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Application of contracted distributed approximating functions
to solving vibrational eigenvalue problems

Viktor Szalay® and Sean C. Smith
Department of Chemistry, The University of Queensland, Brisbane, Qld 4072, Australia

(Received 10 August 1998; accepted 23 September)1998

It has been shown that an approximately band-limited function can be reconstructed by using the
function’s values taken at appropriate equidistant grid points and a generalized
Hermite-contracted-continuous-distributed-approximating-functigdermite-CCDAB as the
reconstruction function. A sampling theorem prescribing the possible choices of grid spacing and
DAF parameters has been derived and discussed, and discretized-Hermite-contracted DAFs have
been introduced. At certain values of its parameters the generalized Hermite-CCDAF is identical to
the Shannon—Gabor-wavelet-DASGWDARF. Simple expressions for constructing the matrix of a
vibrational Hamiltonian in the discretized-Hermite-contracted DAF approximation have been given.
As a special case the matrix elements corresponding to sinc-OifiRcrete variational
representation are recovered. The wusefulness and properties of sinc-DVR and
discretized-Hermite-contracted-DAFor SGWDAPB in bound state calculations have been
compared by solving the eigenvalue problem of a number of one- and two-dimensional
Hamiltonians. It has been found that if one requires that the same number of energy levels be
computed with an error less than or equal to a given value, the SGWDAF method with thresholding
is faster than the standard sinc-DVR method. The results obtained with the Barbanis Hamiltonian
are described and discussed in detail. 1899 American Institute of Physics.
[S0021-960629)00501-2

I. INTRODUCTION ture of equidistant points is developed and discretized-

Hermite-contracted-DAFs are introduced in Sec. Ill. Then,

When modeling vibrational spectra of molecules onethe matrix elements of the potential and kinetic energy op-

may be required to calculate both low and high lying statesrators of simple vibrational Hamiltonians are derived em-

of a vibrational Hamiltonian with a precisiofset by the  ploying the discretized-Hermite-contracted-DAF approxima-

experimental data and/or the theoretical approximations emjon (Sec. IV). Results of numerical applications to one- and
ployed smaller than numerical accuracy attainable by thewo-dimensional Hamiltonians are presented, discussed, and

computer. In a variational or a discrete variable representazompared to those for the sinc-DVR in Sec. V. Section VI
tion (DVR) calculation, however, the accuracy of the calcu-summarizes the paper.

lated energy levels gradually decreases from high accuracy

Fo Iqw as one progresses from low to high lying ;tates. Thusl,l_ CONTRACTED-CONTINUOUS-DISTRIBUTED-

it might pe suggested that one wastes computathnal effort ORpPROXIMATING EUNCTIONS

calculating the lower states with an accuracy which may not

be needed. In this paper we present a method suitable for CCDAFs provide an approximation of a function, say
calculating lower and higher states with similar accuracy si-¥(x), by the integral

multqneously. Since no.numerical effort is wgsted the com- V()= 4 X) = [dZ K(Z;8)¥(2+X), (1)
putations are faster as is demonstrated by simple numerical

examples. Our method is based on employing a discretize@here the functionK(z;s) of parameterss, derived from
form of contracted-continuous-distributed-approximating-standard orthogonal polynomials through a contraction
functions(CCDAFS in setting up the matrix representation Proceduré, is called a CCDAF. The CCDAFs approach the
of the vibrational Schidinger equation. It has been found Dirac distribution 5(2) by taking the appropriate limit of
that the matrix elements required can be given by simpldheir parameters.

analytical expressions whose limiting case is the well known ~ One of the simplest CCDAFs is derived with Hermite

sinc DVR? functions and is given in a slightly generalized form by the
The outline of the paper is as follows. Section Il gives a€guation
brief definition of CCDAFs. A sampling theorem designed i
221 sinMz

for approximating the Hermite-CCDAF integral by a quadra- K(z;a,M)=e 7 p (ze[ —o,x]). 2

z

dpermanent address: Crystal Physics Department, Institute for Solid Stat'(:elgure 1 depICtS the Hermite-CCDAF along with its momen-

Physics and Optics, Hungarian Academy of Sciences, P.O. Box 49Fum_5pace fom(re'atec_l by a Fourier tranSforr_n in this C&S?
H-1523 Budapest, Hungary; electronic mail: szalay@chemistry.ug.edu.aiat different values of its parameters. By taking the Fourier

0021-9606/99/110(1)/72/8/$15.00 72 © 1999 American Institute of Physics
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FIG. 1. The pictures in the first row depict, from left to right, generalized Hermite-CCDAFs of paramete&{1,M =10), (=1, M=10), (e=2,M
=10), and @=1, M =20), respectively. The corresponding momentum space DAFs are shown in the second row.

transform of both sides in Eq41l) one can see that any func-
tion ¥(x) whose transform falls within the range of the = f
CCDAF plateau can be well approximated by the CCDAF

integral[i.e., Eq.(1)]. The parametel controls the width of By substituting the Fourier expansion of the impulse train,
the plateau whilex controls the rate of decay of the plateau.

“du W(U)K(x—Uu)>, s(u—n7). (5)

00 n

2ainu

> 5(u—nr)=%2 expg — , (6)

;
I1l. DISCRETIZED CONTRACTED-HERMITE-CCDAFS
into Eq. (5) and taking the Fourier transform of both sides

CCDAFs may be used to obtain a matrix representatiorbne obtains the relation

of the Schrdinger equation by changing variable+x

—Y) and approximating the integral in the CCDAF approxi- . 1 R .
mation by suitable quadrature. It would be the simplest to ~ W(k)= ;\/ZK(k)E v
employ an equidistant grid. The question, then is how the "

grid spacing should be chosen to achieve reasonable accu- Now assume tha¥ is band limited to ¢ 7W, mW) and

racy. _We shall answer this qgestion for the case of t_heexamine Eq.(7). The sum on the right side is a sum of

Hermite-CCDAF. Since Hermite-CCDAFs are approxi- . . . - . . .

mately band limited we can employ thes” method® and shifted copies of’. The copies will overlap if the length of
ﬁhift is smaller than the bandwidth, i.e.,

derive a sampling theorem. The procedure may not be we
known, therefore we shall describe it in detail.

27Tn)
k+ —|. 7
T

2
A sampled form of¥(x) may be written as TW<277W, (8
‘I’S(X)Z‘I’(X)% 5(X—”T):; W (n7)S(x—n7) while there is no overlap if
™0;:n=0,1,%2,..., (3 2@
- >2aW. 9

where 7 denotes the grid spacing. In analogy to E8), we
aim at reconstructingZ(x) from its sampled values with the o _ . _
help of a Hermite-CCDAF as the reconstruction function,Since there is just a single copy ¥ on the left side of Eg.
that is we have: (7), the function

V(0= V)= S, F(n7)K(x—n7) (@ %mr«m
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must be such that it can filter just a single copydof As ~ Volume explored by the classicdle., not quantumparticle
seen from Fig. 1 the Hermite-CCDAF may serve as a filter@nd the number of de Broglie wavelengths in unit volume.
function.

Overlapping¥'s can lead to aliasing unless the filter is IV. MATRIX REPRESENTATION OF THE

adjusted properly. Even then, only part ¥fcan be recov- SCHRODINGER EQUATION BY DISCRETIZED
ered. To avoid aliasing and achieve a complete reconstru¢diERMITE-CONTRACTED-DAFS

tion the grid spacing should be chosen such that In this work, we consider Hamiltonians of the form
1 10 N 52 g2
T —. = — a
W A ;1 om (7—Xi2~l—V(x1,x2, XN (16)

Equation(10) together with the band-limited property 8f o yresent formulas just for the cale=1. However, it will

is called the Niquist sampling theoretfiSince the functions o apparent that one can obtain the formulas valid for larger

T.O be reconsr:ructed are, in general, qnly_appLoxmgtely bangls by taking the appropriate direct products. In deriving the
imited we choose a grid spacing satisfying the stricter Cony, iy elements we employ the collocation principle, that is

dition we let the Hamiltonian act oW ,,,and calculate the value of
1 the resulting function at the grid pointar, n=0,=1,
TSW (1) *+2,... Fx (N -1)2,
wherer>1. (H\I’app”nr: eq,ap;Jnrv (17)

Having derived the sampling theorem we can now writewhere W, is the discretized-Hermite-contracted-DAF ap-
t_he discretized version of the Hermite-CCDAF apprOXima'proximation toW. The grid spacing, is assumed to be the
tion as optimal one defined by equality in E¢L1) andM is chosen

according to Eq(13) (thusM 7= 7).

~ — 7&2(X7n7)2
V) =W apdX) ; ¥(nre A. Matrix elements of the potential energy operator

sin M(x—n7) " . The matrix elements of the potential energy operator are
W ( ) given as
Vin=V(M7) Sy, (18

The set of functions
since

— (x—nn? sinM(x—nr)
e Talx—nn V(X)W apd X) [y = V(MT) ¥ o M7)

m(X—N7) N

will be called discretized-Hermite-contracted-DAF. =V(m7) D W(nr)e «m-m??
Given the bandwidth of the functiol and an appropri- n
ately chosenr, one still has to put some constraint on the

bandwidth of the reconstruction function to avoid filtering sm(qrn(1—m;)n)
more than one copy o¥ or just part of¥. The choice 4

M=r W (13) =¥ (mr)V(MT) Smn, (19
. ) where we have made use of the relatidths= 7 and
is, in general, appropriate.

Since W is related to energy as sin 7(m—n)

% — = Smn- (20
f w(m—n)
TW= %\/ZmeﬁE, (149

B. Matrix elements of d?/dx?
the number of grid pointsV, required to satisfactorily ap-
proximate eigenstates of enerdgy,.x or lower thanE, .,
obeys the inequality

The derivation is straightforward and outlined in the ap-
pendix. We obtained the following simple analytical expres-
sions:

Xmax— Xmi 1f 2

N= M;(xmax—xmin)r;%\/ZmeﬁEmaX, (15) (%) :easzTZ(%jEz+4a2)(_l)j+l
mn

wheref is a scaling parameter of dimension of lengthax

andxq,, stand for the classical turning points of a particle of

effective massng and energyE o moving in the potential d? 2

surfaceV(x), x is a dimensionless variable, and the zero of (d_xz) = —(2042+ 372)

energy scale is chosen so that all sates have energy equal to mm

or larger than zero. Equatiofl5) states that the number of In the special@=0 case these formulas simplify to that of

grid points must be larger than or equal to the product of thehe sinc-DVR by Colbert and Millef.

j=m—n, m#n, (21

(22
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V. APPLICATIONS AND DISCUSSION

One can show that the approximation in Efj2) with —_—
the optimal grid spacing and the particular choicévbfjiven
by Eq.(13) is identical to the one obtained by the Shannon-
Gabor-wavelet-DAF(SGWDAP.%" This is interesting for
we arrived at the same result from an approach significantly
different from that in Refs. 6 and 7. Hence, SGWDAFs may
be described as generalized Hermite-CCDAFs and vice
versa.

Kouri et al®” have already given ample evidence that
the approximation in Eq(12) with Eqg. (13) and a#0 as
applied to function reconstruction can be significantly more
accurate than the sinc function approximati@r=0). They
have also given examples of its application in scattéramy
well as in bound stafecalculations. It is the latter problem
that we shall study further. Indeed, the analysis of the sam-
pling theorem in Sec. Il and the analytic expressions of
matrix elements derived in Sec. IV suggest that one should
examine whether there are any advantages in using SGW-
DAFs rather than the simple sinc-DVR in bound state calcu-
lations.

We have carried out calculations with several one-
dimensional(1D) and 2D Hamiltonians including the har-
monic oscillator Hamiltonian, a Hamiltonian with double
well potentia® a 2D coupled harmonic oscillator
Hamiltonian® the Henon—Heiles Hamiltoniaf,and the Bar-
banis Hamiltoniart®!! For brevity, we shall not present all FIG. 2. The distribution of the energy levels of the Barbanis Hamiltonian
of the test results, however, all cases studied have given Supelected for comparison of sinc-DVR and SGWDAF calculations.
port to the following general conclusions:

(1) The SGWDAF does not give more accurate eigen-
values nor does it give more eigenvalues with reasonabléhe matrix—vector multiplication can be recast in terms of
accuracy, than the sinc-DVR employing the same grid. calculating discrete Fourier transforms. A recent work on

(2) However, there is a wide range afvalues when the this subject is, for instance, Ref. 13.

SGWDAF gives results of similar accuracy to those by the  (5) Although thresholding necessarily leads to loss of
sinc-DVR. accuracy, a large number of eigenvalues can be obtained

(3) The magnitude of the off-diagonal elements of thefairly accurately. Interestingly, the number of eigenvalues of
SGWDAF Hamiltonian matrix decreases fast with increasinggcceptable accuracy is almost the same as in the correspond-
a and with increasing distance from the diagonal. Theing sinc-DVR calculation, and the low and high lying states
SGWDAF Hamiltonian matrix can be highly banded while can be obtained with approximately the same accuracy. In

still providing results of similar accuracy to that of the non- other words, extreme accuracy of low-energy states is lim-
banded sinc-DVR Hamiltonian matrix. ited, but reasonable accuracy is retained across the spectrum.

(4) The bandedness of the SGWDAF Hamiltonian ma-aAs an illustration of the conclusions above we shall present
trix allows one to set to zero all matrix elements of magni-gur results for the Barbanis Hamiltonian

tude smaller than a given threshold and carry out matrix ) )
vector multiplications in fewer flop&hus in less CPU time __ E(‘?_Jr ’9_
thanO(N?). In fact, since both the SGWDAF and the sinc- 2\ ox* - ay?
DVR result in a Toeplitz kinetic energy matrix and a diago- 2 2 _

nal potential matrix, the multiplication of the Hamiltonian @x=16wy=0.94=-0.08 (23
matrix and a vector can be done in @\ log, N') flops.  studied in Refs. 11 and 14.

With thresholding, as suggested by Marchietal,'? opera- Of the rich spectrum we have calculated with the Barba-
tion counts as low a®(Mw) or O(N log, w) (wherew is  nis Hamiltonian, 203 eigenvalues were selected. All of these
called the bandwidth in Ref. 12; later we shall caw2 1 are below the dissociation barrier of height 25.313he

the bandwidth can be achieved with the SGWDAF Hamil- highest leve(24.010 is about 24 times bigger then the low-
tonian matrix. Thus, by thresholding the SGWDAF matrix est level of value 1.1058. Thus we have an example of an
the calculations can be made faster than a sinc-DVR calciextended and dense spectrum. Figure 2 depicts the distribu-
lation. [The operation coun©(Mog,N') of multiplying a  tion of the selected energy levels. The convergence of these
Toeplitz matrix with a vector results from considering that alevels has been checked with respect to basis size and grid
Toeplitz matrix can be extended to a circulant matrix and thespacing. The chosen levels have been found to be converged
circulant matrix is diagonalized by the Fourier matrix. Thuswith at least ten significant figures. We shall refer to these

1
+ E(w§x2+ wly?)+ Bxy?

I
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FIG. 5. The relative errogvertical axig as measured by the quantity defined
by Eg. (24) of the energy levelghorizontal axi$ calculated with the 201
function per coordinate sinc-DVR.

Although not all of them are selected, we have obtained
all the energy levels tabulated in Ref. 11. The highest levels
9n Ref. 11 appear to be less converged than indicdtddte
that only levels even with respect to reflection about xhe
axis have been given in Ref. 11.

levels as the exact ones. They have been assigned in all of Figures 5-8 and the data in Tables I and Il illustrate

our calculations with smaller basis size and/or with threshconclusions(1)—(5). .

olding, thus allowing us to make comparisons. In each figure the eigenvalues,, are drawn along the
We employed 301and 20} SGWDAFs for each coor- horizontal axis while the vertical axis displays the quantity

dinate, placed symmetrically around zero with grid spacing exact_

0.1. Thus, the region of configuration space covered is S= —Iogm('Tact') -2 (24

x| <15, |y|<15 (and |x|<10, |y|<10) (see Fig. 3 In €

Ref. 11 there were 20 harmonic oscillator states employedheasuring the relative error of calculated eigenvalues with

for each coordinate, where the highest energy basis state inespect to the exact ones. The data in Figs. 5—8 correspond to

volved the 40th Hermite polynomial for thecoordinate and calculations with grid spacing 0.1 for each coordinate, with

the 19th for thex coordinate. The configuration space ex- grid points distributed symmetrically around zero, and with

plored by this basis set can be estimated by calculating the values of 0,0.5,1, and 2, respectively. But in the calcula-

corresponding Gauss—Hermite DVR. One can find the thation of the selected “exact” eigenvalues, where we used 301

|x|<5.5 and|y|<8.3 (see Fig. 4. Since our basis set has

elements outside the dissociation barrier, tunneling effects,

although very small, might give rise to levels which are not 14

strictly bound. Such eigenvalues would have little physical

FIG. 3. Contour plot of the region of the Barbanis potential surface explore
by our 201-function(a) and 301-functior(b) per coordinate basis sets.

meaning, since we have made no attempt to satisfy the re12 C— . %w o% éf -
. . . 0% o % g ot S Phovo o200 G0
quired boundary conditions. Regardless, these eigenvalue MRS B Qge“’}}f@?oeg 0t o .
. . © ° e 7 IR oo “oo
are still numerically well converged and can be used for our,, B Tk S aoe o e
present goal of comparing sinc-DVR and SGWDAF. S YU
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FIG. 6. The relative error of energy levels calculated by the 201 function per
coordinate SGWDAF ofr=0.5 basis{ <) relative errors of levels obtained
without thresholding(+) relative error of levels obtained by setting zero all
FIG. 4. Contour plot of the region of the Barbanis potential surface explorednatrix elements of absolute value smaller thar%lon the SGWDAF

by the basis set used in Ref. 11. Hamiltonian matrix.

-5 0

(6]



J. Chem. Phys., Vol. 110, No. 1, 1 January 1999 V. Szalay and S. C. Smith 77

14 3 " 3 TABLE I. CPU time (in s) consumed by 1500 Lanczos iterations when
different matrix—vector multiplication routines are employed in solving the
° 0o o PN °. ° 1D harmonic oscillator’s eigenvalue problem. The different routines are
12 ., S e e}"% ¥ SRR I distinguished by their scaling properties.
< °oo & 802:33‘%3%3; °°° :’o ® :"Qo;: %0,0 °
10 booory 02 ° % o Re O(NMw) O(N log, w)
LR < " °® N O(N?) O(N log, V') (w=18) (w=18)
o -
o S0 I 51 0.07 0.08 0.03 0.12
o o 101 0.27 0.15 0.06 0.23
" Lo e Tt 201 1.08 0.35 0.13 0.55
6 : g N §3+ o 301 2.38 0.90 0.19 0.85
N L e T RS 701 292.41 2.32 0.43 2.19
bt R AR T T T 1501 1560.96 6.47 0.92 4.62
4 + et e 0.01 £
* N
N *
2 0 5 10 15 20 25 In Tables | and Il we have given the CPU times required

by programs having different matrix—vector multiplication
routines to perform the same numkl@600 of Lanczos it-
erations with matrices of the same size. The different rou-

points per coordinate, 201 points per coordinate were use(&i.nes are designated by the approximate number of flops they
’ eed to carry out one matrix vector multiplication. We have

The Hamiltonian matrices as obtained by the prescriptions i o2 . )
Sec. IV are symmetric and labeled by indices referring t ven the tlmlng dgta onl_y of those codes which were opti-
grid points.(Note that the representation constructed simi—;_T]'Z('ld(glf3 con:pn:a _tllrr?edwltth .th$ ZFORITRA'; Iclomfplletr op-l
larly for a Hamiltonian with coordinate dependent effective lons -Ls -gstrict. The data in Tables T and 1 refer to caicu-
mass would not be symmetiicThe related matrix eigen- lations on the 1D and 2D harmonic oscillator, respectively. It
value equations have been solved by using the Lanczos athould be noted that the calculations with matrices of band-
gorithm. We have carried out as many iterations as require idth 2tW+ 1d:f'37 (azl.) v§/|er<at n'o:F onlé/ fgster Il::jutt)alzo qu'ti\"
to converge the selected eigenvalues such that they have2gcurate and gures simiiar to Figs. >—c could be drawn.
dispersion(or error norm® smaller than 10 24 000 it- the calcglatlons were carried out on an IBM RISC6000
erations have been found to be sufficient. Points denoted b\gyorléstatlon._ f Figs. 5-8 al ith the data in Table |
(¢) in Figs. 5-8 correspond to calculations without thresh- omparison ot Figs. 5—c along wi € data In 1able
olding. Points denoted by+) in Figs. 5—-8 correspond to and Il clearly justify our conclusions. Conclusn_)(ﬂf,) anc_j
calculations with thresholding with a threshold value 1.0 2 caln alls% bet destJﬁe%fArlo:mltr:e fact It:hat by |gcreali3tng
At this threshold value and the grid size mentioned the band2"€ SIowly destroys the plateasee Fig. 1and makes

width of the kinetic energy matrix of each coordinate is 401the ::l_)AF ap?r:OX|Tat|0tE Ite?r? actc urgtea i ¢ i
for =0, 131 for a=0.5, 69 fora=1 and 37 fora=2. IS worth noting that the standard matrix vector mufli-

Matrix—vector ~ multiplication  routines of  scaling ]E)Iication. routine requiringd(A*) flops become; very S.IOW

O(Wlog, ') and O(Nw) were employed in the calcula- or matrices of r.ank greater than 300. In a hligher dlmen-
tions with SGWDAFs ofa=0 and a+#0, respectively. The sional problem, if one cannot construct a basis set of size
CPU time(in secondsfor performing 24 000 Lanczos itera- smaller than 300 for each degree of freedom, the calculations

; can become very slow if not impossible. In this case one
tions was 3305 forr=0, 3015 forae=0.5, 1870 fore=1, and : .
1I197vaora=2 « “« should employ the sinc-DVR or SGWDAF, since then the

matrix vector multiplication can be done efficiently even
with matrices of size larger than 38@00. We have found

FIG. 7. The same as in Fig. 6, but employing an SGWDAFefl basis.

14 that the matrix—vector multiplication routine which theoreti-
° e cally appears to be the most efficient among those considered
12 . oo";mo ° o | [i.e., O(N log, w) flops] is surprisingly slow. This might be
° o o W%} °8v®%w°°° ¢
s Rt e
10 PR 8‘;;’ 2 v" oS TABLE Il. CPU time (in s) consumed by 1500 Lanczos iterations when
R °L° ° ° ° o° different matrix—vector multiplication routines are employed in solving the
< . . . . .
o9 . eigenvalue problem of the 2D harmonic oscillatafis the number of basis
8 2 functions per coordinate. The different routines are distinguished by their
S e scaling properties.
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FIG. 8. The same as in Fig. 6, but employing an SGWDAFef2 basis.
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14 requires it to provide a simple, structured matrix representa-
tion of the Hamiltonian operator such that the calculation of

12 the Hamiltonian matrix as well as the following computa-

tional work, whose most crucial operation is the matrix—

10 s vector multiplication, can be carried out as fast as possible.
The SGWDAFs along with the thresholding procedure give a

8 simple, structured Hamiltonian matrix and there exist fast

6 methods to carry out the Hamiltonian matrix—vector multi-
plication. Therefore SGWDAFs may be used as a primitive

. basis to construct an optimal basis set efficiently for any
desired energy range.

2 VI. SUMMARY

00 5 10 15 20 It has been shown that an approximately band-limited

function can be reconstructed by using the function’s values
FIG. 9. Comparison of the SGWDAF and Gauss—Hermite DVR resultstgken at appropriate equidistant gl’id points and a generalized

obtained with the Barbanis Hamiltonian. The vertical axis shows the relativeHermite-CCDAF as the reconstruction function. What the
error as calculated by Ed24). The horizontal axis is the energy axis. )

Comparisons are made with respect to 24 “exact” eigenvalues. The point@ppmpriate grid spacing is and what values may be given to
in the figure are joined by lines just to guide the eiig.andN, denote the ~ the DAF parameters is determined by the bandwidth of the
The relatve ettor of energy levels obtained by SCWDAF eatcuaton with 10" [0 be reconstructed. A sampling theorem prescrib-
N ol 2 s e e e D
quired 3305 CPU secondé&Curve B): The relative error of energy levels :
obtained by Gauss—Hermite DVR calculation with=21,N,=41, and ~ parameters the generalized Hermite-CCDAF is identical to
10 000 Lanzcos iterations. The calculation required 29 CPU sec@@de the recently introduced Shannon—Gabor-wavelet-[SAF.
C): The_ relative error of energy levels obtained by Qausg—Hermite DVR Since contracted Hermite-DAFs are closely related to
calcu_latlon witth=41,Ny=61, and 10 00.0 Lanzcosf iterations. The cal- the sinc function approximation we have studied how they
culation required 40 CPU second€urveD): The relative error of energy
levels obtained by Gauss—Hermite DVR calculation with=N,=101, and ~ mMay be used in solving bound state eigenvalue problems and
20 000 Lanczos iterations. The calculation required 851 CPU seconds.  if there is any advantage of employing them compared to
sinc-DVR. While doing so we have derived simple analytical
expressions for the matrix elements required to construct the
because our code is simply not efficient enough or maybélamiltonian matrix in the SGWDARor in other words in
because the matrices considered were too small to get to thiee discretized-Hermite-contracted-DAFapproximation.
limit where the scalingd(\ log, w) actually becomes effec- The matrix elements corresponding to the sinc-B\aRe re-
tive. covered as a special case of our more general formulas.
The choice of basis set is crucial when solving the mul-  Based on numerical investigations of a number of 1D
tidimensional vibrational Schdinger equation. One should and 2D Hamiltonian eigenvalue problems, we have found
attempt to choose the basis set such that the Hamiltoniathat the SGWDAF(or contracted Hermite-DAFgives no
matrix in this basis set is both diagonally dominant andmore accurate eigenvalues than the corresponding sinc-DVR
structured as much as possible to ensure fast convergenper does it give more eigenvalues of reasonable accuracy. It
and computation. Which basis set should be used is oftenan, however, lead to a highly banded Hamiltonian matrix.
suggested by the natufe.g., the shape of the potential sur- At the cost of losing extreme accuracy in the lower part of
face of the problem studied but often it is hard to find a the spectrum one can set all matrix elements of magnitude
single basis set working equally well in all energy ranges ofsmaller than a prescribed threshold equal to zero. Then, mak-
interest. ing use of the special structure of the Hamiltonian matrix, the
We must point out that the problems we used to comparenatrix—vector multiplication operation required by iterative
sinc-DVR and SGWDAFs can be solved more efficiently bydiagonalization methods can be done very efficiently. Inter-
employing a more natural basis such as the Gauss—Hermitstingly, both low and high lying states can be obtained with
DVR. In fact, the eigenvalues of the Barbanis Hamiltonianapproximately the same precision. To illustrate and justify
can be obtained with high precision with a small Gauss—our conclusions we have presented and discussed our nu-
Hermite DVR basigsee Fig. 9in a few tens of CPU sec- merical results obtained with the Barbanis Hamiltohtan
onds compared to the few thousand seconds consumed lbigtail. The calculations with the Barbanis Hamiltonian pro-
either the sinc-DVR or SGWDAF calculations. vide a strict test of our method and conclusions because of
However, there may not be an obvious choice of athe dense and extended nature of its spectrum.
“good” basis set when one would like to calculate high It is apparent that for large scale computations involving
lying vibrational states and/or resonances on a complicatethultidimensional Hamiltonians SGWDAF or sinc-DVR may
strongly anharmonic potential surface. Then, one has to abe very useful, especially when the basis size for a given
tempt to construct a good basis set by starting from an initiatoordinate cannot be decreased to at least 300 either by basis
so called primitive basis set, e.g., by employing the methodet contraction, grid optimization, or by constructing an effi-
of filter diagonalizatiort® As to the primitive basis set one cient nondirect product grid. The properties of SGWDAFs
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suggest that they can be combined efficiently with the filterA29701390. One of the authorgVS) has received addi-
diagonalization methdf to construct a basis set suitable to tional support through Grant No. OTKA T 025103.
any desired energy range of the system studied.
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