
PHYSICAL REVIEW E JULY 1999VOLUME 60, NUMBER 1
Fluctuation theorem for stochastic systems
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The fluctuation theorem describes the probability ratio of observing trajectories that satisfy or violate the
second law of thermodynamics. It has been proved in a number of different ways for thermostatted determin-
istic nonequilibrium systems. In the present paper we show that the fluctuation theorem is also valid for a class
of stochastic nonequilibrium systems. The theorem is therefore not reliant on the reversibility or the determin-
ism of the underlying dynamics. Numerical tests verify the theoretical result.@S1063-651X~99!04007-6#

PACS number~s!: 05.20.2y, 05.70.Ln, 47.10.1g, 47.70.2n
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I. INTRODUCTION

The fluctuation theorem~FT! states that the ratio of th
probability of observing nonequilibrium trajectory segmen
of durationt with a time-averaged rate of entropy producti
per unit volume,s̄t , to the probability of observing seg
ments with an average entropy production rate per unit v
ume,2s̄t , is

lnS p~ s̄t!

p~2s̄t!
D5

1

kB
s̄tVt. ~1!

The FT is interesting in that it gives an analytic express
for the probability that, for a finite system and for a fini
time, the second law of thermodynamics will be violate
This expression has been tested numerically and predicts
expected long-time and large-system behavior, that
second-law-violating trajectorieswill not be observedin the
thermodynamic and/or long-time limits.

There are three approaches that have been used to d
this expression for deterministic systems. This relations
was derived in 1993 for nonequilibrium steady states
Evans, Cohen, and Morriss~ECM2! @1# from a natural in-
variant measure@2# which was proposed heuristically fo
steady-state trajectories. In 1995 Gallavotti and Cohen@3,4#
gave a proof of the steady-state FT, demonstrating that
FT can be derived from the Sinai-Ruelle-Bowen~SRB! mea-
sure @5#, if one employs the so-called chaotic hypothe
@3,4#. The steady-state FT~1! is only true asymptotically,t
→`. In ECM2 it was shown@1# that the steady-state fluc
tuation theorem~1! was consistent with computer simulatio
results for an atomic fluid undergoing reversible thermos
ted shear flow far from equilibrium.

A transient FT had already been developed in 1994@6–8#.
It considers transient trajectories which are generated f
initial phases sampled from an equilibrium microcanoni
ensemble and which evolve in time towards the steady s
which is assumed to be unique. Unlike steady-state FT’s,
transient fluctuation theorem is exact forall trajectory dura-
tionst. If long-time steady-state averages are independen
the initial phase vector used to generate a steady-state tr
tory segment~for a given volume, number of particles, an
PRE 601063-651X/99/60~1!/159~6!/$15.00
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energy!, then one might expect that, in the limitt→`, av-
erages over transient trajectory segments would appro
those taken over nonequilibrium steady-state segments.
ther, one would expect the asymptotic convergence of
transient and steady-state fluctuation theorems. Howe
there has been some recent discussion of this point, and
all parties agree about this asymptotic convergence@9#.

A third approach that has been used to derive the FT
valid only in the linear response regime close to equilibriu
and is also only valid asymptotically (t→`). In a footnote
to ECM2 @1#, the authors noted that the FT can be prov
using the Green-Kubo relations for the linear response
gether with an application of the central limit theorem to t
distribution of $s̄t%, in the t→` limit @7,10#. This third
approach, although limited to the linear response regime
quite general with respect to the nature of the thermostatt
In an obvious limit this approach applies to unthermostat
systems. This is because Green-Kubo relations are ro
with respect to thermostatting~see p. 116 of@11#!.

Most theoretical and numerical studies of the FT ha
concentrated on reversible, deterministic dynamics altho
recently theoretical studies on stochastic systems have
carried out@12–14#. Kurchan@12# has shown that the FT is
valid for Langevin dynamics, and Lebowitz and Spohn@13#
showed that it could be extended to apply to steady-s
Markov processes. Maes recently demonstrated@14# that a
FT can be obtained if the steady state is regarded as a G
state.

In the present paper, the transient FT is generalized
that it applies to stochastic systems. Furthermore, it is d
onstrated that by considering the transient response of a
tem that is initially in a state with a known distribution func
tion, rather than directly treating a steady-state system
formula that is valid at all times is obtained. This approach
different from the steady-state approach of Lebowitz a
Spohn@13# in that an exact, finite-time transient FT is d
rived. As in the deterministic case, if the steady state
unique, we expect that the transient FT will asymptotica
converge to the steady-state stochastic FT. Also, we pro
the first numerical tests of a stochastic FT. Given that the
is valid for stochastic systems, reversibility and determini
are clearly not prerequisites for the FT.
159 ©1999 The American Physical Society
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II. DERIVATION OF THE FT USING THE LIOUVILLE
MEASURE FOR A CLASS OF STOCHASTIC

SYSTEMS

Consider the equations of motion for a stochastic sys
given by

Ġ5G~G!1j~ t !, ~2!

wherej(t) is a random variable. The first term on the righ
hand side,G~G!, is deterministic and assumed to be reve
ible. As an example, consider the transient response
system, initially at equilibrium, to an applied field with
random termji , contributing to the equations of motion fo
the momenta. The system is thermostatted to ensure th
steady state can be reached, and the equations of motio

q̇i5
pi

m
1Ci~G!Fe ,

ṗi5Fi~q!1Di~G!Fe1ji~ t !2api , ~3!

whereqi andpi are the coordinates and momenta of thei th
particle, respectively,Fi is the interparticle force on that pa
ticle, Fe is an external field applied to the system,Ci andDi
describe the coupling of the system to the field, anda is a
Gaussian thermostat multiplier@11# that fixes the interna
energy:

a5

(
i 51

N

FeDi~G!•pi /m1ji•pi /m2FeCi~G!•Fi~q!

(
i 51

N

pi•pi /m

. ~4!

To ensure that the system remains on a constant-ene
zero-total momentum, hypersurface, the thermostat m
plier contains the random term and the restriction( i 51

N ji

50 is imposed. The phase space of the nonequilibrium s
tem is therefore is a subset of that of the initial equilibriu
ensemble. In Eq.~3! the stochastic term can be regard
either as a random force that is added to the equation for
rate of change of momentum, or it can be regarded as c
tributing a random term to the thermostat. The differen
between these two interpretations is purely semantic.

If the adiabatic incompressibility of phase space (AIG)
condition is satisfied@11#, then the Liouville equation for this
system reads:

d f~G,t !

dt
52 f ~G,t !

]

]G
•Ġ52L~G! f ~G,t !, ~5!

whereL~G! is the phase-space compression factor. For
system described by Eqs.~3! and ~4!, L(G)52dNa(G)
1O(1), whered is the number of Cartesian coordinates co
sidered. The solution of Eq.~5! can be written@7#

f „G~ t !,t…5expF2E
0

t

L~s!dsG f ~G,0!. ~6!

The FT considers the probabilities of observing trajector
with entropy production rates which are equal in magnitu
but opposite in sign. In the proof of this theorem using t
Liouville measure@6,7,8,10#, it was necessary, for every po
sible trajectory, to identify a conjugate trajectory which h
m
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this property: that is, all trajectories were sorted into co
jugate pairs. In a reversible, deterministic system this ide
fication was straightforward and was accomplished by ca
ing out time-reversal mappings@6,7,8,10#. It is now shown
how this procedure can be modified for stochastic system

Consider a trajectory segmentG1(s), 0,s,t, and its
time-reversed trajectoryG2(s), 0,s,t, which we call an
antisegment. The sign in the subscript reflects the sign of
integral of the thermostat multiplier~or entropy production!
along the trajectory segment. For a reversible system, th
trajectories are simply related by a time reversal mappi
each conjugate trajectoryG2 is generated from the origina
trajectoryG1 by carrying out a time-reversal mapping of th
phase at the midpoint of the trajectory and integrating
equations of motion backward and forward in tim
@6,7,8,10#. Without loss of generality if the field is assume
to be even with respect to the time-reversal mapping, t
the flux, entropy production rate and the thermostat mu
plier will be odd. We use the notation that the averages o
phase variable,A, along a forward trajectory and its conju
gate, time-reversed, trajectory are given by

Ā1~ t ![1/tE
0

t

ds A„G1~s!… ~7!

and

Ā2~ t ![1/tE
0

t

ds A„G2~s!…, ~8!

respectively. Depending on the parity of the phase funct
A(G) under time-reversal symmetry, there may be a sim
relation betweenĀ1(t) and Ā2(t).

In a stochastic system the conjugate trajectory can
longer be generated by simply carrying out a time-rever
mapping and solving the equations of motion. After the tim
reversal mapping at the midpoint of the original trajecto
integration of the equations of motion forward and backwa
in time will, with overwhelming probability, result in the
observation of a different set of random numbers than w
observed for the original trajectory and the trajectories w
not be conjugate. Clearly, a mapping of the sequence of
dom numbers observed for the forward trajectory must
carried out for the conjugate trajectory. The necessary m
ping of the random numbers will depend on the functi
ji(R) whereR is a random number. Figure 1 gives a di
grammatic representation of the way in which conjugate
jectories are generated for stochastic systems.

If the sequence of random numbersR1 ,R2 ,R3 ,R4 is ob-
served for the original trajectory, then this sequence mus

FIG. 1. Schematic diagram showing the construction of con
gate trajectories for stochastic systems.
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PRE 60 161FLUCTUATION THEOREM FOR STOCHASTIC SYSTEMS
appropriately mapped in the conjugate trajectory. For
ample, if the random term contributes only to the equation
motion for ṗxi , which is even under a time-reversal ma
ping, then the sequenceR4 ,R3 ,R2 ,R1 must be observed fo
the conjugate trajectory to be generated. Similarly, if
random term contributes only toq̇xi , which is odd under
time reversal, then the sequence2R4 ,2R3 ,2R2 ,2R1 must
be observed. Provided the mapped sequence is allowe
the random number generator, the antisegment will be a
lution of the equations of motion. It should be noted that
the first case no restrictions on the random number gene
are required; however in the second case, a symmetry res
tion on the range of numbers is necessary for this proof to
valid.

It can be observed from Fig. 1 thatM (T)G(3)5G(4) ,
M (T)G(1)5G(6) , andM (T)G(2)5G(5) where isM (T) used to
to represent a time-reversal mapping. At all points along
trajectory, the fluxes of conjugate trajectories are related
J(t;G1,0,t,t)52J(t;G2,0,t,t), and therefore fluxes
averaged over the duration of the segment are rela
by, J̄152 J̄2 . It is straightforward then to see that i
order to divide the trajectories into conjugate pairs,
equations of motion do not have to be reversible@that is,
M (T)

•eiL (G)t
•M (T)

•eiL (G)t
•G(0)5G(0), where M (T)

•M (T)

51#, but it is necessary that theantisegment be a solution o
the equations of motion. This condition is equivalent to tha
required in the derivation by Lebowitz and Spohn@13#, in
which case it is assumed that if the rate constant for a
ward step is nonzero, then the rate of the reverse pro
must also be nonzero. That is, in both derivations it is
quired that the reverse process be able to be observed.

Now it is shown how the probability of observing th
conjugate trajectories can be determined. For the system
sidered, the initial phases are distributed microcanonica
so the probability of observing an initial phase inside a sm
phase volume,dV„G(0)… about G~0! is proportional to
-
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dV„G(0)…. It is assumed that our universe is causal: t
probability of observing a trajectory segment is proportion
to the probability of observing theinitial phase that generate
the segment. Using the fact that for sufficiently small vo
umes, dV„G(t)…;1/f „G(t)… and that the Jacobian for th
time-reversal mapping is unity, the solution the Liouvil
equation given by Eq.~5! allows the expansion or contrac
tion of a phase volume along a trajectory to be determined

V„G~ t !,t…5expF E
0

t

L„G~s!…dsGV~G,0!. ~9!

This is illustrated in Fig. 2.
The ratio of volumes thedV1 anddV4 gives the ratio of

the probability of observinginitial phase points. The prob-
ability of observing atrajectory is equal to the product of the
probability of observing the initial phase point and the pro
ability of observing the sequence of random numbers:

prob„G~s!;0,s,t…5prob„dV~0!…prob~R1¯Rn!. ~10!

The probability of observing a trajectory segment with a p
ticular time-averaged value ofL is then given by the sum
over all trajectories with that value, and the probability ra
is given by

FIG. 2. Schematic diagram representing the change in ph
volume with time along a trajectory and its conjugate.
p„L̄1~t!…

r„L̄2~t!…
5

(
i u*L~G i !5L̄1~t!

dV„Gi 1~0!…p~R1 ,...,Rn! i

(
i u*L~G i !5L̄2~t!

dV„Gi 1~0!…p~R1 ,...,Rn! i

5

(
i u*L~G i !5L̄1~t!

dV„Gi 1~0!…p~R1 ,...,Rn! i

(
i u*L~G i !5L̄1~t!

dV„Gi 2~0!…p„M ~T!~R1¯Rn! i…

5

(
i u*L~G1!5L̄1~t!

dV„Gi 1~0!…p~R1 ,...,Rn! i

(
i u*L~G i !5L̄1~t!

exp@L̄1 i~t!t#dV„Gi 1~0!…p„M ~T!~R1¯Rn! i…

5exp@2L̄1~t!t#, ~11!
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162 PRE 60DEBRA J. SEARLES AND DENIS J. EVANS
where the notationi u*L(G i)5L̄1(t) is used to represent a
trajectoriesi for which the time-averaged value of the phas
space compression factor is equal toL̄1 , and it is assumed
that p(R1 ,...,Rn)5p„M (T)(R1¯Rn)…. The resulting fluc-
tuation formula given by Eq.~11! for this stochastic system
is identical to that for the deterministic, reversible system
As in the deterministic case, there may be many differ
pairs of conjugate trajectories which each have the sa
value forL̄1(t).

The FT derived above is valid fortransienttrajectory seg-
ments of arbitrary length. Averages of phase variables o
the transient trajectory segments approach the averages
steady-state trajectory segments in the long-time limit; the
fore, the stochastic FT will also apply to steady-state s
tems.

III. NUMERICAL TESTS OF THE FLUCTUATION
THEOREM APPLIED TO TRANSIENT STOCHASTIC

SYSTEMS

TransientNEMD simulations of Couette flow using th
SLLOD algorithm and the usual Lees-Edwards perio
boundary conditions, were carried out employinga stochas-
tic force in thex direction and the corresponding Gaussi
isoenergetic thermostat. The equations of motion for this s
tem are

q̇i5pi1 igg i ,

ṗi5Fi2 igpyi1 ij i2api , ~12!

with the thermostat multiplier given by

a5
( i 51

N j i pxi2g~pxipyi1Fxiyi !

( i 51
N pi•pi

. ~13!

The system consisted ofN532 particles in two Cartesian
dimensions and the particles interacted with the Wee
Chandler-Anderson short-ranged, repulsive pair poten
@15#. Lennard-Jones units are use throughout. The inte
energy per particle was set atE/N51.560 32~i.e., T;1.0)
and the particle density atn5N/V50.8. A strain rate ofg
50.5 was applied.

FIG. 3. Ensemble-averaged response of the flux for a system
32 particles in two Cartesian dimensions to which a strain rat
applied at time zero and for which theSLLOD algorithm is used to
model the shear flow. The internal energy per particle was se
E/N51.560 32~i.e. T;1.0) and the particle density atn50.8. A
strain rate ofg50.5 was applied.
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Since for this system L(G)522Na(G)1O(1)
5s(G)V/kB , the fluctuation theorem becomes

p„ā1~t!…

p„ā2~t!…
5exp@2Nā1~t!t#, ~14!

whereO(1) terms are omitted since they are negligible
the thermodynamic limit and to reduce the complexity of t
expression. The system studied here is sufficiently small
these effects cannot be neglected, and they are include
the data presented.

of
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at

FIG. 4. Histograms ofā1(t)[(1/t)*0
tdsa„G1(s)… for a sys-

tem undergoing transient response to an applied strain rateg
50.5. The internal energy per particle was set atE/N51.560 32
~i.e., T;1.0) and the particle density atn50.8. Trajectory seg-
ments of~a! t50.1, ~b! t50.4, and~c! t50.6 were used.
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PRE 60 163FLUCTUATION THEOREM FOR STOCHASTIC SYSTEMS
In the simulations, the stochastic termji was the product
of a random number and ad function at each time step. Th
random numbers were selected from a Gaussian distribu
with (ji50, a standard deviation of 1.0, and were restric
within the range@210.0, 10.0#.

Figure 3 shows the ensemble averaged response o
flux which indicates that a steady state is approached and
initial transient response has a Maxwell time of appro
matelytM50.07.

In the transient response simulations, many initial equi
rium phases were generated and the response to an ap
strain rate was monitored for various trajectory segm
lengths. Histograms of

ā1~t![1/tE
0

t

dsa„G1~s!…

FIG. 5. Plots of$ ln@p„ā1(t)…/p„2ā1(t)…#%/(2Nt) vs ā1(t)
for the system considered in Fig. 4 with~a! t50.1, ~b! t50.4, and
~c! t50.6. Order (1/N) corrections are included. The straight line
of unit slope, and it is the result predicted from the FT. The slo
obtained from weighted least-squares fits are~a! 0.9860.01, ~b!
1.0060.02, and~c! 1.0260.04.
on
d
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he
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were obtained witht50.1, 0.4, and 0.6. These histogram
are shown in Fig. 4. The FT predicts that a plot
$ ln@p„ā1(t)…/p„2ā1(t)…#%/(2Nt) versus ā1(t) should
give a straight line of unit slope. For each of the trajecto
segment lengths considered in Fig. 3, the FT was tested
O(1/N) corrections included. The normalized probability r
tios are shown in Fig. 5. In each case, a slope of unity
obtained and the FT is verified.

These results show that the FT is valid for finite averag
times of this transient, stochastic system.

s

FIG. 6. Histograms ofā1(t)[(1/t)*0
tdsa„G1(s)… for a sys-

tem undergoing steady-state shear flow with an applied strain
of g50.5. The internal energy per particle was set atE/N
51.560 32~i.e., T;1.0) and the particle density atn50.8. Trajec-
tory segments of~a! t50.05,~b! t50.2, and~c! t50.4 were used.
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IV. NUMERICAL TESTS OF THE FLUCTUATION
THEOREM APPLIED TO STEADY-STATE STOCHASTIC

SYSTEMS

The FT was also examined for steady-state systems ev
ing with the stochastic equations of motion considered
Sec. III. Histograms of

ā1~t![1/tE
0

t

dsa„G1~s!…

for steady-state trajectory segments of lengtht50.05, 0.1,
0.2, 0.3, and 0.4 were calculated. The results fort50.05,
0.2, and 0.4 are shown in Fig. 6.

For steady-state trajectories, the FT predicts that a plo
$ ln@p„ā1(t)…/p„2ā1(t)…#%/(2Nt) versus ā1(t) gives a
straight line of unit slopein the limit t→`. Figure 6 shows
the results, and Fig. 7 plots the slope as a function ot,
indicating that it approaches unity in the long-time limit.

FIG. 7. The slope of plots of $ ln@p„ā1(t)…/
p„2ā1(t)…#%/(2Nt) vs ā1(t) for various trajectory segmen
lengths. The result is consistent with a convergence to a valu
unity in the long-time limit which is the result predicted from th
FT.
e

lv-
n

of

V. CONCLUSIONS

The present work shows that the fluctuation theorem
quite general and applies to both deterministic and stocha
nonequilibrium systems. As was found to be the case
deterministic systems, the fluctuation theorem applies~i! at
all times to finite~transient! trajectory segments which ar
initially sampled from the equilibrium microcanonical en
semble and then move isoenergetically towards a steady
and ~ii ! asymptotically to long-time steady-state trajecto
segments. In all cases—transient or steady state, stocha
or deterministic—the fluctuation theorem applies in both
linear and nonlinear response regimes.

As a final comment, we note that although the theory a
simulations presented here apply to systems in which ev
particle is ergostatted~so-called homogeneous thermosta
ting!, the theory presented here applies equally well to s
tems were only a subset of the particles are thermosta
@16#. The theory also applies to systems composed of m
tures of particles with different interparticle interactions. W
can therefore obviously model boundary thermostatted s
tems where a fluid obeying Newtonian mechanics~i.e., no
thermostat! flows inside thermostatted solid walls, using th
theory presented here. To treat such a system, consid
mixture of two types of particles where at the temperat
and density studied one set of particles, the wall particles
in the solid phase and is thermostatted and the other se
particles is liquid and is not thermostatted. In such cases
only difference to the theory above is that in equations s
as Eq.~6!, above theN refers to the number of thermostatte
particles and not to the total number of particles.
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