
 Redistr

brought to you by COREView metadata, citation and similar papers at core.ac.uk

land eSpace
Novel acoustic sources from squeezed cavities in car tires
M. J. Gagen
Department of Physics, University of Queensland, Qld 4072, Australia

~Received 10 July 1998; accepted for publication 17 April 1999!

This paper demonstrates that the partial squeezing of car tire cavities at ground impact cannot be
adequately modeled by the usual acoustic wave equation. A more complete treatment must begin
with the Euler equations for fluid flow in a squeezed cavity to derive a wave equation dependent on
cavity wall velocities and accelerations. These can be sizable as ground impact causes the walls of
a tire cavity to move with velocities of order 1 m/s and with accelerations of 103 m/s2 over time
scales of about 1 ms. Further, the geometry of a typical cavity is such that width compression causes
significant increases in pressure and density to occur before the arrival of the rarefaction wave
propagating from the open end of the cavity begins to exhaust the full length of the cavity. This
causes significant departures from equilibrium density and pressure conditions. These influences are
demonstrated both analytically and numerically. ©1999 Acoustical Society of America.
@S0001-4966~99!00708-0#

PACS numbers: 43.50.Lj, 43.25.Ts@MRS#
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INTRODUCTION

The loudest component of the far-field noise of ca
traveling over 50 km/h and of trucks traveling over 80 km
is tire noise.1 Previous treatments examining this area ha
typically used the low velocities of air movements arou
the tire/pavement contact point to justify use of the acou
wave equation and acoustic monopole theory. For insta
monopole theory has long been used to model air pum
from the squeezed cavities in car tires2 and is well confirmed
by experiments showing the dependence of the sound in

sity on the second time derivative of volume changesV̈ par-
ticularly when the volume changes are simple harmon
When volume changes depart from being sinusoidal the
between theory and experiment is not so good.3 Air pumping
noise sources occur as air moves into and out of tire cav
as the tire tread contacts the road and have been modele
treating the squeezed cavity as an organ pipe with one
closed so as to sustain al/4 resonance. This approach mo
els the air as a piston moving backwards and forwards o
spring.4–6 Experimental investigations have confirmed t
worth of these approaches.7,8

Other noise sources include Helmholtz resonances
horn effects between the tire and the road8,9 as well as from
interactions with road pavements10,11 and bridge grids.12 Fi-
nally, the tire itself possesses certain natural radial and
gential modes of vibration and excitation of these mod
generates noise. These modes are usually modeled u
variants of circular ring models.1,13–15

Jointly, the listed noise sources above are able to exp
a significant part of the far-field sound intensity of car tir
but cannot be considered a complete explanation. This p
demonstrates that the squeezed cavities in car tires fea
large-amplitude pressure and density excursions which
outside the regime of applicability of small-amplitude acou
tic monopole theory andl/4 pipe resonance approache
Rather, we argue that the high accelerations and velocitie
the walls of a groove in a car tire can violate the assumpti
underlying these approaches. A body of air responds a
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damped oscillator to volume changes and press
differentials6 and the finite size of the spring constant nec
sarily means that there is a time delay between a volu
change and resulting air movements. In effect, air respo
sluggishly to sufficiently fast volume changes. This make
worthwhile to investigate whether the squeezed cavities
car tires can hit the ground and suffer a volume loss fa
than the air within the cavity can evacuate along its length
typical period over which a cavity undergoes squeezing
be shorter than 0.2 ms and, in this time, a rarefaction w
can only travel about 6 cm. As the lengths of many t
cavities are of this order, it is evident that the volume d
crease can occur before the air is able to fully evacuate f
the cavity. Then, a decrease in volume by, say, 10% lead
an 11% increase in the density while a 50% volume decre
generates a doubling of the density. These potentially la
density fluctuations are well outside the regime of appli
bility of small-amplitude acoustic theory which explicitly as
sumes that density and pressure excursions are small.
paper seeks to incorporate the effects of squeezed vol
losses within the acoustic wave equation by including cav
wall acceleration and velocity terms.

Some evidence for the plausibility of these claims can
obtained from the literature and this is canvassed in Sec.
Sec. II we derive the acoustic wave equation from the Eu
equations for adiabatic air flow to examine the underlyi
acoustic linearization assumptions. We show heuristically
Sec. III that these assumptions are violated in the squee
cavities of car tires which can generate large pressure
density fluctuations. This motivates us to discard these in
plicable assumptions to give the Euler equations appropr
for squeezed systems in Sec. IV and to rederive
‘‘squeezed’’ acoustic wave equation in Sec. V that conta
many sound source terms not included in the usual acou
wave equation. Subsequently, we discuss approximate
lytic solutions to the squeezed Euler equations in Sect.
and show numerical simulations of a squeezed car
7946(2)/794/8/$15.00 © 1999 Acoustical Society of America

content/terms. Download to IP:  130.102.158.22 On: Thu, 29 Oct 2015 03:14:48

https://core.ac.uk/display/15050081?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


i

n
t

ct

itt
ot
a
rg
r

h
or
ol
o
.
t t
um

re
d
ta

vit
a
he
-
at
t

in
, f
ve

ve
is

ty
-
th

ow
id
n
s

ll

h
n

d in

tur-

i-
ion

all-

hen

sities

d.
er-
e
s

it

vi-
r of
he

re
ese
l
o
ere
-

 Redistr
groove under typical acceleration and velocity regimes
Sec. VII.

I. EXPERIMENTAL EVIDENCE FOR SQUEEZING
EFFECTS

The literature contains some experimental indicatio
that squeezing effects might be important contributions
car tires noise. We canvass this evidence now.

The principle observation implicating squeezing effe
in tire noise generation is that of Ejsmontet al.7 where it was
noted that there was a nonlinear dependence of em
sound intensities upon groove width. It was noted that b
thin width grooves and large width grooves generate sm
sound intensities while medium width grooves generate la
sound intensities. The width of a groove does not appea
l/4 pipe resonance theory which only considers the lengt
a groove and is not taken into account in monopole the
which only considers time rates of change of the total v
ume. These observations tend to show that the geometry
squeezed groove has some influence on sound intensity

The volume change of a squeezed groove is difficul
observe at high speeds. Estimates of the change in vol
range from an assumed 10%2 to 18% obtained from clay-
extrusion measurements.4 Reference 5 used static measu
ments to obtain a volume change of 5% and estimate
maximum of 3% at high speeds. These estimates do not
into account the additional loss of volume caused by
bumpy road pavement intruding into the air space of a ca
on ground contact. Typical road pavements might cont
gravel fragments of 5 to 8 mm in size which is similar to t
groove widths of a typical tire cavity8 so these gravel frag
ments might routinely cause additional volume losses gre
than those estimated above. It has been well established
the far-field sound intensity depends on highly nonlinear
teractions between a tire tread and road pavements with
example, observations that certain surfaces may be relati
noisy for cars but silent for trucks.10,16

These volume deformations occur as the groove mo
into contact with the ground at which point the tire wall
subject to radial accelerations of up to 3300 m/s2 peak to
peak and tangential accelerations of about 1000 m/s2 peak to
peak on millisecond timescales. These accelerations are
cal of a car traveling at 80 km/h1,8 and it is these accelera
tions which cause the volume loss on time scales faster
the air can evacuate from the cavity.

II. ACOUSTIC THEORY

The usual acoustic wave equation is derived in the l
velocity and adiabatic limits of the Euler equations for flu
flow. The conservative form of the inviscid and dimensio
less Euler equations in two dimensions for perfect gase
the adiabatic limit and with zero conductivity are17–21

] tU1]xF1]yG50,

U5S r
rvx

rvy

D , F5S rvx

rvx
21rg/g
rvxvy

D , ~1!
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rvxvy

rvy
21rg/g

D .

Here, we show the mass continuity~top line! and momentum
conservation equations in thex andy directions with veloci-
ties vx andvy , respectively.~We exploit symmetry to con-
strain fluid motions to this plane.! The adiabatic limit is re-
alized by relating fluid pressurep to fluid densityr as p
5rg whereg51.4 is the usual ratio of specific heats. A
variables are dimensionless with dimensioned~primed! vari-
ables being given byx85xL, v85va0 , p85pp0 , r8
5rr0 , andt85tL/a0 with L being some convenient lengt
parameter anda0

25gp0 /r0 being the local speed of sound i
ambient pressure and density conditions ofp0 andr0 . With
these choices a unit velocity equates to the speed of soun
the fluid.

The appearance and propagation of acoustic dis
bances is entirely described by Eq.~1! but is usually written
as a wave equation21 after making the small wave approx
mation. In nondimensional units, a Taylor series expans
in pressure gives

p511p1 ~2!

and

r511
]r

]pU
0

~p21!1
]2r

]p2U
0

~p21!2

2

511p1 /g1
1

2g S 1

g
21D p1

2. ~3!

This Taylor expansion is valid only whenp1!1 and we can
truncate the expansion at the first term to give sm
amplitude acoustic theory.~The error involved in this trun-
cation equates to the second term and is non-negligible w
pressure fluctuations are greater than aboutp1.1022. In this
paper we will show that squeezed systems generate den
of r51.1 in dimensionless terms, givingp1'0.14 with a
resulting truncation error of 0.002 which cannot be ignore!

The acoustic wave equation is then obtained by diff
entiating Eq.~1! or its three-dimensional equivalent to solv
for ] ttr with the further assumption of small fluid velocitie
vx ,vy!1 to give

] ttp12]xxp12]yyp12]zzp150, ~4!

where now we explicitly show the third dimension to perm
comparisons to the derivations below.

Acoustic monopole theory applies this equation to a
brating point source modeled as a small spherical emitte
radius R undergoing small oscillations much less than t

radius Ṙdt!R. The resulting volume changes are thenV̇

54pR2Ṙ which cause spherically symmetric pressu
waves to propagate into the surrounding medium. Th
pressure waves decay as 1/r and have the usual functiona
dependence on (r 2a0t) to satisfy the wave equation and t
describe delayed waves traveling outwards from the sph
at speeda0 . Thus, at the point~r,t!, the pressure has func
tional dependence
795M. J. Gagen: Squeezed cavity acoustics
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p1~r ,t !}
p̄~r 2a0t !

r
. ~5!

In spherical coordinates with approximately constant fl
density the conservation of momentum equation~1! is
r] tv r52] rp1 /g where we setv r

250 for low fluid veloci-
ties. Substituting Eq.~5! here gives

r] tv r}2] r

p̄~r 2a0t !

gr
}

p̄

gr 22
] r p̄

gr
. ~6!

This solution applies at the surface of the sphere wherr
5R is small and assumed to be much smaller than the wa
length of sound emitted, allowing us to ignore the seco

term on the rhs. Noting thatv r5Ṙ and R̈'V̈/(4pR2) we
have

rV̈

4pR2 '
p̄

gR2 . ~7!

In turn, this allows us to solve forp̄ and to substitute this
back into Eq.~5! to obtain

p1~r ,t !'
grV̈

4pr
~8!

relating the pressure wave emitted by a monopole sourc
the second derivative of the volume change of that sou
Dipole and quadropole sources are then constructed f
appropriate arrays of monopoles.21

Demonstrations of the failure of monopole theory can
easily derived when we consider a small spherical ballo
attached by a thin straw to a pump so that its volume can
changed in a controlled manner. We consider two ca
where the small balloon undergoes a linear collapse to z

volume with constant accelerationV̈50 and where the bal
loon undergoes a collapse and rebound sequence obtain

setting V̈5c, a positive constant, to obtain a volume qu
dratic in time.

The linear collapse of the balloon described byV̈50
gives volumeV(t)5V0(12t/T) for suitable constantsV0

and T and is expected to produce a rarefaction wave in
surrounding medium which should be heard if sev
enough. However, this pressure fluctuation makes no app
ance in monopole theory which predicts a pressure fluc
tion of zero.

Simple experiments can be performed to confirm
inadequacy of the monopole predictions. Clapping yo

hands together features linear squeezing withV̈50 except at
the time of impact so monopole theory predicts no sou
emission at all prior to this time and claims that the ‘‘clap
comes only from the instantaneous decelerations and b
vibrations caused by impact. This prediction can be show
be incorrect by first clapping your hands with the finge
together and then clapping with the fingers spread apart
use of two experiments we create a control which allows
to eliminate the deceleration from consideration as both
periments feature the same decelerations and body v
tions. ~The position of the fingers will not change decele
796 J. Acoust. Soc. Am., Vol. 106, No. 2, August 1999
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tions or vibrations.! The very different magnitudes of th
claps generated in these two experiments arising from
actly the same decelerations means sound intensities ca
be entirely explained by monopole theory with its exclusi
reliance on volume accelerations as a source of noise.

A clearer failure occurs when we consider a ballo

underdoing a volume accelerationV̈5c, a positive constant
to give a volume varying quadratically in time asV(t)
5(V02dV)(12t/t)21dV where V0 is the initial volume
and dV is the small volume of the balloon at the timet of
smallest radius. Here, the collapse and rebound of the
loon is expected to produce first a rarefaction wave follow
by an overpressure wave which should be heard if the mo
ments are severe enough. However, monopole theory
dicts an always positive constant pressure wavep1}2(V0

2dV)/t2.
Monopole theory has a restricted domain of applicabil

due to the very simplicity which is its principle advantag
As mentioned previously, air responds sluggishly even
local volume changes as a damped oscillator while monop
theory equates local air movements exactly with the volu
changes of the system.~This sluggishness is additional to th
usual propagation delays of wave motion at finite spee!
Further, simple source monopole theory considers o
single frequency, simple harmonic motions.21 For motions
which are not simple harmonic, we should first perform
Fourier decomposition into frequency components before
plying monopole theory. When volume changes are linea
quadratic the Fourier decomposition is broad and acou
emissions are not well modeled by single-frequency mo
pole theory. We note that Fig. 14 of Ref. 3 shows that mo
pole theory correctly predicts acoustic intensities when v
ume changes are approximately simple harmonic
provides poor predictions otherwise.

Any treatment of volumes varying linearly and quadra
cally in time requires a rederivation of the acoustic wa
equation properly taking account of the geometry of the s
tem and allowing for the velocity and acceleration of t
groove walls. We heuristically motivate a full examination
such systems in the next section.

III. PRESSURE AND DENSITY FLUCTUATIONS IN
TIRE GROOVES

We seek to heuristically consider density~and pressure!
fluctuations in a tire groove undergoing squeezing as it en
the contact patch.

Consider a tire traveling forward at linear speedv with a
groove etched into its rim that is orientated at anglef to the
direction of travel, and suppose that the groove, initially
width d0 , undergoes a compression to widthd1 as it enters
the tire–road contact patch. The groove is expected to c
press as the surrounding rubber takes the full weight of
vehicle. This situation is shown in Fig. 1. It seems reasona
to assume that the groove is subject to an inflow of air alo
its length as the rubber side walls~hatched areas! descend
onto the road and displace air sideways. This implies that
pressure wave caused by squeezing will dissipate only a
the wave has traveled the full lengthL of the groove.
796M. J. Gagen: Squeezed cavity acoustics
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~Throughout we consider a groove with one end closed—
analysis can be applied to an open ended groove of twice
length.!

The groove of lengthL has projectionL cosf in the
direction of travel and undergoes a squeezing along its en
length L in time L cosf/v. The compression point on th
groove then has velocity of

vc5
v

cosf
. ~9!

The groove squeezing causes an increase in the density
pressure of the cavity which propagates to the end of
cavity at the sound speeda0 ~for small fluctuations!. To a
first approximation, air cannot leave the cavity until th
pressure wave has traversed the full length of the ca
which takes a timet5L/a0 . In this same time the cavity ha
undergone a volume decreasedV5(d02d1)vctW from its
intial volumeV05d0LW. As no air has escaped to timet we
can immediately write the average density at timet as

r5
r0V0

V02dV
, ~10!

wherer0 is the initial density in the groove. In dimensionle
terms, the density fluctuationdr5(r2r0)/r0 is

dr5Fd0a0 cosf

~d02d1!v
21G21

. ~11!

As shown previously, we can ignore pressure and d
sity fluctuations when these fluctuations are small and
than of order 1022. Conversely, we cannot ignore squeezi
effects whendr.1022 or when

d0a0 cosf

~d02d1!v
,102. ~12!

Noting a0'340 m/s and typical squeezing volume losses
aroundd0 /(d02d1)'10 gives

cosf

v
,0.03 ~13!

to indicate when squeezing effects cannot be ignored.

FIG. 1. Squeezed geometry for tire grooves orientated at anglef to the
direction of travel.
797 J. Acoust. Soc. Am., Vol. 106, No. 2, August 1999
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In practical terms, when the forward speed of the ca
v5100 km/h orv528 m/s we find that all grooves of orien
tation anglef.33 degrees will undergo significant fluctua
tions due to squeezing. Conversely, if grooves are oriente
angles off545 degrees say, then squeezing effects are
evant only above speeds ofv524 m/s orv585 km/h. This is
precisely the speed range at which unexplained tire no
occurs.

The simple heuristic treatment of this section demo
strates that squeezing effects are expected to cause si
cant departures from ambiant pressure and density condit
with the magnitude of these departures invalidating the us
first-order Taylor series truncated acoustic theory. A pro
analysis of a compression point moving along a groove
arbitrary anglef is difficult and would require spatial- an
time-dependent coordinate transforms. This lies outside
scope of this paper. However, by narrowing our focus
consider only squeezed grooves orientated perpendicular
the direction of travel, we are able to model squeezing
fects using only time-dependent coordinate transformati
and this is feasible. We turn to consider these methods n

IV. FLUID DYNAMICS IN SQUEEZED CAVITIES

Most fluid dynamical flow problems are solved in r
gions defined by stationary boundaries. In contrast, we c
sider a region with dynamic boundaries chosen to change
nature of the solutions of the system of fluid equations.
effect, the boundary dynamics are described by their o
boundary equations which are additional to the usual fl
equations. It is well understood that adding further equati
to a given system of equations will usually change the nat
of the solution space. A common example of how movi
boundaries can modify the acoustic field within a region
the active control of noise in vehicles.22 Here, loud speakers
are used to pump out-of-phase sound across the bounda
the vehicle to cancel pressure fluctuations within that
hicle. Then, the moving boundary ideally forces the solut
of the acoustic wave equation to be one of constant den
r51 and constant pressurep51 everywhere in the vehicle
However, active control approaches typically deal only w
small amplitude acoustic waves and boundary moveme
which are small compared to the size of the vehicle. In t
paper we consider large pressure and density excurs
which cannot be treated using small wave acoustic theor

Consider the fluid in a region contracting due to exter
applied forces as shown in Fig. 2. Here a board of lengthL is

FIG. 2. Squeezed geometry for tire grooves orientated perpendicular to
direction of travel.
797M. J. Gagen: Squeezed cavity acoustics
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descending at velocityw towards a surface. The enclose
fluid is moving with velocity (vx ,vy) and is expected to be
ejected from between the boards into the outside unc
pressed region as the internal pressure builds up.~We exploit
symmetry to ignore thez direction.! We model the separatio
distance asd(t)5d0f (t) with time-dependent function cho

sen so thatf (0)51 andw5d0 ḟ .
This system is entirely described by the Euler equati

~1! together with dynamical boundary conditions specifyi
that the fluid velocity is constrained to havevy5w along the
top and bottom surfaces of the descending board and to
vx50 on the right-most vertical edge of the board.~Here we
consider an inviscid fluid.! An entirely identical description
of this squeezed physical system can be obtained by ma
a time-dependent coordinate transformation19

x5x, y5 f ~ t !x1g~ t !, t5t ~14!

designed to render the moving board stationary mathem
cally. This is achieved by choosingf (t) andg(t) so that as
the board in real space changes itsy position, the functionsf
and g are varied so as to leave thex position of the board
constant in computational space.

To clarify the physical meaning of this dynamic coord
nate transformation consider the case where the board is
scending smoothly at constant speedw, and for simplicity
consider regions whereg(t)50 ~the compressed region be
tween the boards!. Then, air parcels immediately adjacent

the descending board must have vertical velocityw5 ḟ ,0,
while air located adjacent to the stationary bottom surf
must have zero vertical velocity. Further, for small speedw
it is reasonable to expect that the the air parcels located
way between the descending board and the stationary bo
surface will have vertical speeds ofw/2 and, in general, tha
the vertical air speed is linearly proportional to the relat
height of an air parcel between the stationary surface and
descending board. This linear velocity dependence~valid
only at slow speeds! is realized by having air located initially
at height y0 ~where the maximum height is set to unit!
moving downwards in physical space with velocityvy

5y0 ḟ . The initial height at timet50 whenf (0)51 satisfies

y05x in Eq. ~14! giving vy5 ḟ x with different x for differ-
ent parcels of air. A linear dependence of vertical velocity
initial height is achieved by settingvy5 ḟ x, or as it is con-

venient to define the parametervx5(vy2 ḟ x2ġ)/ f and we
achieve a linear dependence of the vertical velocity on ini
height by settingvx50.

Standard change of coordinate methods23 or consultation
of the helpful Ref. 19 then give the computational space fl
equations as

] tU1]xF1]xG50,

U5S f r
f rvx

f rvy

D , F5S f rvx

f ~rvx
21rg/g!

f rvxvy

D , ~15!

G5S f rvx

f rvxvx

f rvyvx1rg/g
D .
798 J. Acoust. Soc. Am., Vol. 106, No. 2, August 1999
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Here, we mix termsvy and vx5(vy2 ḟ x2ġ)/ f to maxi-
mally simplify the equations. These equations reduce to
usual Euler equations~1! in the limit f 51, g50, and y
5x.

In real space, the squeezing of the boards compre
the inside air to expel a jet of air while in computation
space the board is stationary. Here, squeezing forces
been converted into mass and momentum injection te

proportional to ḟ / f with the injection of mass and momen
tum everywhere into the space between the boards gen
ing the observed jet of air in exactly the same way as
solid-fuel rocket.17,18 This indicates that whenever we hav

large wall velocities,ḟ '1 in dimensionless units, we ca
expect significant expelled jet flows.

V. SQUEEZED ACOUSTIC WAVE EQUATION

That squeezed systems can violate the assumptions
derlying monopole theory in at least two regimes is ma
apparent by solving for] ttr using the squeezed fluid equa
tions ~15! without making the small wave or low-velocit
approximations. The squeezed wave equation with all te
is

05] ttr2
]xxr

g

g
2

]xxrg

g f 2 2]xx~rvx
2!2]xx~rvxvx!

2
]xx~rvxvy!

f
2

]xx~rvyvx!

f
1

f̈

f
r1

2 ḟ ] tr

f

2
]xt@r~ ḟ x1ġ!#

f
2

ḟ ]x~rvy!

f 2 . ~16!

This equation reduces to the usual small amplitude w
equation~4! in the limits f 51, g50, vx , vy!1, p511p1

for p1!1, andr511p1 /g.
Here, it is apparent that terms previously left out in t

usual wave equation treatment become large in either of

limits. The first is at full closure withf˜0 and ḟ Þ0. This
case shows a finite-time singularity in the fluid dynam
which places a regular singular point into the fluid equatio
Regular singular points in dynamical equations can have
effect of driving solutions to exhibit singularities, and,
other work, we explore how these singularities can dr
supersonic expelled jets from squeezed systems24 and rela-
tivistic jets from large astrophysical systems. However, ca
ties in car tires are not usually squeezed to a singularity
generally havef '1.

The second case of interest occurs in the limit of hi

wall velocities and accelerations whenO( ḟ )'O( ṙ) or

O( f̈ )'O( r̈). Car tires can approach these regimes.
Consider a typical groove of lengthL57.5 cm, width

d055 mm, and depthW5d0 cut into the rim of a tire trav-
eling forward with linear speedv. As the groove moves into
the contact patch with the road~to take the full weight of the
car! the groove undergoes a squeezing of its volume
around 10% modeled by a compression of the width ofA
50.1d050.5 mm. The groove uncompresses a timetc
798M. J. Gagen: Squeezed cavity acoustics
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5dc /v later when it leaves the contact patch of length ab
dc520 cm. Groove squeezing occurs in a timet'd0 /v
'0.3 ms atv515 m/s or about 50 km/h.

Simple estimates of the velocity and acceleration of

groove wall are then ḋ'A/t'1.5 m/s and d̈'A/t2

'4500 m/s2. These calculations are in accord wi
observation.1,8 In this paper, the width of groove is modele
by d(t)5d0f (t) so, in nondimensional units, we have

ḟ 5
ḋ

d0
5

ALv

a0d0
2 , f̈ 5

d̈

d0
5

AL2v2

a0
2d0

3 . ~17!

We note that the dimensionless acceleration increases
dratically with linear speedv. These simple estimates giv

ḟ ' f̈ '0.1 atv525 m/s, or about 90 km/h, and increasing
higher speeds. These values are compared tor'1 in dimen-
sionless units, indicating that squeezing can have signific
effects on fluid dynamics.

VI. ANALYTIC SOLUTIONS TO SQUEEZED SYSTEMS

In this section we briefly provide indicative solutions f
the fluid flow in squeezed systems as we seek to unders
the nature of the expelled jet including how its kinetic ener
might eventually contribute to the far-field sound intens
via turbulence or vortex generation.

A physical understanding of a squeezed system of Fi
is readily had by considering a constant density approxim
tion which allows equating the loss of internal volumedV
52LWwdt with the gain in volume of the expelled je
dV5Wd(t)v(L,t)dt giving

v~L,t !52
wL

d~ t !
52

ḟ L

f
. ~18!

As mentioned previously, simple experiments confirm
importance of the spatial amplification factorL: clap your
hands with fingers together (L'3 cm) and with fingers apar
(L85L/4) noting the different sounds.

Two particular analytic solutions of interest can be o

tained for linear squeezingf (t)512t/T, ḟ 521/T, and
with g50. Here,T is the closure time of the cavity. W
further assume smoothed vertical flows]xr50, vx50, and

vy5 ḟ y.
The first solution of interest is a squeezed cavity w

both ends closed—a piston—obtained by setting allx gradi-
ents andvx equal to zero. This reduces Eq.~15! to ] t( f r)
50 with nondimensional solution

r~ t !5
1

f
. ~19!

Here we see that a linear squeezing of 10% immedia
generates a commensurate increase in density.

The second solution applies to an open ended ca
with nonzerox gradients and velocitiesvxÞ0. We still con-
sider expulsion velocities small enough to satisfyvx

250. If
we then assume approximately constant densityr51, then
both Eqs.~1! and ~15! are satisfied by
799 J. Acoust. Soc. Am., Vol. 106, No. 2, August 1999
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vx~x,t !52
ḟ x

f
, ~20!

which extends the previous heuristic solution of Eq.~18!.
This solution is strictly valid only whilevx,0.3 where free-
flowing air remains approximately uncompressed, but thi
expected to be satisfied for car tires.

In time dt, a massdm5rLWd0 ḟ dt is expelled at ve-
locity v(L,t) given by Eq.~20! and with kinetic energydE

5( 1
2)dmv2. This integrates to give total mass expulsion

time t of

m~ t !5m0~12 f ! ~21!

and total kinetic energy of the expelled jet of

E~ t !52EpT2E
0

t

dt~ ḟ 3/ f 2!, ~22!

where m05rLWd0 is the initial fluid mass andEp

5 1
2m0(L/T)2 is the kinetic energy of a massm0 moving over

distanceL in closure timeT. For the constant-velocity linea
squeezing case with loss of volume given bydV/V5t/T
5A/d0 this gives

m5
A

d0
m0 , E5

A

d02A
Ep . ~23!

This last relationship gives the kinetic energy of the jet
proportional to the square of the velocity of the car as

E5
rWA3L3v2

2~12A/d0!d0
4 . ~24!

The velocity solution of Eq.~20! can also be used to
suggest the evolution of spatial density concentrations al
the length of the expelled jet. Consider a jet with expulsi
velocity given by Eq.~20! so that at the open end of th
cavity where x5L the horizontal velocity at timet is

vx(L,t)52 ḟ L/ f (t). We note the velocity of air parcels ex
pelled at different times is different though once any air p
cel has escaped from the cavity it is no longer compresse
accelerated~to a first-order approximation!. This allows ap-
plying a constant velocity approximation to motion outsi
the cavity to give an estimate of the position of any particu
air parcel at later times. Then, the position at closure timT
of a particle expelled at the earlier timet is

X~ t,T!5L1v~L,t !~T2t !. ~25!

For linear squeezing we havef (t)5(12t/T) giving
X(t,T)52L for all the expelled particles in the air jet, im
plying an approximate density distribution of

r~x,T!}d@x22L#. ~26!

Such density concentrations, if large enough, can source
formation of shock fronts within the jet and can contribute
far-field sound intensities.

The above discussions can contribute to understand
sound sources from squeezed cavities in car tires. For
stance, the assumption that the velocity of the expelled
causes turbulence to generate sound waves suggests th
sound intensity will depend on the ratioL/d, or the geometry
799M. J. Gagen: Squeezed cavity acoustics
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of the cavity. This is in accord with observations that bo
thin width and large width grooves emit less sound th
medium width grooves.7 Evidently, for large groovesL'd
and velocities are small so no sound from air jets is expec
Medium width grooves haveL.d.0, giving a ratioL/d
large enough to give significant sound emission. Finally, t
width grooves withd'0 have very little air in them so the
initial massm0'0, meaning that the kinetic energy of th
expelled jet is never significant and little sound is expect

It is beyond the scope of this paper to discuss extre
nonlinearities like the formation of shock fronts in expell
jets, and our inviscid treatment means that we cannot c
ment about the sound generation role, if any, of vortices
the expelled jet.

VII. NUMERICAL SIMULATIONS

Squeezed cavities are analytically intractable and ne
sitate a resort to computational fluid dynamics~CFD! and we
apply MacCormack’s technique to Eq.~15!. This standard
scheme employs an explicit finite element method which
second order accurate in space and time.20,25

Consider a tire moving at approximate speedv
525 m/s with grooves of lengthL57.5 cm and width and
depthd05W55 mm. The groove undergoes a compress
of 10% over a time of about 0.2 ms.

We note that in this time a rarefaction wave can on
just travel from the open end of the groove to the closed
of the groove (L'a0t'6 cm) where pressure and density
building up. Further, sound waves have made about 15 cr
ings of the width of the groove to equilibrate the press
and density across the width. Before the arrival of the r
efaction wave at any point, the fluid gradients in thex direc-
tion are zero and the piston solution of Eq.~19! is applicable.
Thus, we expect that a 10% squeezing of the groove
cause a roughly 11% increase in density near the closed
of the groove. The arrival of the rarefaction wave will the
cause a density gradient of about 11% between the clo
and open ends of the groove and this gradient will gene
velocity gradients of order 0.11 in thex direction leading to
expulsion velocities ofvx'0.11 at the open end of the cav
ity. This translates into speeds of about 30 m/s. These sim
expectations are met in the simulations below.

The CFD numerical simulation is shown in Fig. 3 whic
shows the groove walls as the raised sections of the gr
~Only the top edge of the groove is shown for clarity.! The
top edge is stationary in computation space but has caus
4% compression in graph~a! and a 10% compression i
graph ~b!. In graph ~a! we see that the compression h
equilibrated across the narrow width of the cavity and
density has increased by about 4% in accordance with
~19!. The increase in density causes a rarefaction wav
propagate from the open end of the cavity to the left but t
wave has only had time to move a limited distance along
cavity. In graph~b! we reach the full compression of 10%
causing the density to increase by approximately 11%. T
is also the time at which the rarefaction wave reaches the
of the cavity and all the air begins to exhaust from the cav

As previously noted after Eq.~3!, a density fluctuation
of 11% corresponds to a pressure fluctuation of 14% and
800 J. Acoust. Soc. Am., Vol. 106, No. 2, August 1999
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magnitude of this fluctuation lies well outside the validi
regime for a linear truncation of the Taylor series expans
underlying small amplitude acoustic theory. It is for this re
son that we must use the full Euler equations to derive
squeezed wave equation~16!.

Once the air begins to evacuate, the piston solution is
longer valid and we must consider the velocity solution
Eq. ~20! with its linear dependence on positionx. The valid-
ity of this solution is shown in Fig. 4 at the time of 10%
squeezing which clearly shows the expected linear incre
of velocity with position. This also confirms our simple e

FIG. 3. The density profile of the air contained within the squeezed ca
~with only top wall shown! at timest50.05 ms with 4% squeezing in grap
~a! and att50.2 ms with 10% squeezing in graph~b!. The density is given
in dimensionless units.~Note the changes in the vertical scale as the groo
compresses.!

FIG. 4. The linear dependence of expulsion velocity on positionx in dimen-
sionless units.
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pectation of a maximum velocity of aroundvx'0.1 in di-
mensionless units at the open end of the tube.

It is expected that the observed velocity flows will e
haust the cavity back to atmospheric pressure over the 6
period during which the cavity passes through the con
patch between the tire and the road. Then, the cavity
uncompress by about 10%, causing a decrease in density
pressure below ambient conditions by about 10%. The ca
will then open along its length and the pressure and den
fluctuations are then expected to drive Helmoltz and H
resonances.

These simulations serve to confirm the relevance of
analytic solutions for density under piston conditions in E
~19! and for the expulsion velocity in Eq.~20!. However,
they do not give insight into the far-field sound intens
emitted from squeezed cavities as the numerical grid is
coarse by a factor of 10 or more while a full simulation
passage through the contact patch~taking about 6 ms! re-
quires an increase in grid area by a factor of 302. Thus, a full
simulation is about 90 000 times larger than that shown h
and is computationally intractable at this time.

VIII. CONCLUSION

In this paper we derived a squeezed acoustic wave e
tion suitable for application to squeezed fluid systems. T
starting point of this derivation was the Euler equations
fluid flow together with the moving boundary condition
specifying a cavity under compression. This derivation de
onstrated that the usual assumption of a small-amplit
acoustic wave equation and the acoustic monopole the
derived from this equation is incorrect for squeezed syste

Approximate analytic solutions were obtained for t
fluid flow in squeezed systems and were used to identif
pistonlike increase in density within a squeezed cavity bef
the cavity begins to exhaust along its full length. These
lutions show that the exhaust velocity has a linear dep
dence on cavity length and can reach significant speeds.
mass and kinetic energy and density structure of the resu
expelled jet were examined using the derived approxim
solutions. Finally, we used computational fluid dynamics
proaches to directly investigate fluid flow and to confirm t
applicability of the approximate analytic solutions.
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