXx1n? (39 s=s,
Pr=71R/. 1
~ ~ . = L <(E) eVTM(Q)/kBT(I)(T’q)> . (49
Thus, R and pg are dimensionless, and carries units of o102 \ | IR s=5,

kgn? [note that the quantitiesu( %) and (R,R) are, respec-
tively, numerically identical in the following equations, the Thus,Q7,, can be calculated either by direct quadrature for
differences being simply semantic and related to ynitee  specific cases of reduced dimension or by computing the
kinetic energy for the transitional modes can now be writtenaverage value of the integrand using Monte Carlo sampling.
- With the preliminary transformations complete and no-

Tin=w Grmw, (39 tation established, we now address the central issue of evalu-
where w=(pg,! wlydaasdas i ionsizs iac)- GTM is a ating the momentum flux integrab(T,q) analytically. The
diagonal matrix W|th diagonal element§(7%2/2%),By, development here is largely summarized since it follows that
Bo.A;,B1,C1,A,,B,,C,). By here is the rotational constant of the previous section closely. First, the time derivative of
for the orbital rotation of the fragment centers of mass abouthe reaction coordinateis written as

the overall center of mass, i.8,=%2%/2uR?. The determi- ; ; ; 2
nant of Gy, is then given by L OS2 S S . S .
$=—~R+— +> —
2 ) IR 9Yox Yoxt+ Yoy . Yoy = Ty Yia
|Gyml= ( )BZH ABC;. (40) Js . Js 2 v
. _ + m?’is Tyic —— Yic= ﬁ( ) 'Gruw, (45
Analogous to Sec. Il, we define the canonical momentum
flux integral as whereyg, andyo, are the angles of rotation about the body-
fixed x andy axes(which are principal axes for the orbital
O(T,q) = J dj, dj, dl dpg 5O (5)e~ Tm/keT rotation, and (yia , ¥ig » Yic) are the angles of rotation about
the principal axes of fragmemt An orthogonal transforma-
(4D tion to a new set of momentafollows,
that
so tha v=Uw; (469
1 1
Qiu==— | 064006, d0,dpds, 00, daR  UTu=, (asb
1072
X 8(S—S)Sin @ sin 6y sin g8~ VMDKeTH (T q). whereU is a 9x9 orthogonal matrix whose first rowy, is
defined as
(42)
The factorN in Eq. (42) is the normalizing constant for the =UTe, = Vs (460
angular integrals (27°). Next, one transforms the Euler Vs

angles to a set of external anglég,6,y} and body-fixed
internal angleg ¢’ 0} , ¢ ,05,45).1°%"*°Here, ¢ and 6 are
unchangedi.e., the orbital Euler anglgsand ¢ is a third
Euler angle necessary to specify the overall orientation of th
body. ¢’ is the torsional angle between the two fragments,
and{6; 41,05 ,4,} are body-fixed Euler angles for the frag-
ments. The Jacobian for this transformation is unity. Invari-
ance of the H.amlltonlan_ with respect to overall rot.atlon then Tr=W'Gryw=V'UGUTv=V"G*,v. (47)
allows analytic integration ovet, 6 and ¢, reducing the

angular configuration space integration to at most five difor later reference we note that the expression analogous to
mensions, Eq. (19) for a4 is

For our purposes, the remaining momenta...,vq, Speci-
fied in the transformation by rows,,...,ug, need only be
orthonormal tov; . For convenience, one may envisage using
fhe Lanczos algorithrfEqg. (17)] to generate these momenta,
in which case the resulting kinetic energy ten€dy, is sym-
metric tridiagonal Eq. (18)]:
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1 (as)z(ﬁ2)+ ( as)2+( as)ZB
11— — b e _—
YVsZ [\ aR) 2] T [V aved "\ vyl |°
2 Js 2 2
E ) A+ —) B;+ —) Ci(. (49
=1\ 9%ia dvig dvic

The momentum flux integral now becomes

ho 1 “@ (=)o Tmm/kgT
(I)(T,Q):kB_T? dv,---dvg | dvSO(s)e” 'TM B!,
(49)

Analogous to the proof of Sec. Il, we note that with de-
fined as in Eq(460) the following identity holds:

_ |Vs| ITrum _ 2|Vs|

h &Vl

(ayvy+ Brva). (50

Since|Vs| and a;, are both positive, the step functi@(s)
is exactly accounted for by integrating ovey as follows:

o(T q)=iif dv,y --dw F dv,Se” Tm/keT
’ kgT 7° 2 °)_ B1lay)vy ' .

(51)
Now 7 is defined as follows:
7]=C¥1Vi+ 2311/21/1, (52@
197] &TTM ﬁ
T v Ve (520
Substitution ofz into Eq. (51) gives
1 |VS| _rl
(D(T'q):kB_T?j dv,---dvge” Tiw/keT
o P (53)
_(.Bllal)Vz
wherev-=(v,,...,v9) and
Tru=3(v") TGV (54)

Gty here is defined analogous to Eg1b). Integration over
7 in Eq. (53) then leads to

Vs N
cI)(T,q):|7T_3|f dyz...dvge*TTM/kBT (55)

with

Trw=3(v") Gy (56)

andGy,, defined analogous to E(R6h). One now integrates
over the remaining momenta in E(5) to obtain the result

7|Vs|(kgT)*

d(T,q)= [SMEL

(57)

Now from Egs.(28), (40) and(48) one has finally

Classical flux integrals in TST 1837

Js ( Js )2
Boll7_1(AB;C)? (aR) U ovex
ds \? 2 ﬁ

ds |2 gs \2 )| M2
+ = A=A ssa
( ((77ic) ('ic)]

4
d)(T,q) W(kBT)

(E
dvis) \lis
Equation(58) is the exact classical result for the transitional-
mode canonical momentum flux with a variably defined re-
action coordinate. Together with E@4), it provides a very
simple procedure for rigorously implementing CVTST in
this class of reactions. The configurational dependence of
®(T,q) is compactly represented in terms of the gradients of
the reaction coordinate with respect to rotations about the
principal axes of the system. The corresponding result for
arbitrary combinations of fragments is
( ‘9'}’0x)

Bollf_ 1A ( )
2 1/2
Aol e+ 2 (515
Yoy Iy I
(58b)

where n is the combined number of rotational degrees of
freedom of the two fragments, whose rotational constants
and moments of inertia are generically labeleéd and;,
respectively. The integem=2 if one of the fragments is
monatomic, otherwisen=4. This result is in fact identical to
that proposed in our earlier work on the basis of an approxi-
mate analysis!

(M2 T) (M2 1)
®(T,q)=

B. E-resolved microcanonical momentum flux integral

In this section we consider the momentum flux integral
for the E-resolved microcanonical ensemble. As noted
above, Klippenstein has previously implemented an exten-
sion of Marcus’ canonical approach to the microcanonical
case®’ Our result will follow in a straightforward manner
from the techniques established in the previous sections. It is
equivalent to that of Klippenstein, but simpler in form and
potentially faster in numerical computations. The statistical
expression for thé=-resolved microcanonical rate constant,
k(E), is written classically as

Jo+-fdgdpd(s—sp)sO(s) S(E—H)
JJ---Jdqdpp(q)S(E—H)

Recognizing that the classical density of stgiég) for the
reactanfs) is h™" times the denominator of Eq59), it is
convenient to writek(E) in the standard form

W(E)

K(E)=

(59

k(E)— ho(E)’ (60)
whereW(E) may be defined as
W(E)=h‘(”‘1)f-~f dqdpd(s—sp)SO(S)S(E—H).
(61)
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As a result of the neglect of coupling between the conservedith Ty, as in Eq.(54). Integration over; now yields

and transitional modes in E32), the expression fow(E)

can be written as a convolution of the conserved-mode denq)(E 0=
f

sity of statesp,,(E) with the transitional mode “sum o
states” Wy (E),

W(E) = JOE*dvaTM(Eanm(E* “E)), 62

whereE* = E—V,,;i(5). As above, the definition of the reac-
tion coordinate implies that the flux factor will affect only
Won(E) in Eg. (62). Hence, our focus will be on deriving a

compact and efficient expression for this quantity,
Wrw(E)

01072

1
X 8(s—so) pf dprdpg dp,dpy, dpg, dpy,
xdpg, dpg, dp,,5O(5) S(E—H). (63

Analogous to Sec. Il A above, we introdu¢®) a transfor-

mation of angular momenta to the principal-axis compo-

nents, (2) a transformation ofR and pg so that they are

dimensionlessi{g in units of#) and the corresponding ele-

ment of the kinetic energy tens@ry, is (£2/21) [Egs.(38)

and(39)], (3) a transformation of angles to body-fixed exter-
nal and internal Euler angles, followed by integration over

the external angles and. Next, we define the&-resolved
momentum flux integral as

®(E,q)=—3 " fd11d12d|dpRS®(S)5(E Hrm),
(643
so thatWqy (E) is written
WTM(E):_if d¢’d91d¢1d6’éd¢é<§)l
N’ JR

X sin 0} sin 0, (E,q)

S=Sy

1 ( 05) -1
_0'10'2 ﬁ (I)(E,q)

(64b)

S=8y

‘:"fdvz~--va®(E—vTM(q>—T¥M> (67

with T7,, as in Eq.(56). The remaining integrals are cast into

a standard fornte.g., Dirichlet’s integr&P) and evaluated to

give

7|Vs| [E=Vmm(@)]*
ZIRN[CENES

P (E,q)= (68)

Substituting for|G+y,| using Egs.(28), (40) and (48), one
obtains the result

7 [E=Vu(a)]*

o Js ( Js )2
(E.0=2 8,07 ,ABC)™2| | R '+ TYox
gs |2 2 2 ZL
+(W0y) ( 2 (97|A (IiA
as \% m gs \2 m\ |
(W) (.— +(W) .—) (693

and its equivalent for arbitrary combinations of fragments,

o ,n_(nfm)IZ [E—V q)] (n/2+1)
B O=Fnzi2) By AP
ds\ 2 (95)2((95)2<1>
X4 | =] + +H— || =
JR JYox Yoy R

1/2

SEiC

In Eq. (69b), I'(n) is the gamma function, i.el’(n+1)
=nI'(n), with I'(1)=1 andI'(1/2)= 72 The quantities,
m A;, andl; are as defined beneath E§83b).

(69b)

C. E,J-resolved microcanonical momentum flux
integral

For an isolated bimolecular collision or unimolecular
dissociation in the gas phase, both the total energy and total

The orthogonal transformation of momenta now proceeds agngular momentum are conserved quantities. The conserva-

in Egs.(45—(48), after which®(E,q) takes the form

fi o )
(I)(EaQ):_sf de"'dng dv;SS(E—Hpy),
77 —(B1/ay)
(65

where we have taken account of the boundaries imposed B

O(s) as in Eq.(51). Introducing the variabley as in Eq.
(52), Eq. (65 now becomes

d(E )—WS'jd d fw d
q)= Jc vy Vg (Blap? n

X S(E=Vrm(a) =Ty —7) (66)

tion of angular momentum has important consequences for
the dynamics and kinetics of such reactions, hence it is very
important to develop statistical theories which account cor-
rectly for this effecf®424345,51.52

In this final section, we extend the developments above
allow for angular-momentum resolution in the calculation
of the flux through the TS hypersurface with a variably de-
fined reaction coordinate. The tools for the angular momen-
tum analysis have been largely developed in our earlier work
on the center-of-mass separation reaction coordfidtence
the reader is referred to that reference for background details.

The statistical approximation for theresolved microca-

nonical rate constant is written
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K(E J):ff‘"fqudp5(S—So)é®(S)5(E—H)5(J—j) ja=i24p,. (75b)
’ JI---JJdadpp(q)S(E—H)a(I—]) =1+ po. (759
W(E,J)

- (70 In Eq.(79), the quantitiegy, j; and|” are vector constants
hp(E,J) which give the individual angular momenta of the fragments

where p(E,J) is the J-resolved microcanonical density of and the orbital rotation arising from the instantaneous overall

states of the reactast'®225153 As in Eq. (62 above, rotation associated with the total angular-momenfurihey

W(E,J) is written as a convolution of the transitional mode aré completely defined by through the fact that they corre-
“sum of states,” Wy (E,J), and the conserved mode den- spond to azommon angular velocity vectes’ which is itself

sity of states, related toJ through the overall inertia tensor. This definition
is expressed through the following equaticfis:
E*

W(E)= JEmin dE. Wrw(Ey ,D)pvin(E* —Ey), (7D iV =1l =151"(q) "1, (763
where E;iy(J) is the minimum energy required to generate jj,zléwyzlél’(q)*l\]’, (76b)
the total angular momentuthandE* is as in Eq.(62). Note
we assume here that only the high-amplitude motions in the IV =150 =151"(q) 17", (760

transitional modes contribute significantly to the total angu- herel’ is the inertia t for th Il bod
lar momentum. Thus, both the reaction coordinate flux factolV"€"® (q) is the inertia tensor for the overall body,

and the angular momentum constraint affect diy, in Eq. ' (q)=15+15+15. (77)
(71). Analogous to Eq.(64), we have for theJ-resolved ) )
quantities In Eq. (76) and below, a superscript prime on vectors and

tensors indicates that these quantities are represented with
h - ~ o . respect to the common body-fixed axesy,z) of the sys-
®(E.J.q)= ?J dj 1 dij dl dprsO(S) S(E—Hrmw) 6(J 1) tem. Vectors and tensowithouta prime are assumed to be
(729 projected onto the relevant principal axes. With the definition
of Eq. (76), it is readily shown that

so that
Wiy(E9)=—— fd¢ d6; dy} dod ((95>—1 V=i i+ (79)
, :__, ! 0! l,[/’ 0/ l,b, .
™ o102 N TR R and so the delta function constraint of Eg@3) becomes
X sin @] sin 0, (E,J,q) 6(I=))=0"=]")
= 8[3—(ji+i5+1")]
1 &S -1 _ -J! -J! J’ ’ ’ ]
= —| @(E,J,q) . (72b =0[J—(j1 +i1 +1") = (py+p2+po)]
0105 \ \ IR s
° = 8(py+ P32+ Po). (79)

Our approach is to consider first the momentum flux integra
for a fixed total angular-momentum vectdrand then inte-
grate this over the different orientationsbfThus, we write
the momentum flux integral for a given total angular-
momentum vectod as

lI'his constraint reflects the fact that the angular momenta
(Po,pP1.p2) are required to describe pureiyternal motion

and must have no contribution to the overall angular momen-
tum. In terms of the decomposition in E(5), the kinetic
energy for the transitional modes becoRfes

h . . _ ,
¢<E’J'Q>=;f dj1 dj dl dprs®O(s) S(E—Hw) 6(3—-)), Trm=J"Gd+ (e’ ) (Po+p1+p2) +P'Grup, (80
(73 where p=(Pr,Pox PoyP1a:P18,P1c P24 :P28,P2c): Grm
whence is diagonal as defined beneath Eg9), andGSy, is a diag-
onal matrix whose element&;=A(q), G,,=B(q), and
(D(E,J,q):J dj®(E,j,q)8(I—)). (74) G33=C(Qq) are the oyerall rotatlonal constgnts for the ;ystem
at the specified configuration. Note that, sipge (the orbital

The first step in evaluating Eq73) is the recognition that angular momentum about the line joining the fragment cen-
each of the angular momenta can be separated into a corift's of maspis identically zero, it is suppressed for nota-
ponent which is dictated by the instantaneous overall rotatioffonal convenience in the last term of E@O) which de-

of the system associated with the vecioand a component scribes the internal kinetic energy. From E80), it is clear
which is associated with purely internal rotation. Further-that the delta-function constraint of E.9) will also ensure
more, the kinetic energy for the transitional modes also sepdhat the coupling term between internal and external mo-
rates into that for overall rotation and that for internal rota-menta in the kinetic energy expression is zero.

tion and translatio’® Thus, we write As is already apparent from' Eq@G)—(SO), in ordgr to
account for the vector correlations imposed by fixing the

J1=11+ P, (753 total angular-momentum vectal, it will be necessary to
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project vectors and tensors as appropriate onto a commaeparation distandaternal to the overall system, it is appar-
axial system. For this purpose, we choose the body-fixe@nt thats cannot change as a result of such a rotation. Since
Cartesian axesx(y,z); hence it is appropriate to make some the same conclusion holds for tlyeand z axes, the expres-
comment on the structure @r,,. Gy is diagonal because sions in parentheses in E(4) sum, respectively, to zero

it is represented in terms of the respective principal axes oand we have

the fragments and the orbital rotation. Sin@¢,, is repre-

2

sented with respect to the body-fixed axes, however, the_ 95 5 IS . S e o8 -

blocks involving fragments 1 and 2 will in general not be = 4R Yox oxt Yoy = <9Y|x Wixt vy

diagonal. If the kinetic energy tensor for fragment 1 is de- 5

noted asG; and that for fragment 2 &S, then we have + jTSaiz:g(V,S)TG+Mp,1 (85)
iz

G/ =AGA ", (8D
hereA. is th tati trix which relates th incipal where the primes again indicate that vectors and tensors are
whnerezy 1S the rotation matrix which reates the principa projected onto the common body-fixed axes. Thaiss a

axes of fragment to the body-fixed axe¥. Thus, G, is ; ; ,
block diagonal, with nonzero elementé(%2/27).Bo, fu’nctlon solely of the internal angular momergg, p; and

! ! H ! ’ H . . 2
By,G; .Gy} with G; and G5 constituting 3<3 blocks as in- Using Egs.(75)—(79) and (85), we can now rewrite the

dicated in Eq(81). . .
: : . tum fl t lin Eq.73
The next step is to examine the functional dependence o omentum Tl integrat in q73) as

the flux factors in light of the decomposition represented by h L )
Eq. (75). In Eq. (45), s was represented in terms of infini- ®(E,J,q)= ?J' dp’s(p")O(s) S[E—Hru]
tesimal rotations and corresponding angular velocities about
the principal axes of the fragments, which in general are not X 8(Poxt P1xt P2x) 8(Poy+ P1y+ Pay)
co-aligned. For the present purposes, it is more useful to
expresss in terms of infinitesimal rotations about axes which X 0Pzt P22), (86)
are co-aligned with the body-fixed axes of the system, where p’=(Pr,Pox,Poy:Pix:P1y P1z:Pax P2y, P2,). The
p p P 2 p angular-momentum delta functions in E86) have the ef-
5= —3§+ s Yox+ s 70y 2 _S'yix_,_ —S'yiy fect of collapsing three of the integrals. For example, if we
IR IYox Yoy =1 JYix iy choose to integrate ovem,, p,, andp,, then Eq.(86) be-
comes
aJs .
o Yiz- (82 5
Yiz int
D(E2.0)= 2 | dniS(pi)O() AE-V(a) £~ TH,
Analogous to Eqs(75) and (76), we now decompose the (87)

angular veIOC|ty vectors W)= (yOX,yoy,O) Y

=(Y1x: Y1y ¥12)s @5=(Y2x, Y2y, ¥22) from EqQ.(82) into the  wheredp,,= dPr dpo, dpo, dpy, dpyy, dpy,,
common componertt)J associated with the coherent overall

|nt T
rotation generating the total angular-momentum vedtor = (Pin) GiniPint (88)
and 'the remaining pomponerﬁs’ which describe internal g4 G., may be deduced from Eq@80) by setting p}
rotation(corresponding to the internal angular momemta ~ — —(pg+p1)- Likewise, the functional form o$(p;,) may
o =0 +® (83 be _obtaingd from Eq(85) by settingp§_= - (ppt+py). Itre-
o mains to integrate Eq.87) over the six internal momenta.
Substitution into Eq(82) leads to The procedure to perform this integral is entirely analogous
g5 2 to that used in the evaluation of E¢4a above, the only
S~ dS _ s _ s _ . . . L
§= =R+ —— Doyt —— Doyt >, ——— Dix difference being that the number of integrals here is six, as
IR IYox Yoy i=1 JYix opposed to nine in that case. The difference in dimensional-
9s Js 9s 9 Js ity is trivially accounted for, since the generic form of the
+— P — iyt a—H)inr a)x< P + P + 5 integral remains the sanfief. Eq. (69b)]. Thus, we can write
Yiy Yiz Yox Y1 9Yax the solution for Eq(87) formally as follows:
s s s ~ ~12
+ o) + + ) 7 Y4Vs| ap
Nayoy dyy  Ivay ®(E,J,q) = (5/2+ 1) Gl |1/2[E V(o) —E’]%2 (89
s s ds o - _
+ w, + + . (84)  where a4 is the top-left-hand element of the appropriate
9Y0z 9Y1z IV2z

tridiagonal kinetic energy tensdcf. Egs. (17) and (18)].
Examining the first term in parentheses in &), one notes  Although it is possible to write explicit formulas for the
that it gives the change imwhich results from simultaneous terms|Gj,| and @; by working through the details of the
and identical infinitesimal rotations about thexis of frag-  transformations, one can save trees and clumsy notation by
ment 1, fragment 2 and the line joining their respective cennoting that integration of Eq89) over all energetically al-
tres of mass. This, of course, is an infinitesimal rigid-bodylowed components of the total angular momentdmmust
rotation of the overall system. Recalling thsis defined as a  yield ®(E,q) [Eq. (6939)],
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dD(E,q)=J dJ®(E,J,q)

~ 112

_1/2|VS| @y
|72 dJadJgdJc

“T(521) |G

int
X[E=Vy(q)—A(q)J2—B(q)J3— C(q)J2

_ 7 [E-Vmy(@]* [Vs|a;®
41 [A(q)B(q)C(q)]™ |Gim|1’2
Comparison of Eq(90) with Eq. (698 shows that

Vs|ai?  [A(@)B(a)C(a)]*2 [ ds)|? (as)z
GLI™ ~ BollZ,(ABC) 2 | | 7R || 570x
( ds )2 1 s )2(}1>
+ R PR —_
9oy R2 Ivia) \lia
Js 2 71/ Js 71, 1/2
*(m) (THW) (l—)} - )

Substituting Eq(91) into Eqg. (89) then gives the result
-1/2

[A(@B(Q)C()]"? =
BollZ. l(A|30)1’2r(5/2+1 [E=Vm(@

]5/2

ko

(90

MI\J

+

®(E,J,q)=

2 2
_ gy s + as) +( &s) 1
IR JYox dvoy) ]\ R?
(o 1) 12
+3 WAy
= é’%A lia dyis) \lis

Js 2 ﬁ) 1/2
*(W) (.—] - (929

The corresponding result for arbitrary combinations of frag
ments is

[A(@)B(q)C(q)]*? 7"~ m32
Boll'_,AY  T[(n+1)/2]

®(E,J,q)=

X[E=Vqy(q)—E]"" D"
ds\? ( Js )2 (

X4 | —=] + +
JR JYox

Equation(92) is the exact classical momentum flux integral
for the transitional modes with a specified configuratipn
total energyE, total angular-momentum vectdrand a vari-
ably defined reaction coordinate It is interesting to com-
pare this with the corresponding result when the reaction
coordinate is the center-of-mass separafbriabeling the
latter * (E,J,q), one ha®

[A(@)B(q)C(q)]¥? 7"~ M2
BoIll"_,A?  T[(n+1)/2]

s )2
Yoy

|

(92b)

d*(E,J,q)=

X[E=Vau(q)—E""1"2 (93
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Thus, it is apparent that thexactresult of Eq.(92) is related
to ®* (E,J,q) by inclusion of a multiplicative correction fac-
tor given by the terms in curly brackets. Indeed, it was in the
spirit of finding a correction factor that we arrived at this
same result previously via an approximate analysis.
Ensuing integration o (E,J,q) over orientations of the
angular-momentum vector to obtai(E,J,q) [Eq. (74)]
proceeds in a fashion entirely analogous to our earlier work,
where somewhat lengthy analytical expressions for
®*(E,J,q) are presentetf Thus, one concludes that

9s\? (&s)2<as>2 1
S aR) v T\ vey (EE

n 2 }:L 1/2

+2 a%) (ﬂ ®*(E,J,q). (99

Equation(94) completes our analysis of the momentum flux
integral for E,J-resolved ensembles. Coupled with Monte
Carlo integration, or direct quadrature as appropriate, over
the internal angular configuration spadeq. (72b)] it pro-
vides a very convenient and efficient method for implemen-
tation of wg ; VTST in this important class of reactions.

IV. CONCLUSION

In this paper, we have reported significant new develop-
ments in the implementation of TST with a generalized re-
action coordinate. Our derivation of the canonical flux inte-
gral (Sec. I), while equivalent to Marcus’ pioneering
analysis of this probler®f yields a simpler and more physi-
cally transparent result which should prove much easier to
work with in numerical implementations of the theory. The
essential advantage of the analysis which we have introduced
is that it invokes only orthogonal transformations in momen-

tum space to evaluate the momentum flux integral, rather

than full canonical transformations. In this way we are able
to take advantage of simplicity of an underlying Cartesian
coordinate system to derive our final result. In Sec. Ill, we
have extended the analysis to treat the important class of gas
phase reactions involving barrierless recombination/simple-
fission dissociation processes. We have derived simple ana-
lytic forms for the momentum flux integrals associated with
the transitional modes in these reactions, including the ca-
nonical ensemble, th&-resolved microcanonical ensemble
and theE,J-resolved microcanonical ensemble. These ex-
pressions have been shown in previous work to enable dra-
matic enhancements in the efficiency of rigorous numerical
implementations of variational TST for this class of
reactions®**and hence are already coded in our unimolecu-
lar kinetics package. The present work reveals that the ex-
pressions, which we had previously arrived at on the basis of
an approximate analysis, are in fact exact.
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