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Novel acoustic sources from squeezed cavities in car tires
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Department of Physics, University of Queensland, Qld 4072, Australia
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This paper demonstrates that the partial squeezing of car tire cavities at ground impact cannot be
adequately modeled by the usual acoustic wave equation. A more complete treatment must begin
with the Euler equations for fluid flow in a squeezed cavity to derive a wave equation dependent on
cavity wall velocities and accelerations. These can be sizable as ground impact causes the walls of
a tire cavity to move with velocities of order 1 m/s and with accelerations dfril§ over time

scales of about 1 ms. Further, the geometry of a typical cavity is such that width compression causes
significant increases in pressure and density to occur before the arrival of the rarefaction wave
propagating from the open end of the cavity begins to exhaust the full length of the cavity. This
causes significant departures from equilibrium density and pressure conditions. These influences are
demonstrated both analytically and numerically. 1®99 Acoustical Society of America.
[S0001-496629)00708-7

PACS numbers: 43.50.Lj, 43.25.THIRS]

INTRODUCTION damped oscillator to volume changes and pressure
differential€ and the finite size of the spring constant neces-

The loudest component of the far-field noise of cars__ . . :
. . sarily means that there is a time delay between a volume
traveling over 50 km/h and of trucks traveling over 80 km/h . . )
change and resulting air movements. In effect, air responds

is tire noise! Previous treatments examining this area have ? . . .
typically used the low velocities of air movements aroungs!uggishly to sufficiently fast volume changes. This makes it

the tire/pavement contact point to justify use of the acousti?vorthwhile to investigate whether the squeezed cavities of
wave equation and acoustic monopole theory. For instanc&ar tires can hit the ground and suffer a volume loss faster
monopole theory has long been used to model air pumpeﬂﬂan the air within the cavity can evacuate along its length. A
from the squeezed cavities in car tifesd is well confirmed typical period over which a cavity undergoes squeezing can
by experiments showing the dependence of the sound intelpe shorter than 0.2 ms and, in this time, a rarefaction wave

sity on the second time derivative of volume changegsar- ~ ¢an only travel about 6 cm. As the lengths of many tire
ticularly when the volume changes are simple harmonicCavities are of this order, it is evident that the volume de-
When volume changes depart from being sinusoidal the fiErease can occur before the air is able to fully evacuate from
between theory and experiment is not so gdédr pumping  the cavity. Then, a decrease in volume by, say, 10% leads to
noise sources occur as air moves into and out of tire cavitiegn 11% increase in the density while a 50% volume decrease
as the tire tread contacts the road and have been modeled ggnerates a doubling of the density. These potentially large
treating the squeezed cavity as an organ pipe with one endensity fluctuations are well outside the regime of applica-
closed so as to sustain\# resonance. This approach mod- bility of small-amplitude acoustic theory which explicitly as-
els the air as a piston moving backwards and forwards on gumes that density and pressure excursions are small. This
spring?~® Experimental investigations have confirmed thepaper seeks to incorporate the effects of squeezed volume

worth of these approachés. losses within the acoustic wave equation by including cavity
Other noise sources include Helmholtz resonances ang|| acceleration and velocity terms.

horn effects between the tire aﬂ?qglthe '%%.ds Welllaizfro.m Some evidence for the plausibility of these claims can be
interactions with road pavemerits™and bridge grids™ Fi-  ,pained from the literature and this is canvassed in Sec. I. In

nally, the tire itself possesses certain natural radial and tas. || we derive the acoustic wave equation from the Euler

gential modes of vibration and excitation of these mOde.Seguations for adiabatic air flow to examine the underlying

generates noise. These modes are usually modeled usin o o . - .

. . . 13-15 acoustic linearization assumptions. We show heuristically in

variants of circular ring modes. ec. lll that these assumptions are violated in the squeezed
Jointly, the listed noise sources above are able to explai§ ' P q

a significant part of the far-field sound intensity of car tiresCavities Of car tires which can generate large pressure and
but cannot be considered a complete explanation. This pap8Ensity fluctuations. This motivates us to discard these inap-
demonstrates that the squeezed cavities in car tires featupficable assumptions to give the Euler equations appropriate
large-amplitude pressure and density excursions which [ir squeezed systems in Sec. IV and to rederive a
outside the regime of applicability of small-amplitude acous-"squeezed” acoustic wave equation in Sec. V that contains
tic monopole theory and\/4 pipe resonance approaches. many sound source terms not included in the usual acoustic
Rather, we argue that the high accelerations and velocities a¥ave equation. Subsequently, we discuss approximate ana-
the walls of a groove in a car tire can violate the assumptiondytic solutions to the squeezed Euler equations in Sect. VI
underlying these approaches. A body of air responds as @and show numerical simulations of a squeezed car tire
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groove under typical acceleration and velocity regimes in pVy
Sec. VIl G= PVVy
pvi+ply

|. EXPERIMENTAL EVIDENCE FOR SQUEEZING . .
EEEECTS Q Here, we show the mass continuitpp line) and momentum

conservation equations in thxeandy directions with veloci-

The literature contains some experimental indicationsies v, andv,, respectively(We exploit symmetry to con-
that squeezing effects might be important contributions tastrain fluid motions to this planeThe adiabatic limit is re-
car tires noise. We canvass this evidence now. alized by relating fluid pressurp to fluid densityp asp

The principle observation implicating squeezing effects=p” where y=1.4 is the usual ratio of specific heats. All
in tire noise generation is that of Ejsmaettal.” where itwas  variables are dimensionless with dimensiodmed vari-
noted that there was a nonlinear dependence of emittegbles being given byx'=xL, v'=va,, p'=ppy, p’
sound intensities upon groove width. It was noted that both=pp,, andt’=tL/a, with L being some convenient length
thin width grooves and large width grooves generate smalparameter and;=yp,/p, being the local speed of sound in
sound intensities while medium width grooves generate largambient pressure and density conditiongpgfandp,. With
sound intensities. The width of a groove does not appear ithese choices a unit velocity equates to the speed of sound in
N4 pipe resonance theory which only considers the length ofhe fluid.
a groove and is not taken into account in monopole theory  The appearance and propagation of acoustic distur-
which only considers time rates of change of the total vol-bances is entirely described by H@) but is usually written
ume. These observations tend to show that the geometry ofgs a wave equatidhafter making the small wave approxi-
squeezed groove has some influence on sound intensity. mation. In nondimensional units, a Taylor series expansion

The volume change of a squeezed groove is difficult tan pressure gives
observe at high speeds. Estimates of the change in volume
range from an assumed 16% 18% obtained from clay- p=1+p; 2
extrusion measuremerftReference 5 used static measure- nd
ments to obtain a volume change of 5% and estimated a

maximum of 3% at high speeds. These estimates do not take ap #p| (p—1)2

into account the additional loss of volume caused by a P=17T ap (p= 1)+(9_p2 2

bumpy road pavement intruding into the air space of a cavity 0 0

on ground contact. Typical road pavements might contain 1/1 5

gravel fragments of 5 to 8 mm in size which is similar to the =14p/y+ 2_7(;_ 1)/p1. 3

groove widths of a typical tire cavifyso these gravel frag-
ments might routinely cause additional volume losses greatefhis Taylor expansion is valid only whem <1 and we can
than those estimated above. It has been well established thiigncate the expansion at the first term to give small-
the far-field sound intensity depends on highly nonlinear in-@mplitude acoustic theoryThe error involved in this trun-
teractions between a tire tread and road pavements with, féation equates to the second term and is non-negligible when
example, observations that certain surfaces may be relativeRressure fluctuations are greater than alpgut 102, In this
noisy for cars but silent for truckd:'6 paper we will show that squeezed systems generate densities
These volume deformations occur as the groove move8f p=1.1 in dimensionless terms, giving;~0.14 with a
into contact with the ground at which point the tire wall is resulting truncation error of 0.002 which cannot be ignared.
subject to radial accelerations of up to 3300 Tgsak to The acoustic wave equation is then obtained by differ-
peak and tangential accelerations of about 1006 peak to entiating Eq.(1) or its three-dimensional equivalent to solve
peak on millisecond timescales. These accelerations are typlor dup With the further assumption of small fluid velocities
cal of a car traveling at 80 km#fi and it is these accelera- Vx.Vy<1 to give
tions which cause the volume loss on time scales faster than OuP1— dxxP1— dyyP1— 33010, )

the air can evacuate from the cavity.
where now we explicitly show the third dimension to permit
comparisons to the derivations below.
Acoustic monopole theory applies this equation to a vi-
The usual acoustic wave equation is derived in the lowbrating point source modeled as a small spherical emitter of
velocity and adiabatic limits of the Euler equations for fluid radius R undergoing small oscillations much less than the
flow. The conservative form of the inviscid and dimension-54ius Rst<R. The resulting volume changes are theén

less Euler equations in two dimensions for perfect gases in

the adiabatic limit and with zero conductivity afe?* =4wR’R which cause spherically symmetric pressure
waves to propagate into the surrounding medium. These

Il. ACOUSTIC THEORY

U+ d,F+9,G=0, pressure waves decay as Hnd have the usual functional
dependence orr (- agt) to satisfy the wave equation and to
p 2p Vx describe delayed waves traveling outwards from the sphere
U=| pVx|, F=|pvtp’ly], (1) at speedq,. Thus, at the pointr,t), the pressure has func-
pVy PVxVy tional dependence
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tions or vibrations. The very different magnitudes of the
(5) claps generated in these two experiments arising from ex-
actly the same decelerations means sound intensities cannot
In spherical coordinates with approximately constant fluidbe entirely explained by monopole theory with its exclusive
density the conservation of momentum equatith is  reliance on volume accelerations as a source of noise.

p(r—aot
par o P,

pdv,=—d,p1/y where we sev?=0 for low fluid veloci- A clearer failure occurs when we consider a balloon
ties. Substituting Eq(5) here gives underdoing a volume acceleratidh=c, a positive constant,
— — — to give a volume varying quadratically in time a#t)
T p(r —aot) 0‘12— 9P ©) =(Vo— 6V)(1—1t/7)%+ 6V whereV, is the initial volume
yr yr yr and 6V is the small volume of the balloon at the timeof

smallest radius. Here, the collapse and rebound of the bal-
loon is expected to produce first a rarefaction wave followed

g)y an overpressure wave which should be heard if the move-
] . ments are severe enough. However, monopole theory pre-
term on the rhs. Noting that,=R and R~V/(47R?) we dicts an always positive constant pressure waye2(V,

This solution applies at the surface of the sphere where
=R is small and assumed to be much smaller than the wav
length of sound emitted, allowing us to ignore the secon

have —6V)I 7.
v — Monopole theory has a restricted domain of applicability
P_Z% Lz 7) due to the very simplicity which is its principle advantage.
47R* YR As mentioned previously, air responds sluggishly even to

local volume changes as a damped oscillator while monopole
theory equates local air movements exactly with the volume
changes of the syster(lThis sluggishness is additional to the
v usual propagation delays of wave motion at finite speed.
py(r,t)y~-— (8)  Further, simple source monopole theory considers only
4art single frequency, simple harmonic moticiisFor motions

relating the pressure wave emitted by a monopole source ihich are not simple harmonic, we should first perform a
the second derivative of the volume change of that sourcé-ourier decomposition into frequency components before ap-
Dipole and quadropole sources are then constructed froflying monopole theory. When volume changes are linear or
appropriate arrays of monopol®s. quadratic the Fourier decomposition is broad and acoustic

Demonstrations of the failure of monopole theory can beemissions are not well modeled by single-frequency mono-
easily derived when we consider a small spherical ballooPole theory. We note that Fig. 14 of Ref. 3 shows that mono-
attached by a thin straw to a pump so that its volume can peole theory correctly predicts acoustic intensities when vol-
changed in a controlled manner. We consider two casedMe changes are approximately simple harmonic and

where the small balloon undergoes a linear collapse to zerBrovides poor predictions otherwise.

volume with constant acceleratiof=0 and where the bal- A_ny t_reatment_of volumes varying linearly and qgadran-
%ally in time requires a rederivation of the acoustic wave

loon undergoes a collapse and rebound sequence obtained . .
g P a ea/uatlon properly taking account of the geometry of the sys-

settingV=c, a positive constant, to obtain a volume qua-tem and allowing for the velocity and acceleration of the

dratic in time. ) groove walls. We heuristically motivate a full examination of
The linear collapse of the balloon described W0  such systems in the next section.

gives volumeV(t)=Vy(1—t/T) for suitable constant¥,

and T and is expected to produce a rarefaction wave in the

surrounding medium which should be heard if severéd!l. PRESSURE AND DENSITY FLUCTUATIONS IN

enough. However, this pressure fluctuation makes no appeaT—'RE GROOVES

ance in monopole theory which predicts a pressure fluctua- \ye seek to heuristically consider densiind pressuje
tion of zero. fluctuations in a tire groove undergoing squeezing as it enters
Simple experiments can be performed to confirm thehe contact patch.

inadequacy of the monopole predictions. Clapping your  consider a tire traveling forward at linear speedith a
hands together features linear squeezing WithO except at  groove etched into its rim that is orientated at angl® the

the time of impact so monopole theory predicts no soundirection of travel, and suppose that the groove, initially of
emission at all prior to this time and claims that the “clap” width dy, undergoes a compression to width as it enters
comes only from the instantaneous decelerations and bode tire—road contact patch. The groove is expected to com-
vibrations caused by impact. This prediction can be shown tpress as the surrounding rubber takes the full weight of the
be incorrect by first clapping your hands with the fingersvehicle. This situation is shown in Fig. 1. It seems reasonable
together and then clapping with the fingers spread apart. Bio assume that the groove is subject to an inflow of air along
use of two experiments we create a control which allows udts length as the rubber side wallsatched areasdescend

to eliminate the deceleration from consideration as both exento the road and displace air sideways. This implies that the
periments feature the same decelerations and body vibrgressure wave caused by squeezing will dissipate only after
tions. (The position of the fingers will not change decelera-the wave has traveled the full length of the groove.

In turn, this allows us to solve fq? and to substitute this
back into Eq.(5) to obtain
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v In practical terms, when the forward speed of the car is
v =100 km/h orv=28 m/s we find that all grooves of orien-
tation angle¢p>33 degrees will undergo significant fluctua-
tions due to squeezing. Conversely, if grooves are oriented at
angles of¢p=45 degrees say, then squeezing effects are rel-

£ evant only above speedswf 24 m/s orv=385 km/h. This is
K precisely the speed range at which unexplained tire noise

OO

9
%
120

occurs.
The simple heuristic treatment of this section demon-
strates that squeezing effects are expected to cause signifi-
cant departures from ambiant pressure and density conditions
with the magnitude of these departures invalidating the usual
first-order Taylor series truncated acoustic theory. A proper
analysis of a compression point moving along a groove at
arbitrary angle¢ is difficult and would require spatial- and
time-dependent coordinate transforms. This lies outside the
scope of this paper. However, by narrowing our focus to
consider only squeezed grooves orientated perpendicularly to

) ) the direction of travel, we are able to model squeezing ef-
(Throughout we consider a groove with one end closed—thgacts using only time-dependent coordinate transformations

analysis can be applied to an open ended groove of twice thenq this is feasible. We turn to consider these methods now.
length)

The groove of lengthL has projectionL cos¢ in the
direction of travel and undergoes a squeezing along its entire/- FLUID DYNAMICS IN SQUEEZED CAVITIES

<

FIG. 1. Squeezed geometry for tire grooves orientated at apidgie the
direction of travel.

length L in time L cos¢/v. The compression point on the Most fluid dynamical flow problems are solved in re-
groove then has velocity of gions defined by stationary boundaries. In contrast, we con-
v sider a region with dynamic boundaries chosen to change the

Ve (99  nature of the solutions of the system of fluid equations. In

cos¢ effect, the boundary dynamics are described by their own

The groove squeezing causes an increase in the density abdundary equations which are additional to the usual fluid
pressure of the cavity which propagates to the end of thequations. It is well understood that adding further equations
cavity at the sound speea}, (for small fluctuations To a  to a given system of equations will usually change the nature
first approximation, air cannot leave the cavity until this of the solution space. A common example of how moving
pressure wave has traversed the full length of the cavitysoundaries can modify the acoustic field within a region is
which takes a time-=L/a,. In this same time the cavity has the active control of noise in vehiclésHere, loud speakers
undergone a volume decread¥=(dy—d;)v.7W from its  are used to pump out-of-phase sound across the boundary of
intial volumeVy=doLW. As no air has escaped to timave  the vehicle to cancel pressure fluctuations within that ve-
can immediately write the average density at timas hicle. Then, the moving boundary ideally forces the solution
of the acoustic wave equation to be one of constant density

= po—VO, (10 p=1 and constant pressupe=1 everywhere in the vehicle.
Vo= oV However, active control approaches typically deal only with
wherep, is the initial density in the groove. In dimensionless small amplitude acoustic waves and boundary movements
terms, the density fluctuatiofp=(p— pg)/pg is which are small compared to the size of the vehicle. In this
doap CoSeh 1 paper we consider large pressure and density excursions

/" (11)  Which cannot be treated using small wave acoustic theory.
(do—dy)v Consider the fluid in a region contracting due to external
As shown previously, we can ignore pressure and denapplied forces as shown in Fig. 2. Here a board of letgth

sity fluctuations when these fluctuations are small and less

p:

than of order 102. Conversely, we cannot ignore squeezing L
effects whensp>10"2 or when w
dodo COSP C05¢’< 102, (12) R S Sass s
(do—dyv
. . . w
Noting ag~340 m/s and typical squeezing volume losses of ae)| Y Vy
aroundd,/(dy—d;)~10 gives 0
x 1)1
COS¢
o ) ) FIG. 2. Squeezed geometry for tire grooves orientated perpendicular to the
to indicate when squeezing effects cannot be ignored. direction of travel.
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descending at velocityv towards a surface. The enclosed Here, we mix termsv, and VX:(Vy_fX_g)/f to maxi-
fluid is moving with velocity {,v,) and is expected to be mally simplify the equations. These equations reduce to the
ejected from between the boards into the outside uncomysyal Euler equationgl) in the limit f=1, g=0, andy
pressed region as the internal pressure buildg\Wie. exploit =y.
symmetry to ignore the direction) We model the separation In real space, the squeezing of the boards compresses
distance asi(t) =dof(t) with time-dependent function cho- the inside air to expel a jet of air while in computational
sen so that(0)=1 andw=d,f. space the board is stationary. Here, squeezing forces have
This system is entirely described by the Euler equationdeen converted into mass and momentum injection terms
(1) together with dynamical boundary conditions specifyingproportional tof/f with the injection of mass and momen-
that the fluid velocity is constrained to havg=w along the  {ym everywhere into the space between the boards generat-
top and bottom surfaces of the descending board and to haygy the observed jet of air in exactly the same way as a

v«=0 on the right-most vertical edge of the boalidere we  gplig-fuel rocket”'8 This indicates that whenever we have
consider an inviscid fluid.An entirely identical description

of this squeezed physical system can be obtained by maki
a time-dependent coordinate transformation

nIarge wall velocities,f~1 in dimensionless units, we can
ec&pect significant expelled jet flows.

x=x, y=ft)x+g(t), t=t (14
designed to render the moving board stationary mathematl- SQUEEZED ACOUSTIC WAVE EQUATION
cally. This is achieved by choosirfgt) andg(t) so that as That squeezed systems can violate the assumptions un-

the board in real space changesyigosition, the function$  derlying monopole theory in at least two regimes is made
andg are varied so as to leave theposition of the board apparent by solving fos,p using the squeezed fluid equa-
constant in computational space. tions (15) without making the small wave or low-velocity

To clarify the physical meaning of this dynamic coordi- approximations. The squeezed wave equation with all terms
nate transformation consider the case where the board is dgr

scending smoothly at constant spegdand for simplicity

consider regions wherg(t) =0 (the compressed region be- _ _ axxpy_ aXXpV_ 2y _

tween the boardsThen, air parcels immediately adjacent to 0=dup y yt2 D PV3) = D PV V)

the descending board must have vertical velouity f <0, . :

while air located adjacent to the stationary bottom surface _ Dudpvevy)  dlpvyvy) ip+ 210

must have zero vertical velocity. Further, for small speeds f f f f

it is reasonable to expect that the the air parcels located half . , .

way between the descending board and the stationary bottom _ 9ulp(fx+9)] 19,(pvy) (16)
surface will have vertical speeds wf2 and, in general, that f fz

the vertical air speed is linearly proportional to the relativethis equation reduces to the usual small amplitude wave
height of_ an air parcel petV\_/een the sta_tlonary surface gnd tr@quaﬂon@ in the limits f=1, g=0, v,, v,<1, p=1+p,
descending board. This linear velocity _depende(?@_ld for p;<1, andp=1+p; /7.

only at slow speedss reallzed.by havmg air I_ocated |n|t|a!ly Here, it is apparent that terms previously left out in the
at heighty, (where the maximum height is set to unity ysyal wave equation treatment become large in either of two
moving downwards in physical space with velocityy . o The first is at full closure withf—0 andf+0. This
=Yof . The initial height at time=0 whenf(0)=1 satisfies 556 shows a finite-time singularity in the fluid dynamics
Yo=x in Eq. (14) giving v, = f y with different y for differ-  which places a regular singular point into the fluid equations.
ent parcels of air. A linear dependence of vertical velocity onRegular singular points in dynamical equations can have the
initial height is achieved by settingy=i‘x, or as it is con- effect of driving solutions to exhibit s_ingulari_ties, and, @n
venient to define the paramel\e;z(vy—i‘x—g)/f and we other work, we explore how these singularities can drive

achieve a linear dependence of the vertical velocity on initiaPUPersonic expelled jets from squeezed systéansd rela- _
height by settings, =0 tivistic jets from large astrophysical systems. However, cavi-
=0.

Standard change of coordinate metHdds consultation ties in car tires are not usually squeezed to a singularity and

of the helpful Ref. 19 then give the computational space fluigenerally havef~1. . . - .
equations as The second case of interest occurs in the limit of high

wall velocities and accelerations whe@(i‘)wO(b) or
dU+d,F+9,G=0, - . _ .
O(f)=~0O(p). Car tires can approach these regimes.

fp fpvy Consider a typical groove of length=7.5cm, width
U=| fpvy|, FE=| f(pvi+py) |, (15)  do=5mm, and deptW=d, cut into the rim of a tire trav-
fpv, fovyvy eling forward with linear speed. As the groove moves into
the contact patch with the rodtb take the full weight of the
fov, can the groove undergoes a squeezing of its volume of
G= fpvyv, . around 10% modeled by a compression of the widthAof
fovyv,+p?ly =0.1dp=0.5mm. The groove uncompresses a timg
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=d./v later when it leaves the contact patch of length about Fx
d.=20cm. Groove squeezing occurs in a time-dq/v Vx(x,t):—T,
~0.3ms atv=15m/s or about 50 km/h.

Simple estimates of the velocity and acceleration of thavhich extends the previous heuristic solution of E#8).
groove wall are then d~A/7~15m/s and d~A/#  This solution is strictly valid only whiles,<0.3 where free-
~4500m/€. These calculations are in accord with flowing air remains approximately uncompressed, but this is
observatiort:2 In this paper, the width of groove is modeled expected to be satisfied for car tires.

(20

by d(t)=dyf(t) so, in nondimensional units, we have In time &t, a ma355m=pLWdof5t is expelled at ve-
) . 5 5 locity v(L,t) given by Eq.(20) and with kinetic energ\ypE
. d ALv . d AlL% 1 2 . . .
f=—=—, f=0—=—>7. (17) =(3)émv~. This integrates to give total mass expulsion to
do adf do agdy time t of
We note that the dimensionless acceleration increases qua- m(t)=my(1—f) (21)

dratlcally with linear speed. These simple estimates give

f~f~0.1 atv=25m/s, or about 90 km/h, and increasing at
higher speeds. These values are comparegdsta in dimen-
sionless units, indicating that squeezing can have significant
effects on fluid dynamics.

and total kinetic energy of the expelled jet of
t .

E(t)z—EpTzf dt(f3/2), (22)
0

where my=pLWd, is the initial fluid mass andg,
=1my(L/T)? is the kinetic energy of a mass, moving over
distancel in closure timeT. For the constant-velocity linear
VI. ANALYTIC SOLUTIONS TO SQUEEZED SYSTEMS squeezing case with loss of volume given BY/V=t/T

In this section we briefly provide indicative solutions for =Ald, this gives

the fluid flow in squeezed systems as we seek to understand A A
the nature of the expelled jet including how its kinetic energy M= 5~ Mo, E=-—1Ep. (23
. . : , . do do—A
might eventually contribute to the far-field sound intensity ) o o .
via turbulence or vortex generat|on This Iast relationship gives the k|net|c energy of the jet as
i_s readl!y had by c0n5|d¢r|ng a constant density approxma- pWASL3y2
tion which allows equating the loss of internal volurd¥ = m.
=—LWwsét with the gain in volume of the expelled jet 0770
SV=Wd(t)v(L,t) st giving The velocity solution of Eq(20) can also be used to
. suggest the evolution of spatial density concentrations along
v(Lt)=— wL _ f_'— (18) the length of the expelled jet. Consider a jet with expulsion
' ' velocity given by Eq.(20) so that at the open end of the

d(t) f
As mentioned previously, simple experiments confirm the cavity wherex=L the horizontal velocity at timet is

importance of the spatial amplification factor clap your  Vx(L.t)=— fL/f(t). We note the velocity of air parcels ex-
hands with fingers togethet &3 cm) and with fingers apart Pelled at different times is different though once any air par-
(L’ =L/4) noting the different sounds. cel has escaped from the cavity it is no longer compressed or
Two particular analytic solutions of interest can be ob-acceleratedto a first-order approximationThis allows ap-
tained for linear squeezing(t)=1—t/T, f=—1/T, and plying a constant velocity approximation to motion outside
with g=0. Here, T ?s the closure time of the cavity. We the cavity to give an estimate of the position of any particular

further assume smoothed vertical flowgp =0, v, =0, and ar parcgl at later times. Then, the ppsmon at closure fime
i of a particle expelled at the earlier tinés
v, =fy.
y

The first solution of interest is a squeezed cavity with ~ X(t,T)=L+v(L,t)(T—1). (25)

both ends closed—a piston—obtained by settingc@fadi-  For jinear squeezing we havé(t)=(1—t/T) giving
ents andv, equal to zero. This reduces EAS) to di(fp)  x(t,T)=2L for all the expelled particles in the air jet, im-
=0 with nondimensional solution plying an approximate density distribution of

o 8[x—2L]. (26)

Such density concentrations, if large enough, can source the
Here we see that a linear squeezing of 10% immediatelyormation of shock fronts within the jet and can contribute to
generates a commensurate increase in density. far-field sound intensities.

The second solution applies to an open ended cavity The above discussions can contribute to understanding
with nonzerox gradients and velocitieg,# 0. We still con-  sound sources from squeezed cavities in car tires. For in-
sider expulsion velocities small enough to satisfy: 0. If  stance, the assumption that the velocity of the expelled jet
we then assume approximately constant densityl, then  causes turbulence to generate sound waves suggests that the
both Eqgs.(1) and(15) are satisfied by sound intensity will depend on the ratidd, or the geometry

(24)

1
p(t)= IE (19
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of the cavity. This is in accord with observations that both
thin width and large width grooves emit less sound than
medium width groove$.Evidently, for large grooves ~d
and velocities are small so no sound from alir jets is expected
Medium width grooves havé >d>0, giving a ratioL/d
large enough to give significant sound emission. Finally, thin
width grooves withd~0 have very little air in them so the
initial massmgy~0, meaning that the kinetic energy of the
expelled jet is never significant and little sound is expected.
It is beyond the scope of this paper to discuss extreme
nonlinearities like the formation of shock fronts in expelled
jets, and our inviscid treatment means that we cannot com-
ment about the sound generation role, if any, of vortices in
the expelled jet.

VII. NUMERICAL SIMULATIONS

Squeezed cavities are analytically intractable and neces
sitate a resort to computational fluid dynam(€$-D) and we
apply MacCormack’s technique to E(L5). This standard
scheme employs an explicit finite element method which is
second order accurate in space and tffife.

Consider a tire moving at approximate speed
=25m/s with grooves of length=7.5cm and width and
depthdy=W=5 mm. The groove undergoes a compression
of 10% over a time of about 0.2 ms.

We note that in this time a rarefaction wave can only
just travel from the open end of the groove to the closed end
of the groove [~ay7~6 cm) where pressure and density is
p“"d'”g up. Fyrther' sound waves have .made about 15 Crosgig. 3. The density profile of the air contained within the squeezed cavity
ings of the width of the groove to equilibrate the pressur@uith only top wall showi at timest=0.05 ms with 4% squeezing in graph
and density across the width. Before the arrival of the rar{a) and att=0.2 ms with 10% squeezing in gragh). The density is given
efaction wave at any point, the fluid gradients in theirec- in dimensionless unitgNote the changes in the vertical scale as the groove
. . . . . compresses.
tion are zero and the piston solution of E#9) is applicable.

Thus, we expect that a 10% squeezing of the groove will

cause a roughly 11% increase in density near the closed emdagnitude of this fluctuation lies well outside the validity
of the groove. The arrival of the rarefaction wave will then regime for a linear truncation of the Taylor series expansion
cause a density gradient of about 11% between the closaghderlying small amplitude acoustic theory. It is for this rea-
and open ends of the groove and this gradient will generatgeon that we must use the full Euler equations to derive the
velocity gradients of order 0.11 in thedirection leading to  squeezed wave equatigh6).

expulsion velocities of/,~0.11 at the open end of the cav- Once the air begins to evacuate, the piston solution is no
ity. This translates into speeds of about 30 m/s. These simplenger valid and we must consider the velocity solution of
expectations are met in the simulations below. Eq. (20) with its linear dependence on positianThe valid-

The CFD numerical simulation is shown in Fig. 3 which ity of this solution is shown in Fig. 4 at the time of 10%
shows the groove walls as the raised sections of the grapBqueezing which clearly shows the expected linear increase
(Only the top edge of the groove is shown for clajityhe  of velocity with position. This also confirms our simple ex-
top edge is stationary in computation space but has caused a
4% compression in grapka) and a 10% compression in
graph (b). In graph (@) we see that the compression has
equilibrated across the narrow width of the cavity and the
density has increased by about 4% in accordance with Eq. ©-1
(19). The increase in density causes a rarefaction wave to v«
propagate from the open end of the cavity to the left but this 0.0
wave has only had time to move a limited distance along the
cavity. In graph(b) we reach the full compression of 10%,
causing the density to increase by approximately 11%. This
is also the time at which the rarefaction wave reaches the end
of the cavity and all the air begins to exhaust from the cavity.

As previously noted after Eq3), a der?Sity fluctuation  FiG. 4. The linear dependence of expulsion velocity on positiandimen-
of 11% corresponds to a pressure fluctuation of 14% and thsionless units.
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