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Fluctuation theorem for stochastic systems
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The fluctuation theorem describes the probability ratio of observing trajectories that satisfy or violate the
second law of thermodynamics. It has been proved in a number of different ways for thermostatted determin-
istic nonequilibrium systems. In the present paper we show that the fluctuation theorem is also valid for a class
of stochastic nonequilibrium systems. The theorem is therefore not reliant on the reversibility or the determin-
ism of the underlying dynamics. Numerical tests verify the theoretical r¢S1063-651X99)04007-9
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[. INTRODUCTION energy, then one might expect that, in the limit-o, av-
erages over transient trajectory segments would approach
The fluctuation theorenGFT) states that the ratio of the those taken over nonequilibrium steady-state segments. Fur-
probability of observing nonequilibrium trajectory segmentsther, one would expect the asymptotic convergence of the
of durationr with a time-averaged rate of entropy production transient and steady-state fluctuation theorems. However,
per unit volume,o,, to the probability of observing seg- there has been some recent discussion of this point, and not
ments viith an average entropy production rate per unit volg|| parties agree about this asymptotic convergdte

ume,—o,, is A third approach that has been used to derive the FT is
() 1 valid only in the linear response regime close to equilibrium

|n(pLi =TV (1) and is also only valid asymptoticallyr{-). In a footnote
p(=o,)) kg 7 to ECM2[1], the authors noted that the FT can be proved

using the Green-Kubo relations for the linear response to-
The FT is interesting in that it gives an analytic expressiorngether with an application of the central limit theorem to the
for the probability that, for a finite system and for a finite distribution of {.}, in the r—co limit [7,10]. This third
time, the second law of thermodynamics will be violated.approach, although limited to the linear response regime, is
This expression has been tested numerically and predicts thgite general with respect to the nature of the thermostatting.
expected long-time and large-system behavior, that i$n an obvious limit this approach applies to unthermostatted
second-law-violating trajectoriesill not be observedn the  systems. This is because Green-Kubo relations are robust
thermodynamic and/or long-time limits. with respect to thermostattingee p. 116 of11]).

There are three approaches that have been used to derive Most theoretical and numerical studies of the FT have
this expression for deterministic systems. This relationshigoncentrated on reversible, deterministic dynamics although
was derived in 1993 for nonequilibrium steady states byrecently theoretical studies on stochastic systems have been
Evans, Cohen, and MorrigECM2) [1] from a natural in- carried ouff12—14. Kurchan[12] has shown that the FT is
variant measurg2] which was proposed heuristically for valid for Langevin dynamics, and Lebowitz and Spqha]
steady-state trajectories. In 1995 Gallavotti and Cdl3e#]  showed that it could be extended to apply to steady-state
gave a proof of the steady-state FT, demonstrating that thislarkov processes. Maes recently demonstrafief] that a
FT can be derived from the Sinai-Ruelle-Bow@RB) mea-  FT can be obtained if the steady state is regarded as a Gibbs
sure [5], if one employs the so-called chaotic hypothesisstate.

[3,4]. The steady-state F{l) is only true asymptoticallys In the present paper, the transient FT is generalized so
—o, In ECM2 it was showr{1] that the steady-state fluc- that it applies to stochastic systems. Furthermore, it is dem-
tuation theoren{l) was consistent with computer simulation onstrated that by considering the transient response of a sys-
results for an atomic fluid undergoing reversible thermostattem that is initially in a state with a known distribution func-

ted shear flow far from equilibrium. tion, rather than directly treating a steady-state system, a

A transient FT had already been developed in 18348].  formula that is valid at all times is obtained. This approach is
It considers transient trajectories which are generated fromdifferent from the steady-state approach of Lebowitz and
initial phases sampled from an equilibrium microcanonicalSpohn[13] in that an exact, finite-time transient FT is de-
ensemble and which evolve in time towards the steady statéved. As in the deterministic case, if the steady state is
which is assumed to be unique. Unlike steady-state FT’s, thianique, we expect that the transient FT will asymptotically
transient fluctuation theorem is exact fat trajectory dura- converge to the steady-state stochastic FT. Also, we provide
tions 7. If long-time steady-state averages are independent dhe first numerical tests of a stochastic FT. Given that the FT
the initial phase vector used to generate a steady-state trajeis-valid for stochastic systems, reversibility and determinism
tory segmenifor a given volume, number of particles, and are clearly not prerequisites for the FT.
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Il. DERIVATION OF THE FT USING THE LIOUVILLE 2
MEASURE FOR A CLASS OF STOCHASTIC N Rz T; R R Ty
SYSTEMS Ry |
. . . . r M
Consider the equations of motion for a stochastic system l - - >
given by | —
. I MOR,)
I'=G(TI') + &t), 2 MPR)  MP®RY™ MORy)

where&(t) is a random variable. The first term on the right-

hand sideG(T'), is deterministic and assumed to be revers- F|G. 1. Schematic diagram showing the construction of conju-
ible. As an example, consider the transient response of gate trajectories for stochastic systems.

system, initially at equilibrium, to an applied field with a

random termé;, contributing to the equations of motion for this property: that is, all trajectories were sorted into con-
the momenta. The system is thermostatted to ensure thatjagate pairs. In a reversible, deterministic system this identi-
steady state can be reached, and the equations of motion &ieation was straightforward and was accomplished by carry-

P ing out time-reversal mappind$,7,8,1Q. It is now shown
qi:aJrCi(F)Fe, how this procedure can be modified for stochastic systems.

Consider a trajectory segmeht, (s), 0<s<t, and its

pi=Fi(q)+Dy(T)Fe+ &(1) — ap;, (3)  time-reversed trajector¥'_(s), 0<s<t, which we call an

antisegment. The sign in the subscript reflects the sign of the
whereq; andp; are the coordinates and momenta of ttte  jntegral of the thermostat multipligior entropy production
particle, respectivelyf; is the interparticle force on that par- along the trajectory segment. For a reversible system, these
ticle, Fe is an external field applied to the syste@),andD; trajectories are simply related by a time reversal mapping:
describe the coupling of the system to the field, ant a  each conjugate trajectol)_ is generated from the original
Gaussian thermostat multlpllefﬂ.l] that fixes the internal trajectoryl_‘+ by Carrying out a time-reversal mapp|ng of the

energy: phase at the midpoint of the trajectory and integrating the
N equations of motion backward and forward in time
;1 FeDi()-pi/m+&-pi/Im—F.Ci(I')-Fi(q) [6,7,8,1Q. Without loss of generality if the field is assumed

. 4) to be even with respect to the time-reversal mapping, then
the flux, entropy production rate and the thermostat multi-

;l Pi-pi/m plier will be odd. We use the notation that the averages of a

phase variableA, along a forward trajectory and its conju-

To ensure that the system remains on a constant-energ§at€; fime-reversed, trajectory are given by

zero-total momentum, hypersurface, the thermostat multi- — t

plier contains the random term and the restrictbfi ;& A+(t)zl/tfodsp(l“+(s)) @)

=0 is imposed. The phase space of the nonequilibrium sys-

tem is therefore is a subset of that of the initial equilibriumgnd

ensemble. In Eq(3) the stochastic term can be regarded ¢

either as a random force that is added to the equation for the A_(t)zl/tj ds AT_(s)), (8)

rate of change of momentum, or it can be regarded as con- 0

tributing a random term to the thermostat. The difference . ) ) )

between these two interpretations is purely semantic. respectively. Depending on the parity of the phase function
If the adiabatic incompressibility of phase spacell)  A(I') under time-reversal symmetry, there may be a simple

condition is satisfiefl11], then the Liouville equation for this relation betweerA  (t) andA_(t).

a=

system reads: In a stochastic system the conjugate trajectory can no
df(T,t) 9 . Ionger be generaf[ed by simply carrying out a time-rev_ersal
a f(I't) T -'=—-A(D)f(T,1), (5) mapping and solving the equations of motion. After the time-

reversal mapping at the midpoint of the original trajectory,
éntegration of the equations of motion forward and backward
in time will, with overwhelming probability, result in the
observation of a different set of random numbers than was
observed for the original trajectory and the trajectories will
not be conjugate. Clearly, a mapping of the sequence of ran-
dom numbers observed for the forward trajectory must be
carried out for the conjugate trajectory. The necessary map-
ping of the random numbers will depend on the function
The FT considers the probabilities of observing trajectoriest;(R) whereR is a random number. Figure 1 gives a dia-
with entropy production rates which are equal in magnitudegrammatic representation of the way in which conjugate tra-
but opposite in sign. In the proof of this theorem using thejectories are generated for stochastic systems.

Liouville measurg6,7,8,10, it was necessary, for every pos-  If the sequence of random numbd®s,R,,R3,R, is ob-
sible trajectory, to identify a conjugate trajectory which hadserved for the original trajectory, then this sequence must be

where A(I') is the phase-space compression factor. For th
system described by Eq$3) and (4), A(I')=—dNe«(TI')
+0(1), whered is the number of Cartesian coordinates con-
sidered. The solution of Eq5) can be writter{7]

f(l“(t),t)zex;{ — ftA(s)ds f(I',0). (6)
0
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appropriately mapped in the conjugate trajectory. For ex- J o

ample, if the random term contributes only to the equation of \ SVz:E;\P[A(UZ)r/z]&V, P
motion for p,;, which is even under a time-reversal map- / v

ping, then the sequend®,,R;,R,,R; must be observed for i (F !Mm(rz) R
the conjugate trajectory to be generated. Similarly, if the :m /)svﬁzsvl '
random term contributes only ta,;, which is odd under s, =ov, =exfFnfsv,

time reversal, then the sequene®,,— R;,—R,,—R; must Bv; = 8V, \

be observed. Provided the mapped sequence is allowed by T

the random number generator, the antisegment will be a so- F|G. 2. Schematic diagram representing the change in phase

|Uti0n Of the equations Of mOtiOﬂ. It Should be nOted that invo|ume with time a|ong a trajectory and its Conjugate.

the first case no restrictions on the random number generator

are required; however in the sgcond case, asymmetry restrigv(r(o))_ It is assumed that our universe is causal: the

tion on the range of numbers is necessary for this proof to bgohapility of observing a trajectory segment is proportional

valid. _ - to the probability of observing thieitial phase that generates
(th) can be Observe((jT)from Fig. 1 th‘m 1;(r§>:F(4)' the segment. Using the fact that for sufficiently small vol-

M*I'(1)=I'6), andM*"T';)=I'is) where isM'" used to  ymes, 5V(I'(t))~ 1/f(I'(t)) and that the Jacobian for the

to represent a time-reversal mapping. At all points along thgme-reversal mapping is unity, the solution the Liouville

trajectory, the fluxes of conjugate trajectories are related bléquation given by Eq(5) allows the expansion or contrac-

J(tT,0<t<7)=-J(t;I'_,0<t<7), and therefore fluxes tjon of a phase volume along a trajectory to be determined by

averaged over the duration of the segment are related

by, J,=-J_. It is straightforward then to see that in t

order to divide the trajectories into conjugate pairs, the V(F(t),t):ex;{ fOA(F(S))dS

equations of motion do not have to be reversifleat is,

M. etMt M. LML 0)=T(0), where M-MM  This js illustrated in Fig. 2.

=1], but it is necessary that tlentisegment be a solution of The ratio of volumes theéV, and 6V, gives the ratio of

the equations of motiorThis condition is equivalent to that the probability of observingnitial phase points The prob-

required in the derivation by Lebowitz and Spofi8], in  ability of observing arajectoryis equal to the product of the

which case it is assumed that if the rate constant for a forprobability of observing the initial phase point and the prob-

ward step is nonzero, then the rate of the reverse processility of observing the sequence of random numbers:

must also be nonzero. That is, in both derivations it is re-

quired that the reverse process be able to be observed. prob(I'(s);0<s<t)=prob(sV(0))prob(R;---R,). (10
Now it is shown how the probability of observing the

conjugate trajectories can be determined. For the system coihe probability of observing a trajectory segment with a par-

sidered, the initial phases are distributed microcanonicallyticular time-averaged value of is then given by the sum

so the probability of observing an initial phase inside a smalbver all trajectories with that value, and the probability ratio

phase volume,sV(I'(0)) about I'(0) is proportional to is given by

V(T,0). (9)

> SV(T5(0)p(Ry,.-.,Ry);

PAA (7)) ilIAT)=A, ()

p(A_(7) S SV (0)P(Ry,... Ry
AT =A_(7)

> V(L (0)P(Ry,...,Ry);
i|JA(TH=A1(7)

> VT _(0)pMT(Ry--Ry))
A=A (1)

> VI (0)P(Ry,-. Ry
iIJAT=A4(7)

> exd AL (1) 1oV (0)pM (R Ry))
IAT)H=A (1)

=exd — A, (7)1, (11
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FIG. 3. Ensemble-averaged response of the flux for a system of
32 particles in two Cartesian dimensions to which a strain rate is
applied at time zero and for which tleeLobp algorithm is used to b)

model the shear flow. The internal energy per particle was set at 2.5
3%* 1=0.4

E/N=1.560 32(i.e. T~1.0) and the particle density a=0.8. A

strain rate ofy=0.5 was applied. poL @, a

trajectoried for which the time-averaged value of the phase-

space compression factor is equaltq , and it is assumed 1f
that p(Ry,...,R,)=p(M(M(R;---R,)). The resulting fluc- i
tuation formula given by Eq(11) for this stochastic system 0.5 F
is identical to that for the deterministic, reversible systems. i ..98%

As in the deterministic case, there may be many different 0 Do | . .
pairs of conjugate trajectories which each have the same

X

X

X

where the notation| [ A(T';})=A . (7) is used to represent all sk X
! X
X
X

value forA (7).
The FT derived above is valid faransienttrajectory seg- o

ments of arbitrary length. Averages of phase variables over 3 et
the transient trajectory segments approach the averages over E £ =06
steady-state trajectory segments in the long-time limit; there-  po, @] 2.5 | X o
fore, the stochastic FT will also apply to steady-state sys- . X

tems.

2

[ll. NUMERICAL TESTS OF THE FLUCTUATION
THEOREM APPLIED TO TRANSIENT STOCHASTIC

SYSTEMS s 1
0.5 C ){ ]
TransientNEMD simulations of Couette flow using the o E X %i ]

sLLob algorithm and the usual Lees-Edwards periodic
. X . -0.5 0 0.5 1 1.5

boundary conditions, were carried out employmgtochas- —

i . . . . . 0,.(t)
tic force in thex direction and the corresponding Gaussian

isoenergetic thermostat. The equations of motion for this sys- FIG. 4. Histograms ok, (7)=(1/7)[jds a(T',(s)) for a sys-
tem are tem undergoing transient response to an applied strain rate of
aG=pi+ivy, =0.5. The internal energy per particle was seEaN=1.560 32

i= Py (i.e., T~1.0) and the particle density at=0.8. Trajectory seg-

pi=Fi—iypyiti&—ap;, (120  ments of(a) 7=0.1,(b) 7=0.4, and(c) 7=0.6 were used.

%

<

g 3
1.5:— x
b *
; %
X
X

Since for this system A(I')=—2Na(I')+0(1)

with the thermostat multiplier given by
=o(I)V/Kg, the fluctuation theorem becomes

|—1§|px|2N7(p"<.'pIV'+ X'y'), (13 -
iZ1Pi P M
p(a_(7))

=exd 2Na, (7)7], (14)

The system consisted &f=232 particles in two Cartesian

dimensions and the particles interacted with the Weeks-
Chandler-Anderson short-ranged, repulsive pair potentialvhere O(1) terms are omitted since they are negligible in

[15]. Lennard-Jones units are use throughout. The internghe thermodynamic limit and to reduce the complexity of the
energy per particle was set BfN=1.56032(i.e., T~1.0)  expression. The system studied here is sufficiently small that
and the particle density at=N/V=0.8. A strain rate ofy  these effects cannot be neglected, and they are included in
=0.5 was applied. the data presented.
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FIG. 5. Plots of{In[p(a (7))/p(—a.(7))]}/(2N7) vs a (1)
for the system considered in Fig. 4 with) 7=0.1, (b) 7=0.4, and
(c) 7=0.6. Order (IN) corrections are included. The straight line is
of unit slope, and it is the result predicted from the FT. The slopes
obtained from weighted least-squares fits &ae 0.98+0.01, (b)
1.00+£0.02, and(c) 1.02£0.04.

FIG. 6. Histograms ot (7)=(1/7)[{ds a(I',(s)) for a sys-

. . . , tem undergoing steady-state shear flow with an applied strain rate
In the simulations, the stochastic teginwas the product - y=0.5. The internal energy per particle was set BN

of a random number and &function at each tim.e ste_p. The. =1.560 32(i.e., T~1.0) and the particle density at=0.8. Trajec-
random numbers were selected from a Gaussian dlstrll_)utlo'%ry segments ofa) 7=0.05, (b) 7=0.2, and(c) 7= 0.4 were used.
with & =0, a standard deviation of 1.0, and were restricted
within the rangg —10.0, 10.Q.

Figure 3 shows the ensemble averaged response of the ) ) )
flux which indicates that a steady state is approached and there obtained withr=0.1, 0.4, and 0.6. These histograms
initial transient response has a Maxwell time of approxi-are shown in Fig. 4. The FT predicts that a plot of
mately 7y =0.07. {In[p(a (7))/p(~a(7))]}/(2N7) versus a. () should

In the transient response simulations, many initial equilio-give a straight line of unit slope. For each of the trajectory
rium phases were generated and the response to an applieeigment lengths considered in Fig. 3, the FT was tested with

strain rate was monitored for various trajectory segmen©O(1/N) corrections included. The normalized probability ra-

lengths. Histograms of tios are shown in Fig. 5. In each case, a slope of unity is
obtained and the FT is verified.
E+(T)51/TJ'TdSa(F+(S)) _ These results show that the F_T is valid for finite averaging
0 times of this transient, stochastic system.



164 DEBRA J. SEARLES AND DENIS J. EVANS PRE 60

35 ¢ V. CONCLUSIONS
3F The present work shows that the fluctuation theorem is
25 quite general and applies to both deterministic and stochastic
5k nonequilibrium systems. As was found to be the case for
Slope s g deterministic systems, the fluctuation theorem applipsit

all times to finite(transient trajectory segments which are

: : initially sampled from the equilibrium microcanonical en-

05 b E semble and then move isoenergetically towards a steady state
: 3 and (i) asymptotically to long-time steady-state trajectory

segments. In all cases—transient or steady state, stochastic,

T ' ’ or deterministic—the fluctuation theorem applies in both the
linear and nonlinear response regimes.
FIG. 7. The slope of plots of {In[p(a. (7)) As a final comment, we note that although the theory and

p(—a, (7)]H(2N7) vs a,(7) for various trajectory segment simglatiqns presented here apply to systems in which every
lengths. The result is consistent with a convergence to a value dparticle is ergostattegso-called homogeneous thermostat-
unity in the long-time limit which is the result predicted from the ting), the theory presented here applies equally well to sys-

FT. tems were only a subset of the particles are thermostatted
[16]. The theory also applies to systems composed of mix-
IV. NUMERICAL TESTS OF THE FLUCTUATION tures of particles with different interparticle interactions. We
THEOREM APPLIED TO STEADY-STATE STOCHASTIC can therefore obviously model boundary thermostatted sys-
SYSTEMS tems where a fluid obeying Newtonian mechan(ics., no

. thermostat flows inside thermostatted solid walls, using the
~ The FT was also examined for steady-state systems evoltheory presented here. To treat such a system, consider a
ing with the stochastic equations of motion considered inmixture of two types of particles where at the temperature

Sec. lll. Histograms of and density studied one set of particles, the wall patrticles, is
_ T in the solid phase and is thermostatted and the other set of
01+(7')51/Tj0 dsa(l',(s)) particles is liquid and is not thermostatted. In such cases the

only difference to the theory above is that in equations such
for steady-state trajectory segments of length0.05, 0.1, as Eq.(6), above theN refers to the number of thermostatted
0.2, 0.3, and 0.4 were calculated. The results #6r0.05,  Particles and not to the total number of particles.
0.2, and 0.4 are shown in Fig. 6.

For steady-state trajectories, the FT predicts that a plot of ACKNOWLEDGMENTS
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indicating that it approaches unity in the long-time limit.  acknowledged.
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