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Contradiction of quantum mechanics with local hidden variables for quadrature phase
measurements on pair-coherent states and squeezed macroscopic superpositions
of coherent states
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P. Deuar and M. D. Reid
Physics Department, University of Queensland, Brisbane, Australia
(Received 22 September 1998

We demonstrate a contradiction of quantum mechanics with local hidden variable theories for continuous
guadrature phase amplitu@gosition” and “momentum”) measurements. A contradiction is shown possible
for two quantum states: a pair-coherent state, and a superpositions of two coherent states, where the superpo-
sition state has been squeezed by the action of a two-mode squeezing operator. In one case a contradiction is
still possible for states of increasing photon number, though the effect becomes smaller and more difficult to
observe. The high efficiency of the homodyne method of measurement of quadrature phase amplitudes may
open a way for a loophole-free test of local hidden variable theories, and the effect of detection loss on the
contradiction with local hidden variables is calculatE8l1050-294{09)02208-9

PACS numbds): 03.65.Bz

[. INTRODUCTION measurements. By this we mean that the quantum predictions
for the probability of obtaining results and p for position
Einstein, Podolsky, and RosdiEPR [1] in 1935 pre- and momentum(and various linear combinations of these
sented an argument for the incompleteness of quantum meoordinates cannot be predicted by any local hidden vari-
chanics. The argument was based on the validity of two preable theory.
mises: no action at a distan¢cality) and realism. The This result is of fundamental interest since the original
original argument of EPR considered position and momenargumen{1] of Einstein, Podolsky, and Rosen was given in
tum measurements which could be performed on each of twterms of position and momentum measurements. It was
particles at spatially separated locations. BEY later  pointed out by one of ufl0] that quadrature phase ampli-
showed that the predictions of quantum mechanics are intude measurements performed on the spatially separated out-
compatible with the premises of local realigor local hid-  puts of the nondegenerate parametric amplifier could poten-
den variable theorigsExperiment$3] based on Bell's result tially be an example of the EPR paradox. A criterion was
indicate the failure of local hidden variable theories. established to test for an EPR paradox even where correla-
Bell's original result, and subsequent theoretifal ex-  tions are not perfect, and “elements of reality” deduced us-
ample, Refs[2,4-6]) and experimental work which test lo- ing the premises of “local realism{as defined originally by
cal hidden variable theories against quantum mechanicE€PR have an indeterminadyl1] in their values. Such EPR
considered measurements which have discrete outcomesyrrelations, for continuous variables, were generated experi-
such as measurements of spin or photon number. By this waentally by Ouet al. [12] in a high efficiency experiment
mean that the eigenvalues of the relevant system Hermitiansing homodyne detection. The original state considered by
operator, which represents the measurement in quantum meinstein, Podolsky, and Rosen, however, and that produced
chanics, are discrete. The more successful experimental testgperimentally in the realization by Qet al,, give probabil-
to date have involved photon counting measurements, foity distributions forx andp completely compatible with local
which the results of the measurement, a photon present @ealism. This is so because, as discussed by B4l the
not, are discrete and only microscopically different. Associ-associated quantum Wigner distribution is positive in these
ated with such experiments are relatively low detection efficases and can thus provide a local hidden variable theory.
ciencies, which currently make a test of Bell's original in- We also note that the homodyne method of measurement
equality not feasible. These experiments test weakefl3] of the quadrature phase amplitude employs a second
inequalities 7] for which one needs to make additional aux- “local-oscillator” field which combines with the original
iliary assumptions, preventing local hidden variable theoriedield to provide an amplification prior to photodetection.
from being ruled out conclusivelj8]. Large field fluxes fall incident on highly efficient photodiode
In this paper we expand on our initial results publisheddetectors. This high intensity limit has not been indicated by
previously [9]. We show how the predictions of quantum previous workg14] which showed contradiction of quantum
mechanics for certain entangled quantum superpositions ahechanics with local hidden variables using homodyne de-
coherent states are in disagreement with those of local hidection, since these analyses were restricted to a very low
den variable theories for a situation involving continuousintensity of “local-oscillator” field. The possible macro-
guadrature phase amplitu¢gosition” and “momentum”) scopic nature of such experiments has been discussed previ-
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A B with continuous variable outcomésorresponding to a con-
< a b y tinuous eigenvalue spectrum in quantum mechanics
«— 0 "5 o —> If we now postulate the existence of a local hidden vari-
x4 X: able theory[ 2], we can write the probabilitieB, ,(x,y) for

getting a resulk andy, respectively, upon the simultaneous
A B ; ;
FIG. 1. Schematic representation of the proposed test of locdneasurements; andX in terms of the hidden variables

hidden variables. Balanced homodyne detection allows measur@s follows:
ment of the quadrature phase amplitu&(ésandXB , to give results

x andy, respectively. Poa(Xy)= f pPMIPLONPE(B AN, (2)

ously[11] in the context of the Owt al. realization of the , L , ,
Einstein-Podolsky-Rosen experiment. The high efficiency ofl "€ P(X) is the probability dls'[Ar|but|on for the hidden vari-
detectors may also provide a way to test local hidden vari@ble state denoted by, while pi(6,\) is the probability of
ables without the use of auxiliary assumptions which weake@btaining a resulk upon measurement atof Xj, given the
the conclusions of the former photon counting measurehidden variable state. ThepJ(#,\) is defined similarly for
ments. We therefore calculate the effect of detection loss othe results and measurement Bt The independence of
the predicted contradiction with local hidden variables. p2(6,\) on ¢, and p?(d:,)\) on @, is a consequence of the
We stress that recent independent work by Yurke, Hillerylocality assumption that the measuremenfatannot be in-
and Stolef{15] has also shown an incompatibility of quan- fluenced by the experimenter’s choice of parameteat the
tum mechanics with local realism for quadrature phase amlocationB (and vice versa It follows that the final measured
plitude measurements performed on certain quantum sysgrobabilitiesP%2 (6, $), P%(6), andP () can be written
tems. There have also been further recent calculations by a similar form,
Munro and Milburn[16].

A _ A
Il. GENERAL FORMALISM P+(6) fp(k)p+(k,0)dh, ©
The Bell inequality is a consequence of the assumptions

of locality and of realism. Consider an initial nondegenerate PE(¢)IJ p(M)PS (N, p)dN, (4)
two-mode statdW). Each mode of the state is directed to
two physically separate locatiodsandB as indicated in Fig.
P%(0.9)= [ pOUPROLORE DA,
Measurements are made of the field quadrature phase am-

plitudes X, at locationA, and X at locationB. Here we  \yhere we have simply sai? (6,\)=f,=op’(6,\)dx, and

define similarly for pE(¢,)\). It is well known that one can now
A - _ ~y ) deduce[2] the following “strong” Clauser-Horne-Bell in-
Xy=aexp(—i6)+a'expif), equality (no auxiliary assumptiong7] have been made
(1)
XB=b exp—ip)+bexpib). o PA%(0,¢)—PL%(0,¢")+PLE(0',4)+PLE(6',8)

PY(6")+P%(o)
Where our system is a harmonic oscillator, we note that the

angle choice® (or ¢) equal to zero andr/2 will correspond <1 (6)
to momentum and position measurements. The result for the

amplitude measurement; is a continuous variable which lll. VIOLATION OF THE CLAUSER-HORNE-BELL

we denote by (or sometimes,). Similarly the result of the INEQUALITY USING QUADRATURE PHASE
measuremenxg is a continuous variable denoted lpy(or MEASUREMENTS FOR A PAIR-COHERENT STATE

sometimes<).

We formulate a Bell inequality test for the experiment
depicted by making the simplest possible binary classifica
tion of the continuous results andy of the measurements.
We classify the result of the measurement to-bg if the 27 _ _
quadrature phase resut(or y) is greater than or equal to |‘1’)m=/\/f e '™|roe'%)alroe™"*)pds. 7
zero, and— 1 otherwise. With many measurements we build 0
up the following probability distributions®”; () for obtain-
ing a positive value ok; PE(qS) for obtaining a positivey;
and P48 (6,¢) the joint probability of obtaining a positive X e
result in bothx andy. While this coarse-grain classification andg, andb” andb are the usual boson operators for the two
may not give as sensitive a test as a possible alternative BeiPatially separated systertfer example, field modesat lo-
inequality derived for the continuous variablesandy di- ~ cationsA andB, respectively. In many optical systems te
rectly, a violation found for the coarser treatment is still firmand b are referred to as the signal and idler fields, respec-
confirmation of failure of local realism for measurementstively. This state, originally defined and considered by Agar-

We consider the following two-mode entangled quantum
superposition state, discussed originally by Agarwal and
Tara and Agarwa|17,18 and also Reid and Krippn¢d9]:

Here A/ is a normalization coefficient. Herg...), and
| ...)p are coherent states in modasandb, where thea'



PRA 60 CONTRADICTION OF QUANTUM MECHANICS WITH . .. 4261

wal and termed a pair-coherent state, is an eigenstate of the 1\ 4
photon number difference between signal and idler modes a{Xgl@)a= o
with eigenvaluam:
1 . 1 1
nin ngn 2 —i0y, _ T 2.-2i0_ | |2
(a'a—B"D)|W)m=m|¥),. 8 XeXp{ gXotae Xy pate 31l

.- (15
Also it is an eigenstate of the operata,

where|x,), is the eigenstate ok%=aexp(—i6)+a'exp(6),

ab|W)n=r5[¥)n. (9 and we use similar definitions for modie We have
For our purposes we shall concentrate onrifre O case 2m i i
in Eq. (7) which when normalized is a<X9|b<X¢|\P>:BU2 0 dsalXglo(X 4|1 0€'%)alr o€ "*)p
o ' 172
|\P>=Bl’2f Iroe's)alroe™'$)pds, (10) = ﬂ) exp(—r3}
0
1 2m
with Xexp{—z(x?frxf/)) fo do

B~1=4n% 20| (2r2), (11 r2 o _
oo Xex;){—io(ez'(‘?)()ﬁtez'ﬂ)}, (16)

and wherel; is a modified Bessel function. Expanding out
each of the coherent states into number stitgsfor each  where 9=s+¢, xy=0+¢. The probability distribution

mode we can write the state as Py,4(Xp,X4) becomes
G ()" Py.s(Xp.Xg) = a(Xola(X 4| ¥)I? (17
[W)=[lo(2rf)] 1/220T|n>a|”>b, (12

B

1 ) 5 27 2m
_Eex —E(xe+x¢) fo do . do

as originally introduced by Agarwal.

The quantum state given by Eq4.0) and(12) is poten-
tially generated, from vacuum fields, by the interaction mod- xexp— ‘/E[A(rO)XﬁJF B(ro)xy]+C(ro)t,
eled by the following Hamiltonian, in which coupled signal- (18

idler loss dominates over linear single-photon loss. .
gie-p with the factors

H=i#E(a'b'—ab)+abl"T+a'b'T. (13
A(rg) = — ~2 (&0 4 =i -0y,
This interaction is achievable in principle by nondegenerate \/E
parametric oscillation/19] in a limit where uncorrelated
single-photon loss in each of the signal and idler fields be- ro _ .
comes negligible. HerE represents a coherent driving para- B(rg)=— E(ef“hr e,

metric term which generates signal-idler pairs, wHileep-

resents reservoir systems which give rise to the coupled (2

signal-idler loss. The Hamiltonian preserves the signal-idler Clro)=— _0(4+92i(1‘}—)()+e—2i(ﬁ’—X)+e—2iﬁ+62i0’)_
photon number differenca’a—b'b, of which the quantum 2

state(10) is an eigenstate, with eigenvalue zero. We note the

analogy here to the single-mode “even” and “odd20] IF is evident from this expression thBf, ,(X,,Xy) is afunp-
coherent superposition states tion only of the angle sumy= 60+ ¢ so we can abbreviate

P2B (0,0)=P%B (). Also we see that on making the vari-
NY%(|a)+ |- a)) (14) able changey=—9 and ' =—9' in the integrationg18),

- we obtain the same form for the express®p,(x4,x,) but
replacing y with —y. That is, we have P%E ()
=P8 (—x).

We note that the probabilitie®, 4(x,y) for the pair-
coherent state could also be evaluated using the expression
(12). Here one uses the result

(Where « is real andN;*=2[1+exp(—2|e/)]) which are

generated21,27 by the degenerate forifseta=b) of the
Hamiltonian equatiori13) and which have been recently ex-
perimentally generatef23]. These states are of interest in
that they resemble, for larger, “Schrodinger-cat’states
[24].

1/4
The calculation of the quantum prediction f8rfor the (xgln)y= L(i) e*X§’4e*”“’Hn ixe)_ (19)
guantum staté10) is straightforward in principle. We use y2rnt \ 27 J2
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FIG. 3. Plot ofSversusr, for the angle values indicated in the
text: ;= 6,= 6= /2 ando=5m/4.

T

T

T PE(d)):Jide(}J‘O dX¢P9'¢(X9,X¢).

At ] These integrations could be evaluated by direct numerical
integration[use Eqs(16) and(17) directly]. An analysis al-
, lowing for a much quicker numerical evaluation is presented
e T T in Appendix A.
! We note certain properties of the distributiBt® (9, ¢):
R B R R P28 (0,4)=P%(x); PR (0 =Pii(x+2m); PA(x)
(b) ) =P8 (- x); and the marginals satisfy, as proved rigorously
in Appendix A, P2 (6)=P2(¢)=0.5. It then becomes ap-
FIG. 2. Representation of the probabilRy, ,(x,y) for gettinga ~ Parent that the value fd® involves only three independent
resultx andy, respectively, upon the simultaneous measurementé@ngles[which we specify bys;=6—6', 5,=¢'— ¢, o=
X5 and X5, where 6= — ¢. (a) ro=1.1; (b) ro=2.5 showing the —(6+¢')].
increasing separation of peaks and the interference fringes charac- Results forS are shown in Fig. 3, for the choice of mea-
teristic of quantum superposition states. surement angles giving, = 8,= 6= w/2 ando = —37/4 (or
the negative value$=— /2 and c=3/4). This choice
corresponds to 0+ ¢p=6"+¢'=—(60'+ p)=ml4, 0+ ¢’
=3m/4 (for example se¥=0, ¢p=—7/4, ' =u/2, and’

=3

-3}

TTTT
1]

BT TTT

—a}

This approach was used by Tara and Agarjis], who
calculatedP ,(x,y) in a paper to establish the existence of R B
correlations between the quadrature phase amplitdgesid ~ ~ _/43577/4) so that the simplification S=3P°% (7/4)
X5 at the locationsA andB, respectively. Tara and Agarwal — P~ (3n/4) can be made. We have shown that for small
[18] showed the correlation to be sufficient to satisfy thelo (Iess than about 1.5) this angle choice maximi8egig-
criterion developed by one of UReid [10]) for a demon-  Ures 4 al?d 5 |I!ustrate the variation in the value $fvith
stration of the Einstein-Podolsky-Rosen paradox. As disvariation in choice of angles. o
cussed in the Introduction and explained elsewhere, the ex-_Violations of the Bell inequality, and hence contradiction
istence of such correlations does not in itself imply a failureWith the predictions of local hidden variables, are indicated
of local realism. for 0.96<ry=1.41, the maximum V|0_Iat|on (ﬁé 1.0161 be-
Figure 2 shows the distributioR,, ,(x,y) for selected ing aroundr y=~1.12. We note that this approximate vfalue of
choices off , and 6+ ¢. The strong correlation fofi=— ¢ is o Was also found by Tara and Agarwdlg] to be optimal

evident. for the demonstration of EPR correlations, and corresponds
We proceed to calculate the event probabilities needed fd° the greatest amount of two-mode squeezing. We have
the Clauser-HormetCH) Bell inequality (6). We have mentioned previously in the Introduction, however, that the

existence of such correlations does not imply necessarily a
violation of local realism for the experimental arrangement
B o o we consider in this paper.
P (0, ¢)=f dx¢f dXgP g, ¢(Xg,Xe), We note that the violations are lost at larger coherent
0 0 amplitudes ry. It is possible to obtain(Appendix B
asymptotic(larger ) analytical forms for the probability dis-
tributions which allow a complete search for all angles. Re-

PA(9)= ﬁ dx‘f’Jo dXgP g, 4(Xg %), (20) ;Lg;c(sa indicate no violations of the Bell inequalit§) are pos-
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2n ~~N s~ " \ quantum predictions in the truly macroscopic “dead” or
\ “alive” classification limit.
Accurate quadrature phase amplitude measurements have
1.5
: ) 1

.8

.6 1

> 0.3

been performed in a now significant number of squeezed-
N
N
0
0
0

state experiments, in which the measurement is performed
\ o
0

1.01

7

oscillator field to create an amplification prior to detection,
which means that fields of large intensity fall on the photo-
detectors. The method employs photodiode detectors and is
more highly efficient than detectiofsee, for example, Ref.
[27]) in the photon counting experiments which have char-
acterized tests of Bell inequalities so far. These previous ex-
periments are limited by detection efficiencies to the extent
s that no strong Bell inequality test has been performed to
date. Given the efficiency of the homodyne detection method
FIG. 4. Forr,=1.1 we show a contour plot &as a function of then, the smallness of the violation for the experiment pro-
o andé. The inset has units af on its axis and shows a closeup of posed in this paper is not necessarily an indication of a rela-
the region of violation denoted in the dashed square. Note the santéve lack of feasibility.
violations occur for the lower square at37/2 ando=37/4. We then proceed to examine the effect of loss, such as
from nonideal detectors, on the violations of the strong Bell
In the largerr  limit the probability distributions fox and  inequalities.
y begin to show two widely separated pedés indicated by
Fig. 2. For our particular choice of quantum stdthe pair
coherent stafethe +1 and —1 results will never be truly IV. EFFECT OF DETECTION INEFFICIENCIES
macroscopically distinct because there is always a nonzero AND LOSS

probability for values ok near zero. Nevertheless we hypo- |t is well known that a nonideal photon detector can be
thetically consider a situation where thel and—1 results  ogeled by a beam splitter followed by an ideal detector
of the measurement correspond to macroscopically dIStInC{tl3]_ The attenuating beam splitter mixes our input signal

outcomes, resembling the “alive” and “dead” states of the mode operatof with the vacuum operatai. ... to give two
“Schrodinger cat.” This is the truly macroscopic limit P P vac 10 9

stressed by Leggett and Gdi2f]. In fact it can be demon- OUtputsc, andd, at locationA:
strated that, for any quantum state, the incompatibility with

1

/

using homodyne detection. This technique employs a local-
0 h, h

v

T

local hidden variables must become increasingly small, for ea=Jra+V1— ra

the case where the quadrature phase amplitude resafts w = vacy (21)
y only take on values increasingly macroscopically distinct.

In this limiting case, the addition of a noise term of order the da=V1—na— V720

standard quantum limithis corresponds to a variande€x

=1) to the result of quadrature phase amplitude measure—h s th I effici ¢ Th d
ment will not alter the+ 1 or — 1 classification of the result. WNere 7 Is the overall efficiency factor. € measure

Yet it can be shown that the quantum predictions for thequadrature phase operator is now thatgef With two spa-

results of such a noisy experiment are given by the convolutially separ{:\ted beam splitters modeling loss at each detector
tion of the quantum Wigner function/(x5,x4,,,x5 ,xB,,) for ~ We may write our total input state as

the state (10), with the Gaussian noise term (i3

X exp(—[xg2+x5,2+ x52+ xB,21/2) . This new Wigner func- _ L (27 .

tion is always positivésee, for example, Ref26]) and can |'”>2312f0 r0€"%)al0)a [r0€ *)pl0)p  ds, (22

then act as a local hidden variable theory which gives all the

where the|0) represent the vacuum inputs for input modes
ayac and by, to the two beam splitters. Using techniques
outlined in Yurke and Stoldi28], one writes the output state
as

BN
217717, 05 S OO
ISR
S S
s NN,
“0/’[[,{!5;—-’5_3\ NSRS % % Y,

e

W (P N
NN
0.7 ‘\\\\\\\\\;’(:{{’I;;"I;/:““::\\““‘»
NI
2

27 . .
|0ut>=81/2J0 Ifnroe“)cAlvl—nroe'%A
><|\/;r0e“§)CB|\/1— nroe‘“)dqu. (23

The final probability of observing results, andx, for the
FIG. 5. Plot of the variation of the maximum value 8fopti-  quadrature phase amplitude measurements in attenuated
mizing with respect tar) versuss; and §,. Herery=1.1. modesc, andcg is
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+oo +inf (where a is real and N™1=2[1+exp(—2|a|’)cosk)])
Py,o(Xg,Xg)= Lm dXvac,()J:_ f dXvace through a beam splitter with a second vacuum input such that
" the output modes are given by E@1). Yurke and Stoler
X e {Xpl g Xvacalc <X¢|d <Xvac¢|OUt>|21 [28] have considered this situation to show that the output
AT TR TR B ) state is the two-mode cat state
(24
outy=N @) V1= na)gt+ el —Vna)l— V1—na)y).
where we use Eq15) to calculate the probability amplitude. loud (|\/; )el na)d | J; ) 7 i;)9)
Calculation of the Gaussian integrdlsse [ d?x exp(—\|x[?
+ ux* +vx)=(m/\) exp(uv/\) which is valid for anyu or v We evaluate the relevant probability distributions
and Re\>0]in Xyacp @NdX,4c4 and simplification gives the Py 4(x,y) for measurement oKy and X5 for the two-mode
following modification of Eq.(18): superposition staté26),
B 1 27 2 4 0 1
_ 2 2 ’ A,
Po,s(Xg,Xp) = Eex% - E(Xa+x¢) J’o dd o dd Pos(Xy)= o L,RZ—l KLReXp[ - E[Xa"' fLRﬂ 2]
Xexp—V2[A Io)X 1
q \/—[ (\/; 0) 7} Xexp{ _ _[X¢+§Eh¢]2}l (30)
2
+B(\7r )Xl + C(Vnro)}
X exp{2(1— n)récosﬁ— 9'}. (25) where in the above equatidnandR index four terms with_

andR taking on the valuest1 andK, y is defined as

Following the calculation in Appendix A finally gives the
marginals 1/2 as before and the expressin,(x,,Xx,) un-
changed except thét=— \7ro/V2 in Eq.(A15). and the variable/ Y= — (Rage "+ Lage'’) has been in-

Calculations reveal violations to be negligible oy  q,ced to simplify the notation. The variabf&: for the

~0.95. Such high efficiencies may be achievable with ho- : . :
modyne detection. However, the sensitivity to loss, also noOther mode can be obtained simply by replacingand 6 by

. ) ; ; Bo and ¢, respectively.
ticed in the observation of fringes due to Quantum™“ o oyent probabilitieé20) can then be written in terms
Schrodinger-cat” state$28], indicates that the limiting fac- :
oo . : of error functions, for example, as
tor may well be the difficulty in the preparation of the quan-
tum state.

Kir=exp{(LR—1)(|aq|*+|Bol*+Rig/2)} (3D

.A +1
. PLE(0.0)=7 2  ENR(OER®KR. (32
V. TWO-MODE “SCHRO DINGER-CAT” STATES LR=-1

In this section we look at the possibility of violating the Here Efr(6) =erfc({{w/+/2) [and similarly forEPr(4) but
inequality (6) with the following superposition of two-mode replacingA with B] has been introduced as shorthand for the
coherent state&lropping explicit reference to the two modes complementary error function of a particular argument.
for brevity): Using technique$30] allowing calculation of the error

_ functions with imaginary arguments we conduct a numerical
|cah = A"%(|ag)+€'?|—ap)), (26)  search over all angles for a violation of the inequali6y.
We found no violation, however.
where|ap)=|ag)al Bo)p and|ag), is a coherent state in the

modea. The normalization is given by VI. CONTRADICTION WITH LOCAL REALISM FOR
5 5 QUADRATURE PHASE AMPLITUDE MEASUREMENTS
A"1=2(1+ e~ 2%l *1Bol ) cosp). (27 ON A “SQUEEZED TWO-MODE CAT” STATE

Where the values o, B3, are large this state becomes a  In order to improve chances of observing both EPR cor-
Superposition of states macroscopica"y distinct in phasée|ati0ns and contradiction with local hidden variables we
space and thus resembles the Sdimger-cat state. There consider the two-mode superposition state evolved under the
has been much discussion of the single-mode versions, Egction of a two-mode squeezing operator, corresponding
(14), of this state, and recent experimental developmentghysically to interaction with a nondegenerate parametric
[23]. Multimode even-odd coherent states were studied i@mplifier or equivalent system generating photon pairs. Thus
[29]. we consider interactions given by the interaction Hamil-
Both the EPR argument and the Bell inequalities make afonian,
assumption of locality and hence we need to make measure-

ments at two distinct locations, distant from each other. To H,=ifix(a'h'—ab). (33
this end we have generalized the single-mode cat ¢iafe
to two modes which are separated as indicated in Fig. 1. A. EPR correlations for the squeezed cat state

We note that the two-mode cat state can be generated in

principle by passing a single-mode “cat” stai), It can be shown that such an evolution will generate EPR

_ correlated beama andb, in the sense of the original EPR
NYZ(|a)+e'¢|— a)) (28)  argument1,10]. We define the following particular quadra-
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04

ture phase amplitudes for modasand b: X,=a+a' and

P,=(a—a"/i, and similar definitions for the mode Now Lo
the solutions for the operators after a titnare AmAP»mM_
a(t)=acosh t)+ b sinh «t), 0

(34)

b(t)=Db cosh «t)+asinh «t), l
and for the quadrature phase operators "
01

Xa(t)=X,(0)cosh kt) + X,(0)sinh «t),

0.05

S(b(t) = S(b(O)COSI'( Kt)+ 5\(a(o)smk( Kkt), % o2 o4 06 08 1 12z 14 16 15 2
(39 T

FIG. 6. The product of the minimum inference variances
R . R . AZ i3 min fOr the “squeezed” two-mode “cat” state. The EPR
Pp(t)=Pp(0)cosh xt) — P4(0)sinh(«t). incompleteness argument can be formulated when this product
drops below 1g* (dashed ling The parameters are,=8,=0.9,
As «t |ncrease9(a(t) becomes increasingly correlated with ¢=0, andg= 2.
Xb(t) and Pa(t) becomes increasingly correlated with
—Py(t), with the correlation becoming perfect in the limit p(t)=N|cabt(caiN". (37)
kT—o. With modesa andb spatially separated after inter- _ _ _
action, this has been shown by one of i6] to give a direct We write this as, recalling. andR take the valuest1 or
example of EPR correlations. -1,
We can make two spatially separated measurements of the
correlated quantities in each mode. The results can be sub- oA A . -
L ; >H A - (LR—1)Rig/2 t T
tracted, yielding an estimate of the error in inferring the p(t) AL 271 e “““ND(Ray)[0XO|D (L ag)N',
value atA from a measurement @&. That is, we calculate (38)
8= Xa(t) — ¥Xu (1) andé,= P.(t) + yPy(t) [10]. The factor
v is a simple ampllflcat|on factor which we shall modify to Where
give the best estimate possilitbe minimum error. Over an

P,(t)=P,(0)cosh kt)— P,(0)sinh «t),

+1

ensemble of measurements we can calculate the variances I5(a0)=exp(aoéT—a3é+,806T—B3 6),
associated with our inference &, from X,, and P, from i A
Pyo: AZ=(85)— (802 andAj=(85) —(8,)% N=exp(—iHt/%).
The minimum variance WI|| occur for a particular value of . o o
v. Hence finding the local turning point with yields The symmetric characteristic function is
Vv 2 A Y 2 Y Y 2 ~ 2 ~ %0 1
i,min=AXa(T) AXp(T) = [{Xa(T), Xp(T))] (36 Xs(m,772):Tr{p(t)e,,lat,,la+,72br,,72b}:AL’RZtlXLR,

AXy(T)?

p(T) (39
where we have a similar expression ﬁoﬁ min and the cova-
riance is(x,y)={xy)—(x){y). We can calculate the neces-
sary averages for the two-mode “cat” state using the equa- _ - ~t xn CE L wpag
tions of motion. It is then easy to calculate the minimum  XLR={LadlN'exp(n,a’ = nia+ n,b'—»; b)N|Rap)
variance product and this is illustrated in Fig. 6. As can be x e(LR—1)Rig/2 (40)
seen from the figure, we predict that the prodﬂ;’;t’mm b.min
drops below the quantum I|m|tA(xA2<1/g4) illustrating
EPR correlations.

where

Now, sinceN is a unitary operator

xLr= (L aclexd ma(t) — y¥a(t)+ nb(t)"

7]2 ]|Ra/ )e(LR l)Rlzp/2 (41)

B. Contradiction with local realism

In order to search for a violation of the Bell inequality, we
must calculate the probability distributions for the results of
the two quadrature phase amplitude measurements at locehere the operatom(t) andb(t) are given by the equations
tions A and B. One may use the same techniques as use@if motion (34). Normally ordering the products in the expo-
above for the pair-coherent state. To give some visual infornential yields
mation, however, we choose here to perform the calculation
by first calculating the Wigner function, which is easily

1
_ Bl N, t
evaluated. The density operator for the system is XLR exp{ 2 7 AT M XR T XeL 7 (Kir, (42)
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where
n=(n1,— )",

Rcosh«t)ag+ L sinh(«t) 33
X =
R L coshixt)B5+ Rsinh(«t)aq

| |

The Wigner function is the Fourier transform of the charac-
teristic function:

|

cosh2«t)
sinh(2kt)

sinh(2kt)
cosh2kt)

+1
W=A > W, (43)
LR=-1
1 2 —XTp+5tx
WLR:; d<ne XLR (44)

with X=(a,8*)T. We can use the result for Gaussian inte-
grals

| :f d?nexp — A pTAn+ T +xin)

b /1
) exp< N XoA X,

whereD is the dimension of the vectors to evaluate the in-
tegrals, yielding

(45

w
-l

I

KLR

4
W r=

— O~ 2(X—Xr) A2(X—XiR)}  (46)
where
B 1_( cosh{2kt)  —sinh2«t)
A=Ay = —sinh(2xt)  cosi2«t) | @7

Now, we can introduce new variablegsand p such that
a=(Xatipy)/2 and B=(Xx,+ipy)/2. Using the vectors
=(Xa,%,)" and p=(pa,—Py)', together with xo=(X g
+X&)/9 andpe= (X r— Xg)/0i, Eq. (46) then becomes

o
2

g
~ = (P=Po) "A2(p—Po)

W :g4KLR 2
R a2

g

- E(X_XO)TAz(X_Xo)

|

Setting kT=0 gives the Wigner function for the two-
mode cat state, plotted in Fig. 7. We observe the presence

(48)

fringes and note the function is negative. The figure illus-

trates the effect of increasingr. Note that the Wigner func-
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kT=0.3

P

FIG. 7. Wigner function plotted withx,=x,=x and p,=p,
=p and ¢=0 for an initial two-mode “cat” state withay= S8,
=2.

2 coshixt)
Ty

1
ReRag+ LBO)( 1) ,

B 2 coshixt)

1
po |m(RaO_LB0)(1),

where here Re and Im refer to real and imaginary parts. Both
of these expressions are real, and hence there are no complex
terms in W, that can lead to oscillations. Hel&, g be-
comes a Gaussian and is everywhere positive, and can act as
a local hidden variable theory for quadrature phase measure-
ments. We conclude therefore that no contradiction of local
ofalism for our proposed experiment will occur in this limit.
We introduce the following variables to include a homo-
dyne measurement at an arbitrary phase angle. That is, we

tion remains negative, preventing the interpretation of thestart from Eq.(46) but introduce the more genera), x,,,

Wigner function as a direct hidden variable theory.
In the limit of large interaction time where cot)
~sinh(xt) then

pyandp,: a=e"(x,+ipy)/2 andB=e"%(x,+ip4)/2. We
define the vectors=(x,,X4)", p=(pys.—Py)"- Now we
obtain
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2
XAz X+ip_§XLR)], (49
with
- ( cosh 2«t) —sinh(2kt)e 10+ ¢)
3T T2 —sinh(2kt)el 0t ) cosh2«t)
(50)
and
e’ 0
E=<O ei‘/’>' (51)

We need to integrate out the terms as this will yield
Po.g(X.y):

Py s(Xy)= f dpw,
(52

+1

P9,¢(X,y):L thl Po,s(X,Y)LR-

Now, expanding out Eq(49) and integrating ovep, fol-

lowed byp, leads to a messy expression which, after some

work, can be simplified as

P, ,(X,Y) 9K g TA; X+ RTx+G
X, =——exp — =X X X

0,6{XY)LR 27_“/5 2 4
2
g KLR 2 2

= expl —a(x5+x5)+2bx X ,+ RyX

271_\/5 p{ ( 0 ¢) 0o 176
+Ryx4+ G}, (53

where
C=cosh2kt)?>—sinh(2«t)? cog 6+ ¢),

B cosh2«t)
Aa= sinh(2kt)cog 6+ ¢)

sinh(2«t)cog 6+ ¢)
cosh{2kt) '

R=g(AsX rt+AIXE)

g ~ ~
— 50 (Aa= ADALAXLR= AR,

-1 - - - ~
G= 2_C(A3XLR_Agx’};L)TA4(A3XLR_AgXEL)
—2XE AKX (R,
g -1
Xr=E "Xir,

a=g?cosh2«t)/2C,

b=g?sinh(2«t)cog 6+ ¢)/2C.
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2r

2n

0

FIG. 8. The violation of the CH-Bell inequality found for a
squeezed two-mode ‘“cat” state. A contour plot $that contains
the maximum violation found. Parametexg= B8,=0.9, xt=0.6,
¢=0, and 6=0.77. The maximum achieved violation i$
=1.008 atf= ¢=0.42r7.

Now, finally, we integrate over a quadrant of the two-
dimensional Gaussian to get the joint probability of detecting
a (+) result atA and a (+) result atB.

+1
PAB(0,4)= X PLE(6,4)r,
L,R=-1

PA%(0,¢) r= fo dx, fo dx4Pys(X,Y)ir. (54

We may integrate this directly by numerical integration. Al-
ternatively some workAppendix Q allows for expressions
which may be evaluated more readily by numerical tech-
niques allowing for a search with a wide range of angles. The
main obstacle to finding a violation is the large size of pa-
rameter space that needs to be searched. The full CH-Bell
inequality depends on values af, By, kt, ande. Again it

is useful do define the angleg=6— 6" and5,=¢' — ¢. A
quick search reveals that the maximum value of our CH-Bell
inequality always seems to occur féhy=5,. In order to
reduce the size of the search of parameter space, we will take
61= 0, in the following calculations. Gived,= §,= 4, the
CH-Bell inequality can be reduced to a three-angle form:
S(6, ¢, 6). We shall also assume thag= B, and further that
this value is a real number.

With these restrictions a preliminary search of parameter
space does indeed find a violation, with the “best” value
occurring for the parameters,= B,=0.9 andxt=0.6.

Exploring the behavior of the maximum @&(6,¢,d)
with ¢ shows the behavior that seems independent of the
other parameters. In this search the domaing,ap, &, and
¢ were divided into 50 points.

Henceforth we will choose = 0. Examining the behavior
with & also gives a preferred value for this parameter, with
6=0.71.

Finally we are in a position to plo§(6,¢) and this is
performed in Figs. 8 and 9, which show a region where the
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Similarly we can construdinote that we must have® ()
= P’i(qb) from the symmetry of the pair-coherent state under

interchange of with b]

A B (2w 27 )
PAO) =5 | do | dv
0 0

X exp{2rg[cog 9— ') —1]}erfqA). (A2)

We will employ a power series expansion for the error

functions:
o 2n+1
0.96 : ; (_1)nk2n+l(2n)!
05 1 1.5 erf k e|a+e ia’
" (K D= \/—2 2 Arnenioni
FIG. 9. The violation of the CH-Bell inequality found for the x glu(2n+1-ngia(2r-2n-1) (A3)

squeezed two-mode “cat” state. The behaviorSwWith «q (note
that ag=Bo). The parameters aret=0.6, ¢=0, 0=¢=0.427,  where we have also used the binomial expansion and the
and 6=0.77. substitution a’=a—u. Note the following result which

arises when integrating the above expression:
violation occurs. The maximum value reache®is1.008 at
0=¢=0.42m.

Now we can examine the behavior with in more detail.
This is depicted in Fig. 9. Notice th&rapidly approaches
one so that the violation is for a small parameter range only. _ 2 ()
Note also thas seems to approach one asymptotically from
above, seeming to imply that a macroscopically sized super-
position state would also violate the CH-Bell inequality
(though by a tiny amount

2 . ., 2m .
f daerf(k[e@+e 2=, (.. .)f daga(@—2n-1)
0 n,r 0

)26 nr12=0,

(Ad)

where (. ..) denotes the terms in EA3) that are not ex-
plicitly written. This result follows since botlh and n are
VIl. CONCLUSION integral values and the delta functiéh,,, 1, will always be

We have expanded on our previous publication to present Now we have
two quantum systems which give a violation with local real-
ism for experiments involving only quadrature phase ampli- Be‘zrg o o "
tude (position and momentujmmeasurements. A small but PL(6)= f daf dg’ e?rocos@—9")
conclusive deviation from a Bell inequality has been found 2 0 0
for a pair-coherent state and a suitably squeezed superposi-
{1 erf( [ (07X g i(¥ X)])}

tion of two two-mode coherent states. The effect of detection
inefficiency and loss on the violation has been calculated
(transmission of order 95% requinedVhile such efficien- (A5)
cies may be obtainable by the homodyne detection proce-

dure, this sensitivity to loss may hinder the generation of th&yith a change of variables ta=9—y and a’=a—u,

suitable quantum state. whereu=9— ', it is evident that because of E¢A4), the
integral over the error function vanishes, leaving an integral
ACKNOWLEDGMENTS that can be identified as a Bessel function:
We are grateful to C. W. Gardiner and W. J. Munro for Be 2% 1
many helpful suggestions. P (6)= (27)21(2r3)= X (AB)
APPENDIX A Now, P%B (6,¢) can be treated in a similar way.
Provided we can interchange the order of integration and _2,0 o
complete the square, we write, using the re€l®), Eq.(20) PAB (9,¢)= j dﬁf d9’ e2recos@—19")
as
B (2n o X{1—erf(A)—erf(B)+erf(A)erf(B)}
PAB(6,4)=— f do | do’ (A7)
0 0

2 any and it can be seen that the first term will give a valug; pf
xexp2rolcod &= 9") —1ljerfaA)erfd(B). the next two terms will vanish, and the last term is the only

(A1) one that will present any difficulty. Hence we can write
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AB 1 where X, is a vector of values indexed tyyand given ex-
P (6,¢)= 7 T F(erf(A)erf(B)) (A8)  plicitly as

andF is the function left after dropping the first three terms M M s+2n+1

in Eq. (A7). As before, each of the terms in the product Xs:n:‘%_m mzls/%— 0 f(n,m,T
erf(A)erf(B) can be expanded in a power series, yielding

g2 = = niomid Xlaom(2r5)(—kHMHm, (A16)
erf(A)erf(B)= —
(A) ™ ng mz: 20 pgo Equation(A15) is the definition of a discrete Fourier trans-

form so by using the fast Fourier transform we can evaluate

xf(n,m,r,p)(—k%)™" this expression very quickly.

X eiu(2n—r+p—2m)eZi19(r—n-%—m—p)

Xe—iX(Zr—Zn—l)’ (A9) APPENDIX B
In the limit of larger, the exponent in Eq(A1) becomes
(2m)'(2m)! the delta functions(9— 9'):
f(n,m,r,p)= ,
n'mir'p!(2n+1-r)!1(2m+1—p)!
(A10) _ 2 ) J
lim f dd'exp{2rglcog 9—0')—1]}= r—&(ﬂ— 9")
wherek=—r,/\/2 and the variable change df'=9—u ro—0 0
has been utilized. (BY)
The integrals will now yield a Kronecketfunction and a
modified Bessel function: in which case performing thé’ integrals we get
2
Be?"ok? . B (2
F=——— > f(n,mr,p)e x@-2n"1 PAB (0,¢)= —— Vm J doerfd — v2r,cog 9 — x)]
w n,m,r,p 4rg Jo
% fzwdulegcos(u)eiu(Zn—Hp—Zm)fzwdﬁeziﬂ(r—n+m—p) Xerfd:_ \/Erocos(ﬁ)], (BZ)
0 0

27

(AL) Pﬁ(e)=g3fo dderfd — \2rocog 9—x)]. (B3)

0
—47Be2k? > f(n,mr,p)

nmr.p For larger, erfd — \2r ,cos@— x)] acts like a step function
e ix(2r-2n-1) 5 and hence we can evaluate the remaining integrals. Noting
that for larger, the normalization constant evaluates to

(A12)  B~l=2gmlr, we get

Utilizing the § function by settingp=m-—n+r on the un-

m—p,n—r|2(n—m)+p—r(2rg)'

derstanding that the factorial sequences terminate at zero, we PAB (0,)=|= — (6+ #)mod 27 (B4)
can write e 2 2m ’
o 2n+1 A
F=4mBe 2rokZE > 2 f(n,m,r)(—k3)m*n PL(0)=Pi(¢)=1/2. (B5)
=0 m=0 r=0
X1 _m(2r3)e xr-2n=1) (A13) APPENDIX C

In order to evaluate the expressi®}® (6, ¢) we rotate
the axis byw/4, then scale the axis, and finally change to
(2n)1(2m)! polar coordinates: >(H+x¢) v(a—b)/2=r cosw and (,
—x¢,) V(atb)/2=r sinw. With this transformation we ar-
rive at

f(n,m,r)

- nimirl(r+m—nm!(n+m—-r+1)1(2n+1—r)!"
(A14)
We can now change variables in the summationss to PAB 9, ¢)LR__j d”f

=2r—2n-1. Truncating then and m summations at some
valueM will yield (C1)

rzer(Ac05w+ Bsin w)
1

2M+1
F=4TrBe’2rék2 E X XS, (A15) where a_)o=ta_n‘1_[ Vy(a+b)/(a—b)]. Using a power series
s=—(2M+1),so0dd expansion will give
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Kig < (= rtler? P2%.(0,¢)1r
Pﬁ%(&@mzfzo odr— o

n Kir & & T(n/2+1)ALBL
wg A—iB\  [A+iB) :Tngo;o (n—n)'r!
Xf, w( 5 )e““+ > e 'Y, _
“0 Sin(wg[ 2r —n]) orn
(C2 X (2r—n) (3
o, 2r=n

where whereA,=(A—iB)/2 andB,=(A+iB)/2.

CalculatingP” () andP? (¢) is a straightforward modi-
fication of the previous calculation. Performing the integra-
tions yields, after some manipulation,

A=(R;+Ry)/\2[ cosh2«t) + sinh(2«t)cog 6+ ¢)],

PA(0) KRy _—luT(EX* +E*X, )
. + LR 2 2C05m2Kt) 1 RL LR/ |
B=(R;—Ry)/\2[cost{2«t) —sinh(2kt)cog 8+ ¢)]. (Ca)
PB((Z))LR:&erfC(_—Ug(EXEL_’_ E*XLR))
+ 2 [ kN !
Ther integral in Eq.(C2) gives a gamma functiohl, while 2costf2«t) (c5)
the w expression can be further expanded as a binomial se-

ries, and upon integration gives whereu;=(1,0)" andu,=(0,1)".
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