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Classical flux integrals in transition state theory: Generalized
reaction coordinates

Sean C. Smitha)

Department of Chemistry, University of Queensland, Qld 4072, Brisbane, Australia

~Received 15 January 1999; accepted 27 April 1999!

Transition state theory~TST! approximates the reactive flux in an elementary chemical reaction by
the instantaneous flux passing through a hypersurface~the ‘‘transition state’’! which completely
divides the reactant and product regions of phase space. The rigorous classical evaluation of this
instantaneous flux is carried out as a trace in phase space: effectively a multidimensional integral.
We present an analysis of the momentum-space component of this flux integral for the case of a
generalized reaction coordinate. The classic analysis of the canonical flux by Marcus@J. Chem.
Phys.41, 2624~1964!# is refined by reducing the determinant which appears in the transition state
partition function to a very simple form, facilitating the ensuing integration over coordinate space.
We then extend the analysis to provide analytic expressions for the momentum flux integrals in both
the energy-resolved, and the energy1angular-momentum-resolved microcanonical ensembles.
These latter expressions allow substantial gains in the efficiency of microcanonical variational
implementations of Transition State Theory with generalized reaction coordinates. ©1999
American Institute of Physics.@S0021-9606~99!00528-0#

I. INTRODUCTION

The prediction of rate constants for elementary chemical
reactions involves the calculation of a potential energy sur-
face ~PES!, followed by solution of the dynamical problem
by evaluating the reactive flux from the reactant region to the
product region on the PES. Statistical theories are commonly
used for approximate solution of the dynamical problem be-
cause, at a certain level of implementation, they are easy to
apply and require minimal PES information. This ‘‘user
friendly’’ aspect has promoted widespread use of Transition
State Theory~TST! and popularized concepts of theoretical
reaction dynamics in the broad field of chemical kinetics.
The relative simplicity of the elementary TST expression for
the thermal rate constant also makes it easily parametrized,
and hence it enjoys a range of uses from the prediction of
rate constants to the fitting of kinetic data~controversy oc-
casionally arises when the latter application is confused with
the former!!.

The fact that the central component of TST, i.e., the
evaluation of flux at a dividing surface specified by a fixed
value of the reaction coordinate, is intrinsically classical in
nature has been discussed and highlighted in many different
ways over the years~e.g., Refs. 1–6!. Thus, quantum-
mechanical complexities arise when tunneling plays a sig-
nificant role in the kinetics. Approximate quantum versions
of TST exist and have been profitably used~e.g., Refs.
7–12!. As with other approximate quantum models, the
range of reliability of these quantum TST methods is still the
subject of investigation. The introduction of complex absorb-
ing potentials does allow rate constants to be computed rig-
orously using only ‘‘local’’ PES information in the region
surrounding the barrier.13–18 Both formally and in practice,

however, these are well-framed scattering calculations rather
than TST-based methods.

There exists a wide range of reaction processes where
tunneling is not a dominant factor, and hence classical meth-
ods can be profitably used to compute rate constants. In this
context, both molecular dynamics~MD! and statistical meth-
ods play important and complementary roles. MD gives clas-
sically rigorous results, but requires complete PES informa-
tion, extensive sampling of the system phase space and
sometimes very long time simulations. On the other hand,
TST and related statistical models are much easier to apply,
requiring only sufficient PES information to evaluate the flux
at the transition state dividing surface~s! and the density of
states of any long-lived intermediates. Hence, there have
been extensive and ongoing efforts to develop improved
techniques for implementing TST in an efficient manner
which is free of auxiliary assumptions or unnecessary param-
etrizations. In the area of gas-phase chemistry, for instance,
this has lead to sophisticated implementations of microca-
nonical variational transition state theory~mVTST! to com-
pute rate constants as a function of energy~E! and angular
momentum ~J! prior to ensemble averaging for radical–
radical or ion-molecule reactions.19–33

An important issue in many applications of TST is that a
reaction coordinate should be chosen which will make the
fundamental transition state assumption~i.e., no recrossing
of the dividing surface! a good one for the application at
hand~e.g., Refs. 34, 35!. Since some trial and error may be
involved in the selection of the reaction coordinate, it is im-
portant to implement the TST calculations accurately and
efficiently in accord with any given definition of the reaction
coordinate. The latter problem is the issue that is addressed
in this paper. We take the perspective of attempting to de-
velop efficient implementations of TST which as far as pos-a!Electronic mail: smithsc@chemistry.uq.edu.au
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sible avoid auxiliary approximations. Thus, assuming that
one has details of the PES at the transition state dividing
surface, the ‘‘partition function’’ or ‘‘sum-of-states’’ to be
evaluated at the transition state will be computed as a mul-
tidimensional integral in the classical phase space of the mo-
lecular system. Our focus is the development of analytic rep-
resentations of the necessary momentum-space flux integrals,
since this halves the dimensionality of the overall integrals
and avoids awkward delta-function constraints in the micro-
canonical implementations of the theory. Progress has been
made in this direction in the past by several authors. In a
classic paper, Marcus36 showed within the context of canoni-
cal TST that for a general curvilinear reaction coordinate the
momentum-space integrals can be carried out analytically to
produce a power ofkBT divided by the square root of the
determinant of a certain reduced kinetic energy tensor.
Klippenstein37 later adapted the Marcus result to energy-
resolved microcanonical variational transition state theory
(mEVTST) and applied it to the NCNO dissociation reaction
with a bond-length reaction coordinate. Although unable to
extend the same approach toE,J-resolved microcanonical
variational transition state theory (mE,JVTST) Klippenstein
did show how to analytically integrate out the delta functions
for the three components of the total angular momentum and
that for the energy, evaluating the remaining momentum in-
tegrals numerically.24 In earlier work onmE,JVTST,27,28 we
have shown that the (E,J)-resolved momentum flux inte-
grals can be evaluated analytically for the specific case of a
reaction coordinate which is the center-of-mass separation of
two dissociating or recombining molecular fragments. This
case is simpler than the generalized reaction coordinate be-
cause the kinetic energy for motion along this coordinate is
separable. Furthermore, we introduced analytic expressions
to approximate the momentum flux integrals for a bond-
length reaction coordinate.31 Building on these develop-
ments, Robertsonet al.38 have investigated algebraic meth-
ods for analytic evaluation of the coordinate-dependent
factors appearing in the canonical TST expressions.

In this work we report substantial progress toward more
efficient rigorous implementations of canonical variational
transition state theory~CVTST!, mEVTST and mE,JVTST.
Our contribution is two-fold. First, we rederive the Marcus
result for canonical TST with a generalized reaction coordi-
nate in a manner which leads to a simple and transparent
expression for the determinant of the (n21)-dimensional
kinetic energy tensor which arises from analytical evaluation
of the momentum flux integral. Second, we present a detailed
application of the approach to the evaluation of flux integrals
for the transitional modes in barrierless recombination/
simple-fission dissociation reactions, treating the canonical,
E-resolved microcanonical andE,J-resolved microcanonical
ensembles. For these reactions, the physical nature of the
problem motivates the choice of radial and rigid-body angu-
lar coordinates for the two molecular fragments rather than
Cartesian coordinates,39 and microcanonical variational
implementations of the theory have played a very important
role in elucidation of the reaction dynamics. Remarkably, it
will transpire that the analytic microcanonical and canonical
expressions proposed in our earlier work on the basis of an

approximate analysis31 prove under more rigorous examina-
tion to be exact results!

The outline of the paper is as follows. In Sec. II, we
present the derivation which leads to a refinement of Marcus’
result for the canonical momentum flux integral with a gen-
eralized reaction coordinate. In Sec. III, we focus our atten-
tion on the important cases of recombination reactions with-
out a barrier and the reverse simple-fission dissociation
reactions. We derive the expression for the canonical flux
integral in Sec. III A, theE-resolved microcanonical flux in-
tegral in Sec. III B, and finally theE,J-resolved microca-
nonical flux integral in Sec. III C. Section IV concludes.

II. CANONICAL TST WITH A GENERALIZED
REACTION COORDINATE

In canonical TST, the rate constantk(T) can be formally
expressed as the ratio of the thermal flux through the
transition-state-dividing surface to the canonical density of
states of the reactant~s!,

k~T!5
Tr@d~s2s0!ṡQ~ ṡ!e2H/kBT#

Tr@`~q!e2H/kBT#
. ~1!

In Eq. ~1! s(q) is the reaction coordinate, constrained to the
values0 on the dividing surface.ṡ is the flux term andQ( ṡ)
is a step function with value 0 forṡ<0 and 1 forṡ.0. `~q!
is a projector onto the relevant region of the reactant en-
semble ~unit volume for a bimolecular reaction, or the
‘‘strongly coupled’’ region of the molecule’s configuration
space in a unimolecular dissociation!. We takeq to represent
a convenient set of coordinates$q1 ,...,qn% for the molecular
system andp to represent the set of conjugate momenta.
H(q,p) is the system Hamiltonian, andkB is the Boltzmann
constant. The traces of Eq.~1! are evaluated classically as
integrals over the system phase space,

k~T!5
*¯* dq dpd~s2s0!ṡQ~ ṡ!e2H/kBT

*¯* dq dp`~q!e2H/kBT . ~2!

Recognizing that the classical partition function for reactants
Q is simply h2n times the denominator of Eq.~2! ~h being
Planck’s constant!, it is convenient to writek in the ‘‘stan-
dard’’ TST form

k~T!5
kBT

h

Q1

Q
e2E0 /kBT. ~3!

In Eq. ~3! E0 is the critical energy for reaction~classically,
the barrier height!. Q1 is a quantity which may be defined as

Q15
h2~n21!

kBT
eE0 /kBTE dqd~s2s0!e2V~q!/kBT

3E dp ṡQ~ ṡ!e2Ek /kBT, ~4!

whereV is the potential energy andEk is the kinetic energy.
In the simple approach to deriving Eq.~3!, one assumes that
the kinetic energy for motion along the reaction coordinate is
separable~at least at the transition state! from the other de-
grees of freedom.36 Thus, the flux term involving the veloc-
ity ṡ along the reaction coordinate in Eq.~4! integrates out to
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produce the characteristic prefactorkBT in Eq. ~3!, andQ1

is indeed a partition function in the usual sense for the de-
grees of freedom orthogonal to the reaction coordinate. For
example, suppose that the kinetic energy tensor is diagonal
with respect to the momentump1 ,

Ek5 1
2p

TGp, ~5a!

with

Gil 5Gli 50, iÞ1 ~5b!

and that (q1 ,p1) are in fact the reaction coordinates and
momentumps , respectively.Q1 then reduces to the stan-
dard partition function for the ‘‘orthogonal’’ modes,

Q15
eE0 /kBT

h~n21! E ¯E dq' dp'e2H'/kBT, ~6!

whereq'5$q2 ,...,qn%, p'5$p2 ,...,pn%, andH'5Ek
'(p')

1V'(q'; s5s0), s0 being the value ofs which defines the
position of the transition state. If the transition state lies at a
saddle point on the PES, this can often be regarded as a good
approximation for energies not far above the barrier, since
the saddle point is by definition a stationary point on the PES
and the kinetic energy tensor will be locally separable along
the direction of the reaction coordinate. For energies not far
aboveE0 , trajectories crossing the barrier will not deviate
far from the saddle point and so the separability of the ki-
netic energy should hold quite well. However, for thermal
systems incorporating significant populations at energies
markedly higher thanE0 one might not expect this separa-
bility to hold. Furthermore, for reactions proceeding without
a saddle point on the PES between reactants and products,
such as the barrierless recombination/simple-fission dissocia-
tion classes explicitly considered in Sec. III below, this prob-
lem is exacerbated. Clearly, it is desirable to remove the
approximation of a separable kinetic energy for motion along
the reaction coordinate, and this is the problem which Mar-
cus addressed in his pioneering work.36

We now take a somewhat different approach to develop
a result which is manifestly equivalent to, but simpler and
more physically transparent than that of Marcus. Since our
principle focus is the analytic evaluation of the momentum
flux integral, it is useful to write it as follows:

F~T,q!5
1

kBT E dpṡQ~ ṡ!e2Ek /kBT, ~7!

so that

Q15
eE0 /kBT

h~n21! E dqd~s2s0!e2V~q!/kBT F~T,q!. ~8!

It is convenient, but not absolutely necessary, to assume that
we have set up the Hamiltonian in terms of Cartesian coor-
dinates, since in this case the kinetic energy tensorG will be
diagonal which will simplify some of the ensuing equations.
Since the motion of the center of mass is strictly separable,
the corresponding partition function can always be factored
out of the final result~although it will in any case cancel in
the expression for the rate coefficient!. Thus, we assume
without loss of generality that

Gi j 5d i j mi
21 ~9!

and the determinant ofG is then

uGu5F)
i

mi
21G . ~10!

Note that with this labeling scheme,m3r 225m3r 215m3r

5m(r ), wherem(r ) is the mass of therth particle. The time
derivative of the reaction coordinates is written

ṡ5(
i 51

n
]s

]qi
q̇i5(

i 51

n
]s

]qi

pi

mi
5~¹s!TGp. ~11!

In order to evaluate the integral in Eq.~7!, it will be neces-
sary to transform to a new set of momentav5$n1 ,...,nn%
such that the following conditions are satisfied:~a! the Jaco-
bian for the transformation should be a constant~i.e., inde-
pendent of the momenta!, and~b! one of the momenta, which
we labeln1 , satisfies the relation

]Ek

]n1
5cṡ ~12!

with c a constant. Condition~a! will be satisfied if we require
the transformation to be linear. Our method of satisfying
condition~b! will further require that the transformation ma-
trix be orthogonal, so that the Jacobian for the transformation
will in fact be unity. Thus, we write

v5Up; ~13a!

UTU5I . ~13b!

The kinetic energy now becomes

Ek5 1
2p

TGp5 1
2v

TUGUTv5 1
2v

TG* v ~14!

and the next task is the specification ofn1 so as to satisfy Eq.
~12!. This amounts to specifying the first row of the trans-
formation matrixU. Using Eq.~14! we have

]Ek

]n1
5(

i
Gi1* n i5~G* e1!Tv, ~15!

wheree1 is the elementary vector~1,0,...,0! ~for notational
convenience here and below, its dimension can be inferred
from the matrix beside which it appears!. Use of Eqs.~13!–
~14! then leads to

]Ek

]n1
5e1

TUGp.

Equating this tocṡ via Eqs.~11! and ~12! then gives

e1
TUGp5c~¹s!TGp,

which then implies that

UTe15c¹s.

Thus, the first row of the transformation matrixU is propor-
tional to ¹s. Recalling thatU must be orthogonal, one fi-
nally has

UTe15
¹s

u¹su
, ~16!
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i.e., the constantc5u¹su21. The only restriction on the re-
maining momentan2 ,...,nn is that they should be orthonor-
mal to n1 @Eq. ~13b!#. Thus, virtually any method of deter-
mining a set of (n21) vectors inRn orthonormal to the first
row of U will suffice to define the remaining rows of the
transformation matrix, and thence the remaining momenta.
The Lanczos algorithm is useful in this context, since it will
choosen2 ,...,nn such that the new kinetic energy tensorG*
is symmetric tridiagonal, which simplifies the ensuing analy-
sis. Using the notationui to refer to theith row of U ~i.e.,
ui5UTei!, we begin by settingu1 from Eq. ~16! as the seed
vector for the algorithm, and generate the remaining vectors
in the standard manner~e.g., Ref. 40!,

b iui 115~G2a i !ui2b i 21ui 21 , ~17a!

where

a i5ui
TGui . ~17b!

This three-term recursion generates a sequence of vectorsui

which are orthonormal, and in terms of which the new rep-
resentation of the kinetic energy tensor is tridiagonal,

G* 5UGUT5S a1 b1 0 0 0

b1 a2 – 0 0

0 – – – 0

0 0 – an21 bn21

0 0 0 bn21 an

D . ~18!

For later reference, note in particular the form ofa1 :

a15u1
TGu15

1

u¹su2 ~¹s!TG¹s

5
1

u¹su2 H (i 51

n S ]s

]qi
D 2

mi
21J . ~19!

The integrals of Eq.~7! are now ordered as follows:

F~T,q!5
1

kBT E dv'e2Ek
'/kBT

3E dn1 ṡQ~ ṡ!e2~a1n1
2
12b1n2n1!/2kBT, ~20!

wherev'5(n2 ,...,nn) and

Ek
'5 1

2~v'!TG'v', ~21a!

G'5S a2 b2 0 0 0

b2 a3 – 0 0

0 – – – 0

0 0 – an21 bn21

0 0 0 bn21 an

D . ~21b!

The step functionQ( ṡ) can now be accounted for by exam-
ining the relation betweenṡ and n1 . Recalling that c
5u¹su21, one has from Eqs.~12! and ~15! that

ṡ5u¹su
]Ek

]n1
5u¹su~a1n11b1n2!, ~22!

thus ṡ50 implies thatn152(b1 /a1)n2). SinceG in Eq.
~19! is positive definite,a1 is positive. Thus,ṡ.0 implies
that n1.2(b1 /a1)n2 , so that the step functionQ( ṡ) will
be exactly accounted for by integration over the following
boundaries:

F~T,q!5
1

kBT E
2`

`

dv'e2E1
'/kBT

3E
2~b1 /a1!n2

`

dn1 ṡe2~a1n1
2
12b1n2n1!/2kBT. ~23!

We now substitute

h5 1
2~a1n1

212b1n2n1! ~24a!

]h

]n1
5

]Ek

]n1
5

ṡ

u¹su
~24b!

into Eq. ~23! to give

F~T,q!5
u¹su
kBT E

2`

`

dv'e2Ek
'/kBTE

2~b1
2/2a1!n2

2

`

dh e2h/kBT.

Integration overh then yields

F~T,q!5u¹su E
2`

`

dv'e2Ek
1/kBT ~25!

with

Ek
15 1

2~v'!TG1v', ~26a!

G15G'2
b1

2

a1
e1e1

T. ~26b!

The remaining integrals in Eq.~25! can now be evaluated in
standard fashion41 to give the result

F~T,q!5
u¹su~2pkBT!~n21!/2

uG1u1/2 . ~27a!

and thence

Q15
~2pkBT!~n21!/2eE0 /kBT

h~n21!

3E dq d~s2s0!
e2V~q!/kBTu¹su

uG1u1/2 . ~27b!

Equation ~27b! is entirely equivalent to the result of
Marcus.36 The factor u¹su appears here because of our
slightly different definition of the momentum ‘‘conjugate’’
to ṡ @Eq. ~12!#. Our present formulation, however, reveals
that a significant additional simplification can be achieved by
examination of the determinant ofG1, since

uG1u5uG'u2
b1

2

a1Ua3 b3 0 0 0

b3 a4 – 0 0

0 – – – 0

0 0 – an21 bn21

0 0 0 bn21 an

U .

This, however, is directly related to the determinant ofG as
follows:

1833J. Chem. Phys., Vol. 111, No. 5, 1 August 1999 Classical flux integrals in TST
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a1uG1u5a1Ua2 b2 0 0 0

b2 a3 – 0 0

0 – – – 0

0 0 – an21 bn21

0 0 0 bn21 an

U
2b1

2Ua3 b3 0 0 0

b3 a4 – 0 0

0 – – – 0

0 0 – an21 bn21

0 0 0 bn21 an

U
5Ua1 b1 0 0 0

b1 a2 – 0 0

0 – – – 0

0 0 – an21 bn21

0 0 0 bn21 an

U5uG* u5uGu, ~28!

where we have made use of the fact thatG* is related toG
by an orthogonal transformation@Eq. ~14!#, and hence the
two matrices have the same determinant. Substitution of Eqs.
~10!, ~19! and ~28! into Eq. ~27a! finally yields

F~T,q!5~2pkBT!~n21!/2F(
i 51

n S ]s

]qi
D 2

mi
21G1/2F)

i 51

n

mi G1/2

~29a!

and

Q15
~2pkBT!~n21!/2eE0 /kBT

h~n21! F)
i 51

n

mi G1/2E dqd~s2s0!

3F(
i 51

n S ]s

]qi
D 2

mi
21G1/2

e2V~q!/kBT. ~29b!

Equation~29! is the main result of this section. Its utility lies
in the fact that the coordinate-dependence of the momentum
flux integral, given by the terms inside the square brackets, is
very simple and easy to evaluate. It also lends itself to physi-
cal interpretation in terms of an effective reduced massm for
instantaneous motion along the reaction coordinate. Defining
m as follows;

m215(
i 51

n S ]s~q!

]qi
D 2

mi
21. ~30!

Equation~29b! then takes the form

Q15
~2pkBT!~n21!/2eE0 /kBT

h~n21!

3E dq
P i 51

n mi
1/2

m~q!1/2 e2V~q!/kBTd~s2s0!. ~31!

We note that the simplicity of the above result stems from
the fact that the preceding analysis avoids full canonical
transformation to curvilinear coordinates, focusing solely on
orthogonal transformations in momentum space to evaluate
the momentum flux integral. This allows us to take advan-

tage of the intrinsic simplicity of the underlying Cartesian
coordinate system and its associated kinetic energy tensorG.
In rigorous implementations of the theory, the ensuing inte-
gration over coordinate space is usually carried out by Monte
Carlo methods and the efficiency of the overall procedure is
greatly enhanced by simplifying the evaluation of the inte-
grand. In the present approach, one retains the flexibility to
choose subsequent coordinate transformations so as to~a!
integrate analytically over external coordinates and any cy-
clic internal coordinates, and~b! minimize the numerical ef-
fort involved in evaluatingV(q) and m~q!, thus optimizing
the performance of the overall algorithm.

III. RECOMBINATION/SIMPLE-FISSION DISSOCIATION
REACTIONS WITH A VARIABLY DEFINED
REACTION COORDINATE

We now turn to a specific class of reactions where varia-
tional TST methods have played a crucial role in successful
modeling and prediction of thermal and microcanonical rate
constants.39,42–44These are reactions involving unimolecular
species with one or more dissociative channels having no
pronounced chemical barrier~i.e., no saddle point on the
PES!. Examples of such reactions include radical–radical re-
combinations, ion-molecule associations, collision-complex-
forming bimolecular reactions, and single or multichannel
simple-fission dissociation reactions. The model for these re-
actions has been described in some detail previously~e.g.,
Refs. 19, 22, 27!. Theoretical modeling of experimentally
measured product vibrational state distributions suggests that
the internal vibrational modes of the recombining or separat-
ing fragments behave essentially adiabatically in the region
of the PES between the variational transition state and the
infinitely separated products.21 Thus, these so-called ‘‘con-
served’’ modes are assumed to be adiabatically decoupled
from the remaining degrees of freedom, which are collec-
tively termed the ‘‘transitional modes.’’ The model Hamil-
tonian thus takes the form

H5HC1HTM1Vmin~s!. ~32!

HC for the conserved modes is typically weakly parametri-
cally dependent ons, since the internal vibrational frequen-
cies of the fragments are typically close to their asymptotic
values. The transitional modes correlate at large separations
to the rotational degrees of freedom of the fragments and
their relative translational motion, and in the unimolecular
species to vibrations and overall rotation. Thus,HTM for the
transitional modes is strongly dependent ons. In the absence
of a well-defined barrier, it is the interplay of the entropic
and enthalpic changes along the reaction coordinate associ-
ated with the transitional modes which causes the variational
implementation of TST to be an important factor in the mod-
eling of these reactions. This is done at the most detailed
level by mE,JVTST, and successively more approximately
by mEVTST and CVTST.45

Rigorous implementations ofmE,JVTST were originally
carried out for the simpler case of a reaction coordinate de-
fined as the center-of-mass separation of the two molecular
fragments ~e.g., Refs. 19, 20, 29!. Although the earlier
implementations involved numerical integration over angular
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coordinates and momenta, the momentum flux integrals are
now known to be analytic which considerably simplifies the
procedure.28,29 Investigations of a more general type of reac-
tion coordinate, defined as the separation between any two
points fixed relative to the respective frames of the two mo-
lecular fragments, were pioneered by Klippenstein.22,23,46For
energies significantly above the reaction threshold, his work
clearly showed that the variably defined reaction coordinate,
which might typically be the length of the forming or break-
ing bond, allows significant further minimization of the com-
puted reaction flux in comparison with the center-of-mass
separation reaction coordinate. Klippenstein’smE,JVTST al-
gorithm involved numerical integration over the angular mo-
menta and coordinates,22,24although he showed that Marcus’
result for the canonical momentum flux discussed in Sec. II
above could be readily applied tomEVTST and CVTST in
this context.22,37On the basis of an approximate analysis, we
proposed in an earlier paper analytic expressions for the mo-
mentum flux integrals inmE,JVTST with a variably defined
reaction coordinate, and found the computed results in excel-
lent agreement with Klippenstein’s calculations for the
NC1NO reaction. Karas and Gilbert,47 and more recently
Robertsonet al.,38 have investigated canonical implementa-
tions of the variable reaction coordinate approach.

In this section we adapt the general treatment of Sec. II
to derive exact analytic expressions for the momentum flux
integrals associated with the transitional modes in this im-
portant class of reactions.

A. Canonical momentum flux integral

Given the assumed separability of the Hamiltonian into
HC for the conserved modes andHTM for the transitional
modes@Eq. ~32!#, Eq. ~3! becomes

k~T!5
kBT

h

QcQTM
1

Q
e2E0 /kBT, ~33!

whereQc is the partition function for the conserved modes at
the given value ofs, and QTM

1 is that for the transitional
modes at the same value ofs. Note that, in the context of
variational implementations of the TST formulas here and
below, the energy restrictions imposed by adiabatic48 or
complete26 decoupling of certain modes in the region of the
PES from the transition state out to infinite separation are
readily accounted for. However, to keep the notation simple,
we will not explicitly consider this in the equations below.
Recall that the variably defined reaction coordinate is chosen
as the separation between two points fixed relative to the
rigid-body frames of the respective fragments, which are
themselves defined either for the optimized geometry at the
given value ofs or possibly for some vibrationally averaged
geometry. In either case, the value ofs defined in this way is
independent of vibrational fluctuations associated with the
conserved modes, so that the flux factorṡ affects onlyQTM

1 .
Thus, our analysis focuses on the quantityQTM

1

QTM
1 5

1

s1s2
S kBT

h D 21

3E dR df du df1 du1 dc1 df2 du2 dc2d~s2s0!

3
1

h9 E dpR dpf dpu dpf1
dpu1

dpc1
dpf2

dpu2
dpc2

3 ṡQ~ ṡ!e2HTM /kBT. ~34!

In Eq. ~34!, R is the center-of-mass separation,f andu are
the spatially referenced Euler angles which locate the orien-
tation of the line joining the centers of mass, (f1 ,u1 ,c1) are
the spatially referenced Euler angles locating the orientation
of the rigid-body frame of fragment 1 and (f2 ,u2 ,c2) are
those for fragment 2.PR and the Euler momenta are conju-
gate toR and the Euler angles as indicated. The symmetry
numbers of the fragments are specified bys1 and s2 , re-
spectively. In the following derivations, we treat the most
general case for a binary collision, i.e., two asymmetric-top
fragments. The final working equations, however, are pre-
sented in a form which covers also the specific cases of lin-
ear or monatomic collision partners.

Some preliminary transformations, which have been de-
scribed in detail previously,27 are necessary to bring Eq.~34!
into a form which is useful for our purposes. First, the Euler
momenta of the fragments and the orbital rotation are trans-
formed to the corresponding principal-axis angular momen-
tum components in units of\ with JacobianJc as indicated,

~35!

The componentsl x and l y of the orbital angular momentum
vector l are its projections onto the ‘‘body-fixed’’x and y
axes perpendicular to the line joining the centers of mass of
the two fragments, which defines the body-fixedz axis. Note
that the principal axes of the fragments will, in general, not
coincide with each other or with the body-fixed axes. This
complication does not concern us here as there are no vector
constraints to be accounted for; however, it will be dealt with
in Sec. II C below where the constraint of a fixed total angu-
lar momentum vector is imposed. In terms of these principal-
axis momenta, Eq.~34! becomes

QTM
1 5

1

s1s2

1

kBT

1

~2p!8

3E dR df du df1 du1 dc1 df2 du2 dc2d~s2s0!

3sinu sinu1 sinu2

1

p3 E dpR dj1 dj2 dl ṡQ~ ṡ!

3e2HTM /kBT ~36!

and the transitional-mode Hamiltonian is
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HTM5
pR

2

2m
1A1 j 1A

2 1B1 j 1B
2 1C1 j 1C

2 1A2 j 2A
2 1B2 j 2B

2 1C2 j 2C
2

1B0~ l x
21 l y

2!1VTM~q!

~37!
5TTM1VTM~q!.

It is useful also at this point to make the following transfor-
mations forR, m andpR , so that the kinetic energy tensor for
the transitional modes can be defined with common units
~i.e., Joules! for all of its elements,

R̃5R/1 m,

m̃5m31 m2, ~38!

p̃R5m̃R8 /\.

Thus, R̃ and p̃R are dimensionless, andm̃ carries units of
kgm2 @note that the quantities (m,m̃) and (R,R̃) are, respec-
tively, numerically identical in the following equations, the
differences being simply semantic and related to units#. The
kinetic energy for the transitional modes can now be written

TTM5wTGTMw, ~39!

where w5( p̃R ,l x ,l y , j 1A , j 1B , j 1C , j 2A , j 2B , j 2C). GTM is a
diagonal matrix with diagonal elements$(\2/2m̃),B0 ,
B0 ,A1 ,B1 ,C1 ,A2 ,B2 ,C2%. B0 here is the rotational constant
for the orbital rotation of the fragment centers of mass about
the overall center of mass, i.e.,B05\2/2mR2. The determi-
nant ofGTM is then given by

uGTMu5S \2

2m̃ DB0
2 )

i 51

2

AiBiCi . ~40!

Analogous to Sec. II, we define the canonical momentum
flux integral as

F~T,q!5
\

kBT

1

p3 E dj1 dj2 dl dp̃R ṡQ~ ṡ!e2TTM /kBT

~41!

so that

QTM
1 5

1

s1s2

1

N E df du df1 du1 dc1 df2 du2 dc2 dR

3d~s2s0!sinu sinu1 sinu2e2VTM~q!/kBTF~T,q!.

~42!

The factorN in Eq. ~42! is the normalizing constant for the
angular integrals (28p5). Next, one transforms the Euler
angles to a set of external angles$f,u,c% and body-fixed
internal angles$f8,u18 ,c1

8 ,u28 ,c28%.
19,27,49Here,f andu are

unchanged~i.e., the orbital Euler angles!, and c is a third
Euler angle necessary to specify the overall orientation of the
body. f8 is the torsional angle between the two fragments,
and$u18 ,c18 ,u28 ,c28% are body-fixed Euler angles for the frag-
ments. The Jacobian for this transformation is unity. Invari-
ance of the Hamiltonian with respect to overall rotation then
allows analytic integration overf, u and c, reducing the
angular configuration space integration to at most five di-
mensions,

QTM
1 5

1

s1s2

1

N8
E df8 du18 dc18 du28 dc28 dRd~s2s0!

3sinu18 sinu28e
2VTM~q!/kBTF~T,q!, ~43!

whereN8 is the normalizing factor for integration over the
five internal angles (25p3). Evaluation of the integral overR
then gives

QTM
1 5

1

s1s2

1

N8
E df8 du18 dc18 du28 dc28S ]s

]RD 21

3sinu18 sinu28e
2VTM~q!/kBTF~T,q!U

s5s0

5
1

s1s2
K S ]s

]RD 21

e2VTM~q!/kBTF~T,q!L
s5s0

. ~44!

Thus,QTM
1 can be calculated either by direct quadrature for

specific cases of reduced dimension or by computing the
average value of the integrand using Monte Carlo sampling.

With the preliminary transformations complete and no-
tation established, we now address the central issue of evalu-
ating the momentum flux integralF(T,q) analytically. The
development here is largely summarized since it follows that
of the previous section closely. First, the time derivative of
the reaction coordinates is written as

ṡ5
]s

]R̃
Ṙ̃1

]s

]g0x
ġ0x1

]s

]g0y
ġ0y1(

i 51

2
]s

]g iA
ġ iA

1
]s

]g iB
ġ iB1

]s

]g iC
ġ iC5

2

\
~¹s!TGTMw, ~45!

whereg0x andg0y are the angles of rotation about the body-
fixed x and y axes~which are principal axes for the orbital
rotation!, and (g iA ,g iB ,g iC) are the angles of rotation about
the principal axes of fragmenti. An orthogonal transforma-
tion to a new set of momentav follows,

v5Uw; ~46a!

UTU5I , ~46b!

whereU is a 939 orthogonal matrix whose first row,u1 , is
defined as

u15UTe15
¹s

u¹su
. ~46c!

For our purposes, the remaining momentan2 ,...,n9 , speci-
fied in the transformation by rowsu2 ,...,u9 , need only be
orthonormal tov1 . For convenience, one may envisage using
the Lanczos algorithm@Eq. ~17!# to generate these momenta,
in which case the resulting kinetic energy tensorGTM* is sym-
metric tridiagonal@Eq. ~18!#:

TTM5wTGTMw5vTUGTMUTv5vTGTM* v. ~47!

For later reference we note that the expression analogous to
Eq. ~19! for a1 is
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a15
1

u¹su2 H S ]s

]R̃D 2S \2

2m̃ D1F S ]s

]g0x
D 2

1S ]s

]g0y
D 2GB0

1(
i 51

2 S ]s

]g iA
D 2

Ai1S ]s

]g iB
D 2

Bi1S ]s

]g iC
D 2

CiJ . ~48!

The momentum flux integral now becomes

F~T,q!5
\

kBT

1

p3 E dn2¯dn9E dn1ṡQ~ ṡ!e2TTM /kBT.

~49!

Analogous to the proof of Sec. II, we note that withn1 de-
fined as in Eq.~46c! the following identity holds:

ṡ5
u¹su

\

]TTM

]n1
5

2u¹su
\

~a1n11b1n2!. ~50!

Sinceu¹su anda1 are both positive, the step functionQ( ṡ)
is exactly accounted for by integrating overn1 as follows:

F~T,q!5
\

kBT

1

p3 E dn2¯dn9E
2~b1 /a1!n2

`

dn1ṡe2TTM /kBT.

~51!

Now h is defined as follows:

h5a1n1
212b1n2n1 , ~52a!

]h

]n1
5

]TTM

]n1
5

\

u¹su
ṡ. ~52b!

Substitution ofh into Eq. ~51! gives

F~T,q!5
1

kBT

u¹su
p3 E dn2¯dn9e2TTM

' /kBT

3E
2~b1

2/a1!n2
2

`

dhe2h/kBT, ~53!

wherev'5(n2 ,...,n9) and

TTM
' 5 1

2~v'!TGTM
' v'. ~54!

GTM
' here is defined analogous to Eq.~21b!. Integration over

h in Eq. ~53! then leads to

F~T,q!5
u¹su
p3 E dn2¯dn9e2TTM

1 /kBT ~55!

with

TTM
1 5 1

2~v'!TGTM
1 v' ~56!

andGTM
1 defined analogous to Eq.~26b!. One now integrates

over the remaining momenta in Eq.~55! to obtain the result

F~T,q!5
pu¹su~kBT!4

uGTM
1 u1/2 . ~57!

Now from Eqs.~28!, ~40! and ~48! one has finally

F~T,q!5
p~kBT!4

B0P i 51
2 ~AiBiCi !

1/2 H S ]s

]R̃D 2

1F S ]s

]g0x
D 2

1S ]s

]g0y
D 2G S 1

R̃2D 1(
i 51

2 S ]s

]g iA
D 2S m̃

I iA
D

1S ]s

]g iB
D 2S m̃

I iB
D1S ]s

]g iC
D 2S m̃

I iC
D J 1/2

. ~58a!

Equation~58! is the exact classical result for the transitional-
mode canonical momentum flux with a variably defined re-
action coordinate. Together with Eq.~44!, it provides a very
simple procedure for rigorously implementing CVTST in
this class of reactions. The configurational dependence of
F(T,q) is compactly represented in terms of the gradients of
the reaction coordinates with respect to rotations about the
principal axes of the system. The corresponding result for
arbitrary combinations of fragments is

F~T,q!5
p~n2m!/2~kBT!~n/211!

B0P i 51
n L i

1/2 H S ]s

]R̃D 2

1F S ]s

]g0x
D 2

1S ]s

]g0y
D 2G S 1

R̃2D 1(
i 51

n S ]s

]g i
D 2S m̃

I i
D J 1/2

,

~58b!

where n is the combined number of rotational degrees of
freedom of the two fragments, whose rotational constants
and moments of inertia are generically labeledL i and I i ,
respectively. The integerm52 if one of the fragments is
monatomic, otherwisem54. This result is in fact identical to
that proposed in our earlier work on the basis of an approxi-
mate analysis.31

B. E-resolved microcanonical momentum flux integral

In this section we consider the momentum flux integral
for the E-resolved microcanonical ensemble. As noted
above, Klippenstein has previously implemented an exten-
sion of Marcus’ canonical approach to the microcanonical
case.37 Our result will follow in a straightforward manner
from the techniques established in the previous sections. It is
equivalent to that of Klippenstein, but simpler in form and
potentially faster in numerical computations. The statistical
expression for theE-resolved microcanonical rate constant,
k(E), is written classically as

k~E!5
*¯*dq dpd~s2s0!ṡQ~ ṡ!d~E2H !

**¯*dq dp`~q!d~E2H !
. ~59!

Recognizing that the classical density of statesr(E) for the
reactant~s! is h2n times the denominator of Eq.~59!, it is
convenient to writek(E) in the standard form

k~E!5
W~E!

hr~E!
, ~60!

whereW(E) may be defined as

W~E!5h2~n21!E ¯E dq dpd~s2s0!ṡQ~ ṡ!d~E2H !.

~61!
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As a result of the neglect of coupling between the conserved
and transitional modes in Eq.~32!, the expression forW(E)
can be written as a convolution of the conserved-mode den-
sity of statesrvib(E) with the transitional mode ‘‘sum of
states’’WTM(E),

W~E!5E
0

E*
dE1WTM~E1!rvib~E* 2E1!, ~62!

whereE* 5E2Vmin(s). As above, the definition of the reac-
tion coordinate implies that the flux factor will affect only
WTM(E) in Eq. ~62!. Hence, our focus will be on deriving a
compact and efficient expression for this quantity,

WTM~E!

5
1

s1s2
E ¯E dR df du df1 du1 dc1 df2 du2dc2

3d~s2s0!
1

h8 E dpR dpf dpu dpf1
dpu1

dpc1

3dpf2
dpu2

dpc2
ṡQ~ ṡ!d~E2H !. ~63!

Analogous to Sec. III A above, we introduce~1! a transfor-
mation of angular momenta to the principal-axis compo-
nents, ~2! a transformation ofR and pR so that they are
dimensionless (p̃R in units of \! and the corresponding ele-
ment of the kinetic energy tensorGTM is (\2/2m̃) @Eqs.~38!
and~39!#, ~3! a transformation of angles to body-fixed exter-
nal and internal Euler angles, followed by integration over
the external angles andR. Next, we define theE-resolved
momentum flux integral as

F~E,q!5
\

p3 E dj1 dj2 dl dp̃RṡQ~ ṡ!d~E2HTM!,

~64a!

so thatWTM(E) is written

WTM~E!5
1

s1s2

1

N8
E df8 du18 dc18 du28 dc28S ]s

]RD 21

3sinu18 sinu28F~E,q!U
s5s0

5
1

s1s2
K S ]s

]RD 21

F~E,q!L
s5s0

. ~64b!

The orthogonal transformation of momenta now proceeds as
in Eqs.~45!–~48!, after whichF(E,q) takes the form

F~E,q!5
\

p3 E dn2¯dn9E
2~b1 /a1!n2

`

dn1ṡd~E2HTM!,

~65!

where we have taken account of the boundaries imposed by
Q( ṡ) as in Eq.~51!. Introducing the variableh as in Eq.
~52!, Eq. ~65! now becomes

F~E,q!5
u¹su
p3 E dn2¯dn9E

2~b1
2/a1!n2

2

`

dh

3d~E2VTM~q!2TTM
' 2h! ~66!

with TTM
' as in Eq.~54!. Integration overh now yields

F~E,q!5
u¹su
p3 E dn2¯dn9Q~E2VTM~q!2TTM

1 ! ~67!

with TTM
1 as in Eq.~56!. The remaining integrals are cast into

a standard form~e.g., Dirichlet’s integral50! and evaluated to
give

F~E,q!5
pu¹su

4!

@E2VTM~q!#4

uGTM
1 u1/2 . ~68!

Substituting foruGTM
1 u using Eqs.~28!, ~40! and ~48!, one

obtains the result

F~E,q!5
p

4!

@E2VTM~q!#4

B0P i 51
2 ~AiBiCi !

1/2 H S ]s

]R̃D 2

1F S ]s

]g0x
D 2

1S ]s

]g0y
D 2G S 1

R̃2D 1(
i 51

2 S ]s

]g iA
D 2S m̃

I iA
D

1S ]s

]g iB
D 2S m̃

I iB
D1S ]s

]g iC
D 2S m̃

I iC
D J 1/2

~69a!

and its equivalent for arbitrary combinations of fragments,

F~E,q!5
p~n2m!/2

G~n/212!

@E2VTM~q!#~n/211!

B0P i 51
n L i

1/2

3H S ]s

]R̃D 2

1F S ]s

]g0x
D 2

1S ]s

]g0y
D 2G S 1

R̃2D
1(

i 51

n S ]s

]g i
D 2S m̃

I i
D J 1/2

. ~69b!

In Eq. ~69b!, G(n) is the gamma function, i.e.,G(n11)
5nG(n), with G(1)51 andG(1/2)5p1/2. The quantitiesn,
m L i , andI i are as defined beneath Eq.~58b!.

C. E,J -resolved microcanonical momentum flux
integral

For an isolated bimolecular collision or unimolecular
dissociation in the gas phase, both the total energy and total
angular momentum are conserved quantities. The conserva-
tion of angular momentum has important consequences for
the dynamics and kinetics of such reactions, hence it is very
important to develop statistical theories which account cor-
rectly for this effect.39,42,43,45,51,52

In this final section, we extend the developments above
to allow for angular-momentum resolution in the calculation
of the flux through the TS hypersurface with a variably de-
fined reaction coordinate. The tools for the angular momen-
tum analysis have been largely developed in our earlier work
on the center-of-mass separation reaction coordinate,28 hence
the reader is referred to that reference for background details.

The statistical approximation for theJ-resolved microca-
nonical rate constant is written
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k~E,J!5
**¯**dq dpd~s2s0!ṡQ~ ṡ!d~E2H !d~J2 j !

**¯**dq dp`~q!d~E2H !d~J2 j !

5
W~E,J!

hr~E,J!
, ~70!

where r(E,J) is the J-resolved microcanonical density of
states of the reactant~s!.19,29,51,53 As in Eq. ~62! above,
W(E,J) is written as a convolution of the transitional mode
‘‘sum of states,’’WTM(E,J), and the conserved mode den-
sity of states,

W~E!5E
Emin~J!

E*
dE1WTM~E1 ,J!rvib~E* 2E1!, ~71!

whereEmin(J) is the minimum energy required to generate
the total angular momentumJ andE* is as in Eq.~62!. Note
we assume here that only the high-amplitude motions in the
transitional modes contribute significantly to the total angu-
lar momentum. Thus, both the reaction coordinate flux factor
and the angular momentum constraint affect onlyWTM in Eq.
~71!. Analogous to Eq.~64!, we have for theJ-resolved
quantities

F~E,J,q!5
\

p3 E dj1 dj2 dl dp̃RṡQ~ ṡ!d~E2HTM!d~J2 j !

~72a!

so that

WTM~E,J!5
1

s1s2

1

N8
E df8 du18 dc18 du28 dc28S ]s

]RD 21

3sinu18 sinu28F~E,J,q!U
s5s0

5
1

s1s2
K S ]s

]RD 21

F~E,J,q!L
s5s0

. ~72b!

Our approach is to consider first the momentum flux integral
for a fixed total angular-momentum vectorJ, and then inte-
grate this over the different orientations ofJ. Thus, we write
the momentum flux integral for a given total angular-
momentum vectorJ as

F~E,J,q!5
\

p3 E dj1 dj2 dl dp̃RṡQ~ ṡ!d~E2HTM!d~J2 j !,

~73!

whence

F~E,J,q!5E djF~E,j ,q!d~J2 j !. ~74!

The first step in evaluating Eq.~73! is the recognition that
each of the angular momenta can be separated into a com-
ponent which is dictated by the instantaneous overall rotation
of the system associated with the vectorJ and a component
which is associated with purely internal rotation. Further-
more, the kinetic energy for the transitional modes also sepa-
rates into that for overall rotation and that for internal rota-
tion and translation.28 Thus, we write

j15 j1
J1p1 , ~75a!

j25 j2
J1p2 , ~75b!

l5 lJ1p0 . ~75c!

In Eq. ~75!, the quantitiesj1
J , j2

J and lJ are vector constants
which give the individual angular momenta of the fragments
and the orbital rotation arising from the instantaneous overall
rotation associated with the total angular-momentumJ. They
are completely defined byJ through the fact that they corre-
spond to acommon angular velocity vectorvJ which is itself
related toJ through the overall inertia tensor. This definition
is expressed through the following equations:28

j1
J85I18vJ85I18I 8~q!21J8, ~76a!

j2
J85I28vJ85I28I 8~q!21J8, ~76b!

lJ85I28vJ85I08I 8~q!21J8, ~76c!

whereI 8(q) is the inertia tensor for the overall body,

I 8~q!5I181I281I08 . ~77!

In Eq. ~76! and below, a superscript prime on vectors and
tensors indicates that these quantities are represented with
respect to the common body-fixed axes (x,y,z) of the sys-
tem. Vectors and tensorswithout a prime are assumed to be
projected onto the relevant principal axes. With the definition
of Eq. ~76!, it is readily shown that

J85 j1
J81 j2

J81 lJ8 ~78!

and so the delta function constraint of Eq.~73! becomes

d~J2 j !5d~J82 j 8!

5d@J2~ j181 j281 l8!#

5d@J2~ j1
J81 j1

J81 lJ8!2~p181p281p08!#

5d~p181p281p08!. ~79!

This constraint reflects the fact that the angular momenta
(p0 ,p1 ,p2) are required to describe purelyinternal motion
and must have no contribution to the overall angular momen-
tum. In terms of the decomposition in Eq.~75!, the kinetic
energy for the transitional modes becomes28

TTM5JTGTM
extJ1\~vJ8!T~p081p181p28!1pTGTMp, ~80!

where p5( p̃R ,p0x ,p0y ,p1A ,p1B ,p1C ,p2A ,p2B ,p2C), GTM

is diagonal as defined beneath Eq.~39!, andGTM
ext is a diag-

onal matrix whose elementsG115A(q), G225B(q), and
G335C(q) are the overall rotational constants for the system
at the specified configuration. Note that, sincep0z ~the orbital
angular momentum about the line joining the fragment cen-
ters of mass! is identically zero, it is suppressed for nota-
tional convenience in the last term of Eq.~80! which de-
scribes the internal kinetic energy. From Eq.~80!, it is clear
that the delta-function constraint of Eq.~79! will also ensure
that the coupling term between internal and external mo-
menta in the kinetic energy expression is zero.

As is already apparent from Eqs.~76!–~80!, in order to
account for the vector correlations imposed by fixing the
total angular-momentum vectorJ, it will be necessary to
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project vectors and tensors as appropriate onto a common
axial system. For this purpose, we choose the body-fixed
Cartesian axes (x,y,z); hence it is appropriate to make some
comment on the structure ofGTM8 . GTM is diagonal because
it is represented in terms of the respective principal axes of
the fragments and the orbital rotation. SinceGTM8 is repre-
sented with respect to the body-fixed axes, however, the
blocks involving fragments 1 and 2 will in general not be
diagonal. If the kinetic energy tensor for fragment 1 is de-
noted asG1 and that for fragment 2 asG2 then we have

Gi85A iGiA i
21, ~81!

whereA i is the rotation matrix which relates the principal
axes of fragmenti to the body-fixed axes.54 Thus, GTM8 is
block diagonal, with nonzero elements$(\2/2m̃),B0 ,
B0 ,G18 ,G28% with G18 andG28 constituting 333 blocks as in-
dicated in Eq.~81!.

The next step is to examine the functional dependence of
the flux factorṡ in light of the decomposition represented by
Eq. ~75!. In Eq. ~45!, ṡ was represented in terms of infini-
tesimal rotations and corresponding angular velocities about
the principal axes of the fragments, which in general are not
co-aligned. For the present purposes, it is more useful to
expressṡ in terms of infinitesimal rotations about axes which
are co-aligned with the body-fixed axes of the system,

ṡ5
]s

]R̃
R8 1

]s

]g0x
ġ0x1

]s

]g0y
ġ0y1(

i 51

2
]s

]g ix
ġ ix1

]s

]g iy
ġ iy

1
]s

]g iz
ġ iz . ~82!

Analogous to Eqs.~75! and ~76!, we now decompose the
angular velocity vectors v085(ġ0x ,ġ0y,0), v18
5(ġ1x ,ġ1y ,ġ1z), v285(ġ2x ,ġ2y ,ġ2z) from Eq.~82! into the
common componentvJ8 associated with the coherent overall
rotation generating the total angular-momentum vectorJ8
and the remaining componentsṽ i8 which describe internal
rotation~corresponding to the internal angular momentapi8!,

vi85vJ81ṽi8 . ~83!

Substitution into Eq.~82! leads to

ṡ5
]s

]R̃
Ṙ̃1

]s

]g0x
ṽ0x1

]s

]g0y
ṽ0y1(

i 51

2
]s

]g ix
ṽ ix

1
]s

]g iy
ṽ iy1

]s

]g iz
ṽ iz1vx

JS ]s

]g0x
1

]s

]g1x
1

]s

]g2x
D

1vy
JS ]s

]g0y
1

]s

]g1y
1

]s

]g2y
D

1vz
JS ]s

]g0z
1

]s

]g1z
1

]s

]g2z
D . ~84!

Examining the first term in parentheses in Eq.~84!, one notes
that it gives the change ins which results from simultaneous
and identical infinitesimal rotations about thex axis of frag-
ment 1, fragment 2 and the line joining their respective cen-
tres of mass. This, of course, is an infinitesimal rigid-body
rotation of the overall system. Recalling thats is defined as a

separation distanceinternal to the overall system, it is appar-
ent thats cannot change as a result of such a rotation. Since
the same conclusion holds for they andz axes, the expres-
sions in parentheses in Eq.~84! sum, respectively, to zero
and we have

ṡ5
]s

]R̃
R8 1

]s

]g0x
ṽ0x1

]s

]g0y
ṽ0y1(

i 51

2
]s

]g ix
ṽ ix1

]s

]g iy
ṽ iy

1
]s

]g iz
ṽ iz5

2

\
~¹8s!TGTM8 p8, ~85!

where the primes again indicate that vectors and tensors are
projected onto the common body-fixed axes. Thus,ṡ is a
function solely of the internal angular momentap08 , p18 and
p28 .

Using Eqs.~75!–~79! and ~85!, we can now rewrite the
momentum flux integral in Eq.~73! as

F~E,J,q!5
\

p3 E dp8ṡ~p8!Q~ ṡ!d@E2HTM#

3d~p0x1p1x1p2x!d~p0y1p1y1p2y!

3d~p1z1p2z!, ~86!

where p85( p̃R ,p0x ,p0y ,p1x ,p1y ,p1z ,p2x ,p2y ,p2z). The
angular-momentum delta functions in Eq.~86! have the ef-
fect of collapsing three of the integrals. For example, if we
choose to integrate overp2x , p2y andp2z then Eq.~86! be-
comes

F~E,J,q!5
\

p3 E dpint8 ṡ~pint8 !Q~ ṡ!d@E2V~q!2EJ2TTM
int #,

~87!

wheredpint8 5dp̃R dp0x dp0y dp1x dp1y dp1z ,

TTM
int 5~pint8 !TGint8 pint8 , ~88!

and Gint8 may be deduced from Eq.~80! by setting p28
52(p081p18). Likewise, the functional form ofṡ(pint8 ) may
be obtained from Eq.~85! by settingp2852(p081p18). It re-
mains to integrate Eq.~87! over the six internal momenta.
The procedure to perform this integral is entirely analogous
to that used in the evaluation of Eq.~64a! above, the only
difference being that the number of integrals here is six, as
opposed to nine in that case. The difference in dimensional-
ity is trivially accounted for, since the generic form of the
integral remains the same@cf. Eq. ~69b!#. Thus, we can write
the solution for Eq.~87! formally as follows:

F~E,J,q!5
p21/2u¹su
G~5/211!

ã1
1/2

uGint8 u1/2@E2VTM~q!2EJ#5/2, ~89!

where ã1 is the top-left-hand element of the appropriate
tridiagonal kinetic energy tensor@cf. Eqs. ~17! and ~18!#.
Although it is possible to write explicit formulas for the
terms uGint8 u and ã1 by working through the details of the
transformations, one can save trees and clumsy notation by
noting that integration of Eq.~89! over all energetically al-
lowed components of the total angular momentumJ must
yield F(E,q) @Eq. ~69a!#,
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F~E,q!5E dJF~E,J,q!

5
p21/2u¹su
G~5/211!

ã1
1/2

uGint8 u1/2E dJA dJB dJC

3@E2VTM~q!2A~q!JA
22B~q!JB

22C~q!JC
2 #5/2

5
p

4!

@E2VTM~q!#4

@A~q!B~q!C~q!#1/2

u¹suã1
1/2

uGint8 u1/2 . ~90!

Comparison of Eq.~90! with Eq. ~69a! shows that

u¹suã1
1/2

uGint8 u1/2 5
@A~q!B~q!C~q!#1/2

B0P i 51
2 ~AiBiCi !

1/2 H S ]s

]R̃D 2

1F S ]s

]g0x
D 2

1S ]s

]g0y
D 2G S 1

R̃2D 1(
i 51

2 S ]s

]g iA
D 2S m̃

I iA
D

1S ]s

]g iB
D 2S m̃

I iB
D1S ]s

]g iC
D 2S m̃

I iC
D J 1/2

. ~91!

Substituting Eq.~91! into Eq. ~89! then gives the result

F~E,J,q!5
@A~q!B~q!C~q!#1/2

B0P i 51
2 ~AiBiCi !

1/2

p21/2

G~5/211!
@E2VTM~q!

2EJ#5/2H S ]s

]R̃D 2

1F S ]s

]g0x
D 2

1S ]s

]g0y
D 2G S 1

R̃2D
1(

i 51

2 S ]s

]g iA
D 2S m̃

I iA
D1S ]s

]g iB
D 2S m̃

I iB
D

1S ]s

]g iC
D 2S m̃

I iC
D J 1/2

. ~92a!

The corresponding result for arbitrary combinations of frag-
ments is

F~E,J,q!5
@A~q!B~q!C~q!#1/2

B0P i 51
n L i

1/2

pn2m23/2

G@~n11!/2#

3@E2VTM~q!2EJ#~n21!/2

3H S ]s

]R̃D 2

1F S ]s

]g0x
D 2

1S ]s

]g0y
D 2G S 1

R̃2D
1(

i 51

n S ]s

]g i
D 2S m̃

I i
D J 1/2

. ~92b!

Equation~92! is the exact classical momentum flux integral
for the transitional modes with a specified configurationq,
total energyE, total angular-momentum vectorJ and a vari-
ably defined reaction coordinates. It is interesting to com-
pare this with the corresponding result when the reaction
coordinate is the center-of-mass separationR. Labeling the
latter F* (E,J,q), one has28

F* ~E,J,q!5
@A~q!B~q!C~q!#1/2

B0P i 51
n L i

1/2

pn2m23/2

G@~n11!/2#

3@E2VTM~q!2EJ#~n21!/2. ~93!

Thus, it is apparent that theexactresult of Eq.~92! is related
to F* (E,J,q) by inclusion of a multiplicative correction fac-
tor given by the terms in curly brackets. Indeed, it was in the
spirit of finding a correction factor that we arrived at this
same result previously via an approximate analysis.31

Ensuing integration ofF(E,J,q) over orientations of the
angular-momentum vector to obtainF(E,J,q) @Eq. ~74!#
proceeds in a fashion entirely analogous to our earlier work,
where somewhat lengthy analytical expressions for
F* (E,J,q) are presented.28 Thus, one concludes that

F~E,J,q!5H S ]s

]R̃D 2

1F S ]s

]g0x
D 2

1S ]s

]g0y
D 2G S 1

R̃2D
1(

i 51

n S ]s

]g i
D 2S m̃

I i
D J 1/2

F* ~E,J,q!. ~94!

Equation~94! completes our analysis of the momentum flux
integral for E,J-resolved ensembles. Coupled with Monte
Carlo integration, or direct quadrature as appropriate, over
the internal angular configuration space@Eq. ~72b!# it pro-
vides a very convenient and efficient method for implemen-
tation of mE,J VTST in this important class of reactions.

IV. CONCLUSION

In this paper, we have reported significant new develop-
ments in the implementation of TST with a generalized re-
action coordinate. Our derivation of the canonical flux inte-
gral ~Sec. II!, while equivalent to Marcus’ pioneering
analysis of this problem,36 yields a simpler and more physi-
cally transparent result which should prove much easier to
work with in numerical implementations of the theory. The
essential advantage of the analysis which we have introduced
is that it invokes only orthogonal transformations in momen-
tum space to evaluate the momentum flux integral, rather
than full canonical transformations. In this way we are able
to take advantage of simplicity of an underlying Cartesian
coordinate system to derive our final result. In Sec. III, we
have extended the analysis to treat the important class of gas
phase reactions involving barrierless recombination/simple-
fission dissociation processes. We have derived simple ana-
lytic forms for the momentum flux integrals associated with
the transitional modes in these reactions, including the ca-
nonical ensemble, theE-resolved microcanonical ensemble
and theE,J-resolved microcanonical ensemble. These ex-
pressions have been shown in previous work to enable dra-
matic enhancements in the efficiency of rigorous numerical
implementations of variational TST for this class of
reactions,28,31and hence are already coded in our unimolecu-
lar kinetics package. The present work reveals that the ex-
pressions, which we had previously arrived at on the basis of
an approximate analysis, are in fact exact.
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