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Application of contracted distributed approximating functions
to solving vibrational eigenvalue problems

Viktor Szalaya) and Sean C. Smith
Department of Chemistry, The University of Queensland, Brisbane, Qld 4072, Australia

~Received 10 August 1998; accepted 23 September 1998!

It has been shown that an approximately band-limited function can be reconstructed by using the
function’s values taken at appropriate equidistant grid points and a generalized
Hermite-contracted-continuous-distributed-approximating-function~Hermite-CCDAF! as the
reconstruction function. A sampling theorem prescribing the possible choices of grid spacing and
DAF parameters has been derived and discussed, and discretized-Hermite-contracted DAFs have
been introduced. At certain values of its parameters the generalized Hermite-CCDAF is identical to
the Shannon–Gabor-wavelet-DAF~SGWDAF!. Simple expressions for constructing the matrix of a
vibrational Hamiltonian in the discretized-Hermite-contracted DAF approximation have been given.
As a special case the matrix elements corresponding to sinc-DVR~discrete variational
representation! are recovered. The usefulness and properties of sinc-DVR and
discretized-Hermite-contracted-DAF~or SGWDAF! in bound state calculations have been
compared by solving the eigenvalue problem of a number of one- and two-dimensional
Hamiltonians. It has been found that if one requires that the same number of energy levels be
computed with an error less than or equal to a given value, the SGWDAF method with thresholding
is faster than the standard sinc-DVR method. The results obtained with the Barbanis Hamiltonian
are described and discussed in detail. ©1999 American Institute of Physics.
@S0021-9606~99!00501-2#

I. INTRODUCTION

When modeling vibrational spectra of molecules one
may be required to calculate both low and high lying states
of a vibrational Hamiltonian with a precision~set by the
experimental data and/or the theoretical approximations em-
ployed! smaller than numerical accuracy attainable by the
computer. In a variational or a discrete variable representa-
tion ~DVR! calculation, however, the accuracy of the calcu-
lated energy levels gradually decreases from high accuracy
to low as one progresses from low to high lying states. Thus,
it might be suggested that one wastes computational effort on
calculating the lower states with an accuracy which may not
be needed. In this paper we present a method suitable for
calculating lower and higher states with similar accuracy si-
multaneously. Since no numerical effort is wasted the com-
putations are faster as is demonstrated by simple numerical
examples. Our method is based on employing a discretized
form of contracted-continuous-distributed-approximating-
functions~CCDAFs!1 in setting up the matrix representation
of the vibrational Schro¨dinger equation. It has been found
that the matrix elements required can be given by simple
analytical expressions whose limiting case is the well known
sinc DVR.2

The outline of the paper is as follows. Section II gives a
brief definition of CCDAFs. A sampling theorem designed
for approximating the Hermite-CCDAF integral by a quadra-

ture of equidistant points is developed and discretized-
Hermite-contracted-DAFs are introduced in Sec. III. Then,
the matrix elements of the potential and kinetic energy op-
erators of simple vibrational Hamiltonians are derived em-
ploying the discretized-Hermite-contracted-DAF approxima-
tion ~Sec. IV!. Results of numerical applications to one- and
two-dimensional Hamiltonians are presented, discussed, and
compared to those for the sinc-DVR in Sec. V. Section VI
summarizes the paper.

II. CONTRACTED-CONTINUOUS-DISTRIBUTED-
APPROXIMATING FUNCTIONS

CCDAFs provide an approximation of a function, say
C~x!, by the integral

C~x!.Capp~x!5*dz K~z;s!C~z1x!, ~1!

where the functionK(z;s) of parameterss, derived from
standard orthogonal polynomials through a contraction
procedure,1 is called a CCDAF. The CCDAFs approach the
Dirac distribution d ~z! by taking the appropriate limit of
their parameters.

One of the simplest CCDAFs is derived with Hermite
functions and is given in a slightly generalized form by the
equation

K~z;a,M !5e2a2z2 1

p

sin Mz

z
~zP@2`,`#!. ~2!

Figure 1 depicts the Hermite-CCDAF along with its momen-
tum space form~related by a Fourier transform in this case!
at different values of its parameters. By taking the Fourier

a!Permanent address: Crystal Physics Department, Institute for Solid State
Physics and Optics, Hungarian Academy of Sciences, P.O. Box 49,
H-1523 Budapest, Hungary; electronic mail: szalay@chemistry.uq.edu.au
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transform of both sides in Eq.~1! one can see that any func-
tion C~x! whose transform falls within the range of the
CCDAF plateau can be well approximated by the CCDAF
integral@i.e., Eq.~1!#. The parameterM controls the width of
the plateau whilea controls the rate of decay of the plateau.

III. DISCRETIZED CONTRACTED-HERMITE-CCDAFS

CCDAFs may be used to obtain a matrix representation
of the Schro¨dinger equation by changing variable (z1x
→y) and approximating the integral in the CCDAF approxi-
mation by suitable quadrature. It would be the simplest to
employ an equidistant grid. The question, then is how the
grid spacing should be chosen to achieve reasonable accu-
racy. We shall answer this question for the case of the
Hermite-CCDAF. Since Hermite-CCDAFs are approxi-
mately band limited we can employ the ‘‘d ’’ method3 and
derive a sampling theorem. The procedure may not be well
known, therefore we shall describe it in detail.

A sampled form ofC~x! may be written as

Cs~x!5C~x!(
n

d~x2nt!5(
n

C~nt!d~x2nt!

t.0;n50,61,62, . . . , ~3!

wheret denotes the grid spacing. In analogy to Eq.~3!, we
aim at reconstructingC~x! from its sampled values with the
help of a Hermite-CCDAF as the reconstruction function,
that is we have:

C~x!5Capp~x!5(
n

C~nt!K~x2nt! ~4!

5 È`

du C~u!K~x2u!(
n

d~u2nt!. ~5!

By substituting the Fourier expansion of the impulse train,

(
n

d~u2nt!5
1

t(n
expS 2

2p inu

t D , ~6!

into Eq. ~5! and taking the Fourier transform of both sides
one obtains the relation,

Ĉ~k!5
1

t
A2pK̂~k!(

n
ĈS k1

2pn

t D . ~7!

Now, assume thatC is band limited to (2pW,pW) and
examine Eq.~7!. The sum on the right side is a sum of

shifted copies ofĈ. The copies will overlap if the length of
shift is smaller than the bandwidth, i.e.,

2p

t
,2pW, ~8!

while there is no overlap if

2p

t
.2pW. ~9!

Since there is just a single copy ofĈ on the left side of Eq.
~7!, the function

1

t
A2pK̂~k!

FIG. 1. The pictures in the first row depict, from left to right, generalized Hermite-CCDAFs of parameters (a50.01,M510), (a51, M510), (a52, M
510), and (a51, M520), respectively. The corresponding momentum space DAFs are shown in the second row.

73J. Chem. Phys., Vol. 110, No. 1, 1 January 1999 V. Szalay and S. C. Smith

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  130.102.82.69 On: Fri, 07 Oct 2016

05:47:36



must be such that it can filter just a single copy ofĈ. As
seen from Fig. 1 the Hermite-CCDAF may serve as a filter
function.

OverlappingĈs can lead to aliasing unless the filter is
adjusted properly. Even then, only part ofC can be recov-
ered. To avoid aliasing and achieve a complete reconstruc-
tion the grid spacing should be chosen such that

t<
1

W
. ~10!

Equation~10! together with the band-limited property ofC
is called the Niquist sampling theorem.4,5 Since the functions
to be reconstructed are, in general, only approximately band
limited we choose a grid spacing satisfying the stricter con-
dition

t<
1

rW
, ~11!

wherer.1.
Having derived the sampling theorem we can now write

the discretized version of the Hermite-CCDAF approxima-
tion as

C~x!.Capp~x!5(
n

C~nt!e2a2~x2nt!2

3
sin M ~x2nt!

p~x2nt!
t. ~12!

The set of functions

H e2a2~x2nt!2 sin M ~x2nt!

p~x2nt!
tJ

n

will be called discretized-Hermite-contracted-DAF.
Given the bandwidth of the functionC and an appropri-

ately chosent, one still has to put some constraint on the
bandwidth of the reconstruction function to avoid filtering

more than one copy ofĈ or just part ofĈ. The choice

M5rpW ~13!

is, in general, appropriate.
SincepW is related to energy as

pW5
f

\
A2meffE, ~14!

the number of grid points,N, required to satisfactorily ap-
proximate eigenstates of energyEmax or lower thanEmax

obeys the inequality

N5
xmax2xmin

t
>~xmax2xmin!r

1

p

f

\
A2meffEmax, ~15!

wheref is a scaling parameter of dimension of length,xmax

andxmin stand for the classical turning points of a particle of
effective massmeff and energyEmax moving in the potential
surfaceV(x), x is a dimensionless variable, and the zero of
energy scale is chosen so that all sates have energy equal to
or larger than zero. Equation~15! states that the number of
grid points must be larger than or equal to the product of the

volume explored by the classical~i.e., not quantum! particle
and the number of de Broglie wavelengths in unit volume.

IV. MATRIX REPRESENTATION OF THE
SCHRÖDINGER EQUATION BY DISCRETIZED
HERMITE-CONTRACTED-DAFS

In this work, we consider Hamiltonians of the form

Ĥ52(
i 51

N
\2

2mi

]2

]xi
2 1V~x1 ,x2 , . . . ,xN!. ~16!

We present formulas just for the caseN51. However, it will
be apparent that one can obtain the formulas valid for larger
Ns by taking the appropriate direct products. In deriving the
matrix elements we employ the collocation principle, that is
we let the Hamiltonian act onCappand calculate the value of
the resulting function at the grid pointsnt, n50,61,
62, . . . ,6(N 21)/2 ,

~ĤCapp!unt5eCappunt , ~17!

where Capp is the discretized-Hermite-contracted-DAF ap-
proximation toC. The grid spacing,t, is assumed to be the
optimal one defined by equality in Eq.~11! andM is chosen
according to Eq.~13! ~thusMt5p).

A. Matrix elements of the potential energy operator

The matrix elements of the potential energy operator are
given as

Vmn5V~mt!dmn , ~18!

since

V~x!Capp~x!umt5V~mt!Capp~mt!

.V~mt!(
n

C~nt!e2a2~m2n!2t2

3
sin p~m2n!

p~m2n!

5C~mt!V~mt!dmn , ~19!

where we have made use of the relationsMt5p and

sin p~m2n!

p~m2n!
5dmn . ~20!

B. Matrix elements of d 2/dx 2

The derivation is straightforward and outlined in the ap-
pendix. We obtained the following simple analytical expres-
sions:

S d2

dx2D
mn

5e2a2 j 2t2S 1

t2

2

j 2 14a2D ~21! j 11

j 5m2n, mÞn, ~21!

S d2

dx2D
mm

52S 2a21
p2

3t2D . ~22!

In the special,a50 case these formulas simplify to that of
the sinc-DVR by Colbert and Miller.2
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V. APPLICATIONS AND DISCUSSION

One can show that the approximation in Eq.~12! with
the optimal grid spacing and the particular choice ofM given
by Eq. ~13! is identical to the one obtained by the Shannon-
Gabor-wavelet-DAF~SGWDAF!.6,7 This is interesting for
we arrived at the same result from an approach significantly
different from that in Refs. 6 and 7. Hence, SGWDAFs may
be described as generalized Hermite-CCDAFs and vice
versa.

Kouri et al.6,7 have already given ample evidence that
the approximation in Eq.~12! with Eq. ~13! and aÞ0 as
applied to function reconstruction can be significantly more
accurate than the sinc function approximation~a50!. They
have also given examples of its application in scattering7 as
well as in bound state6 calculations. It is the latter problem
that we shall study further. Indeed, the analysis of the sam-
pling theorem in Sec. III and the analytic expressions of
matrix elements derived in Sec. IV suggest that one should
examine whether there are any advantages in using SGW-
DAFs rather than the simple sinc-DVR in bound state calcu-
lations.

We have carried out calculations with several one-
dimensional~1D! and 2D Hamiltonians including the har-
monic oscillator Hamiltonian, a Hamiltonian with double
well potential,8 a 2D coupled harmonic oscillator
Hamiltonian,8 the Hénon–Heiles Hamiltonian,9 and the Bar-
banis Hamiltonian.10,11 For brevity, we shall not present all
of the test results, however, all cases studied have given sup-
port to the following general conclusions:

~1! The SGWDAF does not give more accurate eigen-
values nor does it give more eigenvalues with reasonable
accuracy, than the sinc-DVR employing the same grid.

~2! However, there is a wide range ofa values when the
SGWDAF gives results of similar accuracy to those by the
sinc-DVR.

~3! The magnitude of the off-diagonal elements of the
SGWDAF Hamiltonian matrix decreases fast with increasing
a and with increasing distance from the diagonal. The
SGWDAF Hamiltonian matrix can be highly banded while
still providing results of similar accuracy to that of the non-
banded sinc-DVR Hamiltonian matrix.

~4! The bandedness of the SGWDAF Hamiltonian ma-
trix allows one to set to zero all matrix elements of magni-
tude smaller than a given threshold and carry out matrix
vector multiplications in fewer flops~thus in less CPU time!
thanO(N 2). In fact, since both the SGWDAF and the sinc-
DVR result in a Toeplitz kinetic energy matrix and a diago-
nal potential matrix, the multiplication of the Hamiltonian
matrix and a vector can be done in justO(N log2N ) flops.
With thresholding, as suggested by Marchioroet al.,12 opera-
tion counts as low asO(Nw) or O(N log2 w) ~wherew is
called the bandwidth in Ref. 12; later we shall call 2w11
the bandwidth! can be achieved with the SGWDAF Hamil-
tonian matrix. Thus, by thresholding the SGWDAF matrix
the calculations can be made faster than a sinc-DVR calcu-
lation. @The operation countO(Nlog2N ) of multiplying a
Toeplitz matrix with a vector results from considering that a
Toeplitz matrix can be extended to a circulant matrix and the
circulant matrix is diagonalized by the Fourier matrix. Thus

the matrix–vector multiplication can be recast in terms of
calculating discrete Fourier transforms. A recent work on
this subject is, for instance, Ref. 13.#

~5! Although thresholding necessarily leads to loss of
accuracy, a large number of eigenvalues can be obtained
fairly accurately. Interestingly, the number of eigenvalues of
acceptable accuracy is almost the same as in the correspond-
ing sinc-DVR calculation, and the low and high lying states
can be obtained with approximately the same accuracy. In
other words, extreme accuracy of low-energy states is lim-
ited, but reasonable accuracy is retained across the spectrum.

As an illustration of the conclusions above we shall present
our results for the Barbanis Hamiltonian

Ĥ52
1

2S ]2

]x2 1
]2

]y2D1
1

2
~vx

2x21vy
2y2!1bxy2

vx
251.6,vy

250.9,b520.08 ~23!

studied in Refs. 11 and 14.
Of the rich spectrum we have calculated with the Barba-

nis Hamiltonian, 203 eigenvalues were selected. All of these
are below the dissociation barrier of height 25.313.11 The
highest level~24.010! is about 24 times bigger then the low-
est level of value 1.1058. Thus we have an example of an
extended and dense spectrum. Figure 2 depicts the distribu-
tion of the selected energy levels. The convergence of these
levels has been checked with respect to basis size and grid
spacing. The chosen levels have been found to be converged
with at least ten significant figures. We shall refer to these

FIG. 2. The distribution of the energy levels of the Barbanis Hamiltonian
selected for comparison of sinc-DVR and SGWDAF calculations.
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levels as the exact ones. They have been assigned in all of
our calculations with smaller basis size and/or with thresh-
olding, thus allowing us to make comparisons.

We employed 301~and 201! SGWDAFs for each coor-
dinate, placed symmetrically around zero with grid spacing
0.1. Thus, the region of configuration space covered is
uxu,15, uyu,15 ~and uxu,10, uyu,10) ~see Fig. 3!. In
Ref. 11 there were 20 harmonic oscillator states employed
for each coordinate, where the highest energy basis state in-
volved the 40th Hermite polynomial for they coordinate and
the 19th for thex coordinate. The configuration space ex-
plored by this basis set can be estimated by calculating the
corresponding Gauss–Hermite DVR. One can find the that
uxu,5.5 anduyu,8.3 ~see Fig. 4!. Since our basis set has
elements outside the dissociation barrier, tunneling effects,
although very small, might give rise to levels which are not
strictly bound. Such eigenvalues would have little physical
meaning, since we have made no attempt to satisfy the re-
quired boundary conditions. Regardless, these eigenvalues
are still numerically well converged and can be used for our
present goal of comparing sinc-DVR and SGWDAF.

Although not all of them are selected, we have obtained
all the energy levels tabulated in Ref. 11. The highest levels
in Ref. 11 appear to be less converged than indicated.~Note
that only levels even with respect to reflection about thex
axis have been given in Ref. 11.!

Figures 5–8 and the data in Tables I and II illustrate
conclusions~1!–~5!.

In each figure the eigenvalues,e i , are drawn along the
horizontal axis while the vertical axis displays the quantity

si52 log10S e i
exact2e i

e i
exact D 22 ~24!

measuring the relative error of calculated eigenvalues with
respect to the exact ones. The data in Figs. 5–8 correspond to
calculations with grid spacing 0.1 for each coordinate, with
grid points distributed symmetrically around zero, and with
a values of 0,0.5,1, and 2, respectively. But in the calcula-
tion of the selected ‘‘exact’’ eigenvalues, where we used 301

FIG. 3. Contour plot of the region of the Barbanis potential surface explored
by our 201-function~a! and 301-function~b! per coordinate basis sets.

FIG. 4. Contour plot of the region of the Barbanis potential surface explored
by the basis set used in Ref. 11.

FIG. 5. The relative error~vertical axis! as measured by the quantity defined
by Eq. ~24! of the energy levels~horizontal axis! calculated with the 201
function per coordinate sinc-DVR.

FIG. 6. The relative error of energy levels calculated by the 201 function per
coordinate SGWDAF ofa50.5 basis:~L! relative errors of levels obtained
without thresholding,~1! relative error of levels obtained by setting zero all
matrix elements of absolute value smaller than 1025 in the SGWDAF
Hamiltonian matrix.
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points per coordinate, 201 points per coordinate were used.
The Hamiltonian matrices as obtained by the prescriptions in
Sec. IV are symmetric and labeled by indices referring to
grid points. ~Note that the representation constructed simi-
larly for a Hamiltonian with coordinate dependent effective
mass would not be symmetric.! The related matrix eigen-
value equations have been solved by using the Lanczos al-
gorithm. We have carried out as many iterations as required
to converge the selected eigenvalues such that they have a
dispersion~or error norm!15 smaller than 10211. 24 000 it-
erations have been found to be sufficient. Points denoted by
~L! in Figs. 5–8 correspond to calculations without thresh-
olding. Points denoted by~1! in Figs. 5–8 correspond to
calculations with thresholding with a threshold value 1025.
At this threshold value and the grid size mentioned the band-
width of the kinetic energy matrix of each coordinate is 401
for a50, 131 for a50.5, 69 for a51 and 37 fora52.
Matrix–vector multiplication routines of scaling
O(N log2N ) and O(Nw) were employed in the calcula-
tions with SGWDAFs ofa50 andaÞ0, respectively. The
CPU time~in seconds! for performing 24 000 Lanczos itera-
tions was 3305 fora50, 3015 fora50.5, 1870 fora51, and
1197 fora52.

In Tables I and II we have given the CPU times required
by programs having different matrix–vector multiplication
routines to perform the same number~1500! of Lanczos it-
erations with matrices of the same size. The different rou-
tines are designated by the approximate number of flops they
need to carry out one matrix vector multiplication. We have
given the timing data only of those codes which were opti-
mized at compile time with the f77FORTRAN compiler op-
tions -O3 -qstrict. The data in Tables I and II refer to calcu-
lations on the 1D and 2D harmonic oscillator, respectively. It
should be noted that the calculations with matrices of band-
width 2w11537 ~a51! were not only faster but also quite
accurate and figures similar to Figs. 5–8 could be drawn. All
the calculations were carried out on an IBM RISC6000
workstation.

Comparison of Figs. 5–8 along with the data in Table I
and II clearly justify our conclusions. Conclusions~1! and
~2! can also be deduced from the fact that by increasinga
one slowly destroys the DAF plateau~see Fig. 1! and makes
the DAF approximation less accurate.

It is worth noting that the standard matrix vector multi-
plication routine requiringO(N 2) flops becomes very slow
for matrices of rank greater than 300. In a higher dimen-
sional problem, if one cannot construct a basis set of size
smaller than 300 for each degree of freedom, the calculations
can become very slow if not impossible. In this case one
should employ the sinc-DVR or SGWDAF, since then the
matrix vector multiplication can be done efficiently even
with matrices of size larger than 3003300. We have found
that the matrix–vector multiplication routine which theoreti-
cally appears to be the most efficient among those considered
@i.e., O(N log2 w) flops# is surprisingly slow. This might be

FIG. 7. The same as in Fig. 6, but employing an SGWDAF ofa51 basis.

FIG. 8. The same as in Fig. 6, but employing an SGWDAF ofa52 basis.

TABLE I. CPU time ~in s! consumed by 1500 Lanczos iterations when
different matrix–vector multiplication routines are employed in solving the
1D harmonic oscillator’s eigenvalue problem. The different routines are
distinguished by their scaling properties.

N O(N 2) O(N log2N )
O(Nw)
~w518!

O(N log2 w)
~w518!

51 0.07 0.08 0.03 0.12
101 0.27 0.15 0.06 0.23
201 1.08 0.35 0.13 0.55
301 2.38 0.90 0.19 0.85
701 292.41 2.32 0.43 2.19

1501 1560.96 6.47 0.92 4.62

TABLE II. CPU time ~in s! consumed by 1500 Lanczos iterations when
different matrix–vector multiplication routines are employed in solving the
eigenvalue problem of the 2D harmonic oscillator.N is the number of basis
functions per coordinate. The different routines are distinguished by their
scaling properties.

N O(N 2) O(N log2 N )
O(Nv)
~w518!

O(N log2 w)
~w518!

51 6.03 6.96 3.68 13.60
101 64.58 38.01 17.92 63.64
201 477.02 206.19 75.92 290.79
301 1749.27 717.05 256.24 672.44
351 20 494.92 865.26 350.70 902.05

77J. Chem. Phys., Vol. 110, No. 1, 1 January 1999 V. Szalay and S. C. Smith

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  130.102.82.69 On: Fri, 07 Oct 2016

05:47:36



because our code is simply not efficient enough or maybe
because the matrices considered were too small to get to the
limit where the scalingO(N log2 w) actually becomes effec-
tive.

The choice of basis set is crucial when solving the mul-
tidimensional vibrational Schro¨dinger equation. One should
attempt to choose the basis set such that the Hamiltonian
matrix in this basis set is both diagonally dominant and
structured as much as possible to ensure fast convergence
and computation. Which basis set should be used is often
suggested by the nature~e.g., the shape of the potential sur-
face! of the problem studied but often it is hard to find a
single basis set working equally well in all energy ranges of
interest.

We must point out that the problems we used to compare
sinc-DVR and SGWDAFs can be solved more efficiently by
employing a more natural basis such as the Gauss–Hermite
DVR. In fact, the eigenvalues of the Barbanis Hamiltonian
can be obtained with high precision with a small Gauss–
Hermite DVR basis~see Fig. 9! in a few tens of CPU sec-
onds compared to the few thousand seconds consumed by
either the sinc-DVR or SGWDAF calculations.

However, there may not be an obvious choice of a
‘‘good’’ basis set when one would like to calculate high
lying vibrational states and/or resonances on a complicated
strongly anharmonic potential surface. Then, one has to at-
tempt to construct a good basis set by starting from an initial
so called primitive basis set, e.g., by employing the method
of filter diagonalization.16 As to the primitive basis set one

requires it to provide a simple, structured matrix representa-
tion of the Hamiltonian operator such that the calculation of
the Hamiltonian matrix as well as the following computa-
tional work, whose most crucial operation is the matrix–
vector multiplication, can be carried out as fast as possible.
The SGWDAFs along with the thresholding procedure give a
simple, structured Hamiltonian matrix and there exist fast
methods to carry out the Hamiltonian matrix–vector multi-
plication. Therefore SGWDAFs may be used as a primitive
basis to construct an optimal basis set efficiently for any
desired energy range.

VI. SUMMARY

It has been shown that an approximately band-limited
function can be reconstructed by using the function’s values
taken at appropriate equidistant grid points and a generalized
Hermite-CCDAF as the reconstruction function. What the
appropriate grid spacing is and what values may be given to
the DAF parameters is determined by the bandwidth of the
function to be reconstructed. A sampling theorem prescrib-
ing the possible choices of grid spacing and DAF parameters
has been derived and discussed. At certain values of the DAF
parameters the generalized Hermite-CCDAF is identical to
the recently introduced Shannon–Gabor-wavelet-DAF.6,7

Since contracted Hermite-DAFs are closely related to
the sinc function approximation we have studied how they
may be used in solving bound state eigenvalue problems and
if there is any advantage of employing them compared to
sinc-DVR. While doing so we have derived simple analytical
expressions for the matrix elements required to construct the
Hamiltonian matrix in the SGWDAF~or in other words in
the discretized-Hermite-contracted-DAF! approximation.
The matrix elements corresponding to the sinc-DVR2 are re-
covered as a special case of our more general formulas.

Based on numerical investigations of a number of 1D
and 2D Hamiltonian eigenvalue problems, we have found
that the SGWDAF~or contracted Hermite-DAF! gives no
more accurate eigenvalues than the corresponding sinc-DVR
nor does it give more eigenvalues of reasonable accuracy. It
can, however, lead to a highly banded Hamiltonian matrix.
At the cost of losing extreme accuracy in the lower part of
the spectrum one can set all matrix elements of magnitude
smaller than a prescribed threshold equal to zero. Then, mak-
ing use of the special structure of the Hamiltonian matrix, the
matrix–vector multiplication operation required by iterative
diagonalization methods can be done very efficiently. Inter-
estingly, both low and high lying states can be obtained with
approximately the same precision. To illustrate and justify
our conclusions we have presented and discussed our nu-
merical results obtained with the Barbanis Hamiltonian11 in
detail. The calculations with the Barbanis Hamiltonian pro-
vide a strict test of our method and conclusions because of
the dense and extended nature of its spectrum.

It is apparent that for large scale computations involving
multidimensional Hamiltonians SGWDAF or sinc-DVR may
be very useful, especially when the basis size for a given
coordinate cannot be decreased to at least 300 either by basis
set contraction, grid optimization, or by constructing an effi-
cient nondirect product grid. The properties of SGWDAFs

FIG. 9. Comparison of the SGWDAF and Gauss–Hermite DVR results
obtained with the Barbanis Hamiltonian. The vertical axis shows the relative
error as calculated by Eq.~24!. The horizontal axis is the energy axis.
Comparisons are made with respect to 24 ‘‘exact’’ eigenvalues. The points
in the figure are joined by lines just to guide the eye.Nx andNy denote the
number of grid points used for coordinatex andy, respectively.~CurveA!:
The relative error of energy levels obtained by SGWDAF calculation with
a50, Nx5Ny5201, and 24 000 Lanczos iterations. The calculation re-
quired 3305 CPU seconds.~Curve B!: The relative error of energy levels
obtained by Gauss–Hermite DVR calculation withNx521,Ny541, and
10 000 Lanzcos iterations. The calculation required 29 CPU seconds.~Curve
C!: The relative error of energy levels obtained by Gauss–Hermite DVR
calculation withNx541,Ny561, and 10 000 Lanzcos iterations. The cal-
culation required 40 CPU seconds.~CurveD!: The relative error of energy
levels obtained by Gauss–Hermite DVR calculation withNx5Ny5101, and
20 000 Lanczos iterations. The calculation required 851 CPU seconds.
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suggest that they can be combined efficiently with the filter
diagonalization method16 to construct a basis set suitable to
any desired energy range of the system studied.
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APPENDIX

To obtain the matrix elements of the differential operator
d2/dx2 we evaluated2Capp(x)/dx2 at x5mt, that is,

d2

dx2 Capp~x!umt5(
n

C~nt!
d2

dx2 e2a2~x2nt!2 sin M ~x2nt!

p~x2nt!
tU

mt

5(
n

C~nt!e2a2~x2nt!2F2a2@2112a2~x2nt!2#
sin M ~x2nt!

p~x2nt!
1

2M2 sin M ~x2nt!

p~x2nt!

1H 22M cosM ~x2nt!

p~x2nt!2 1
2sin M ~x2nt!

p~x2nt!3 J 24a2S M cosM ~x2nt!

p
2

sin M ~x2nt!

p~x2nt! D GtU
mt

.

With our choice of grid spacing andM, Mt5p, we can take
advantage of Eq.~20!. If mÞn only the cosine terms have a
nonzero value. Ifm5n all terms are nonzero. The sum of the
terms in the curly brackets is obtained by employing the
L’Hospital rule. By adding the different contributions one
obtains the matrix elements given by Eqs.~21!–~22!.
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