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Quasi-Hopf superalgebras and elliptic quantum
supergroups

Yao-Zhong Zhanga) and Mark D. Gould
Department of Mathematics, University of Queensland, Brisbane, Qld 4072, Australia

~Received 6 October 1998; accepted for publication 11 February 1999!

We introduce the quasi-Hopf superalgebras which areZ2-graded versions of Drin-
feld’s quasi-Hopf algebras. We describe the realization of elliptic quantum super-
groups as quasi-triangular quasi-Hopf superalgebras obtained from twisting the
normal quantum supergroups by twistors which satisfy the graded shifted cocycle
condition, thus generalizing the quasi-Hopf twisting procedure to the supersymmet-
ric case. Two types of elliptic quantum supergroups are defined, that is, the face
type Bq,l(G) and the vertex typeAq,p@sl(nûn)] ~and Aq,p@gl(nûn)]), whereG is
any Kac–Moody superalgebra with symmetrizable generalized Cartan matrix. It
appears that the vertex type twistor can be constructed only forUq@sl(nûn) in a
nonstandard system of simple roots, all of which are fermionic. ©1999 American
Institute of Physics.@S0022-2488~99!00210-8#

I. INTRODUCTION

One of the aims of this paper is to introduceZ2-graded versions of Drinfeld’s quasi-Hopf
algebras,1 which are referred to as quasi-Hopf superalgebras. We then introduce elliptic quantum
supergroups, which are defined as quasi-triangular quasi-Hopf superalgebras arising from twisting
the normal quantum supergroups by twistors which satisfy the graded shifted cocycle condition,
thus generalizing Drinfeld’s quasi-Hopf twisting procedure2–6 to the supersymmetric case. We
adopt the approach in Ref. 4 and construct two types of twistors, i.e., the face-type twistor
associated to any Kac–Moody superalgebraG with a symmetrizable generalized Cartan matrix and
the vertex-type twistor associated to sl(nûn) in a nonstandard simple root system in which all
simple roots are odd~or fermionic!. It should be pointed out that the face-type twistors for certain
classes ofnonaffinesimple superalgebras were also constructed in Ref. 5.

The elliptic quantum groups7,8 are believed to provide the underlying algebraic structures for
integrable models based on elliptic solutions of the~dynamical! Yang–Baxter equation, such as
Baxter’s eight-vertex model,9 the ABF ~Andrews—Baxter–Forrester! model,10 and their group
theoretical generalizations.11,12 The elliptic quantum supergroups described in this paper are ex-
pected to play a similar role in supersymmetric integrable models based on elliptic solutions13,14of
the graded~dynamical! Yang–Baxter equation.

II. QUASI-HOPF SUPERALGEBRAS

Definition 1: AZ2-graded quasi-bialgebra is aZ2-graded unital associative algebra A over a
field K which is equipped with algebra homomorphismse: A→K (counit), D: A→A^A (coprod-
uct), and an invertible homogeneous elementFPA^A^A (coassociator) satisfying

~1^ D!D~a!5F21~D ^ 1!D~a!F, ;aPA, ~II.1!

~D ^ 1^ 1!F•~1^ 1^ D!F5~F ^ 1!•~1^ D ^ 1!F•~1^ F!, ~II.2!

a!Electronic mail: yzz@maths.uq.edu.au
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~e ^ 1!D515~1^ e!D, ~II.3!

~1^ e ^ 1!F51. ~II.4!

Equations~II.2!–~II.4! imply that F also obeys

~e ^ 1^ 1!F515~1^ 1^ e!F. ~II.5!

The multiplication rule for the tensor products isZ2 graded and is defined for homogeneous
elementsa,b,a8,b8PA by

~a^ b!~a8^ b8!5~21!@b#@a8#~aa8^ bb8!, ~II.6!

where@a#PZ2 denotes the grading of the elementa.
Definition 2: A quasi-Hopf superalgebra is aZ2-graded quasi-bialgebra (A,D,e,F) equipped

with a Z2-graded algebra anti-homomorphism S: A→A (anti-pode) and canonical elementsa,
bPA such that

m•~1^ a!~S^ 1!D~a!5e~a!a, ;aPA, ~II.7!

m•~1^ b!~1^ S!D~a!5e~a!b, ;aPA, ~II.8!

m•~m^ 1!•~1^ b ^ a!~1^ S^ 1!F2151, ~II.9!

m•~m^ 1!•~S^ 1^ 1!~1^ a ^ b!~1^ 1^ S!F51. ~II.10!

Here m denotes the usual product map onA: m•(a^ b)5ab, ;a,bPA. Note that sinceA is
associative, we havem•(m^ 1)5m•(1^ m). For the homogeneous elementsa,bPA, the anti-
pode satisfies

S~ab!5~21!@a#@b#S~b!S~a!, ~II.11!

which extends to inhomogeneous elements through linearity.
Applying e to definitions~II.9! and~II.10! we obtain, in view of~II.4!, e~a!e~b!51. It follows

that the canonical elementsa and b are both even. By applyinge to ~II.7!, we havee„S(a)…
5e(a), ;aPA.

In the following we show that the category of quasi-Hopf superalgebras is invariant under a
kind of gauge transformation. Let (A,D,e,F) be a qausi-Hopf superalgebra, witha, b, and S
satisfying ~II.7!–~II.10!, and letFPA^ A be an invertible homogeneous element satisfying the
counit properties

~e ^ 1!F515~1^ e!F. ~II.12!

It follows that F is even. Throughout we set

DF~a!5FD~a!F21, ;aPA, ~II.13!

FF5~F ^ 1!~D ^ 1!F•F•~1^ D!F21~1^ F21!. ~II.14!

Theorem 1: (A,DF ,e,FF), defined by (II.13) and (II.14), together withaF ,bF , andSF given
by

SF5S, aF5m•~1^ a!~S^ 1!F21, bF5m•~1^ b!~1^ S!F, ~II.15!

is also a quasi-Hopf superalgebra. The element F is referred to as a twistor, throughout.
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The proof of this theorem is elementary. For demonstration we show in some detail the proof
of the antipode properties. Care has to be taken of the gradings in tensor product multiplications
and also in extending the antipode to the whole algebra. First of all let us state the following
lemma.

Lemma 1: For any elementshPA^A andjPA^A^A,

m•~1^ aF!~S^ 1!h5m•~1^ a!~S^ 1!~F21h!, ~II.16!

m•~1^ bF!~1^ S!h5m•~1^ b!~1^ S!~hF !, ~II.17!

m•~m^ 1!•~1^ bF ^ aF!~1^ S^ 1!j

5m•~m^ 1!•~1^ b ^ a!~1^ S^ 1!@~1^ F21!•j•~F ^ 1!#, ~II.18!

m•~m^ 1!•~S^ 1^ 1!~1^ aF ^ bF!~1^ 1^ S!j

5m•~m^ 1!•~S^ 1^ 1!~1^ a ^ b!~1^ 1^ S!•@~F21
^ 1!•j•~1^ F !#.

~II.19!

Proof: Write F5 f i ^ f i and F215 f̄ i ^ f̄ i . Here and throughout, summation convention on
repeated indices is assumed. Then~II.15! can be written as

aF5S~ f̄ i !a f̄ i , bF5 f ibS~ f i !. ~II.20!

Further, writeh5hk^ hk andj5( ixi ^ yi ^ zi . Then

lhs of ~II.16!5m•„1^ S~ f̄ i !a f̄ i
…„S~hk! ^ hk

…

5m•„S~hk! ^ S~ f̄ i !a f̄ ihk
…

5S~hk!S~ f̄ i !a f̄ ihk

5S~ f̄ ihk!a f̄ ihk3~21!@hk#@ f̄ i #,

rhs of ~II.16!5m•~1^ a!~S^ 1!~ f̄ ihk^ f̄ ihk!3~21!@ f̄ i #@hk#

5S~ f̄ ihk!a f̄ ihk3~21!@ f̄ i #@hk#,

thus proving~II.16!. Equation~II.17! can be proved similarly. As for~II.18! we have

lhs of ~II.18!5(
i

xibFS~yi !aFzi

5(
i

xi f jbS~ f j !S~yi !S~ f̄ k!a f̄ kzi

5(
i

xi f jbS~ f̄ kyi f
j !a f̄ kzi3~21!@yi #@ f j #1@ f̄ k#)1@ f̄ k#@ f j #,

rhs of ~II.18!5m•~m^ 1!•~1^ b ^ a!~1^ S^ 1!

•(
i

@xi f j ^ f̄ kyi f
j
^ f̄ kzi #3~21!@yi #~@ f j #1@ f̄ k# !1@ f̄ k#@ f j #,
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5(
i

xi f jbS~ f̄ kyi f
j !a f̄ kzi3~21!@yi #~@ f j #1@ f̄ k# !1@ f̄ k#@ f j #,

where we have used the fact that the elementF is even. Equation~II.19! is proved similarly.
Now let us prove the property~II.7! for aF andDF . We write, following Sweedler,

D~a!5(
~a!

a~1! ^ a~2! . ~II.21!

Then, in view of Lemma 1,

m•~1^ aF!~S^ 1!DF~a!5m•~1^ a!~S^ 1!(F21DF~a!

5m•~1^ a!~S^ 1!~D~a!F21!

5m•~1^ a!(
~a!

„S~a~1! f̄ i ! ^ a~2! f̄
i
…3~21!@ f̄ i #@a~2!#

5S~ f̄ i !(
~a!

S~a~1!!aa~2! f̄
i3~21!@ f i #~@a~1!#1@a~2!# !

5S~ f̄ i !(
~a!

S~a~1!!aa~2! f̄
i3~21!@ f i #@a#

5~21!@ f̄ i #@a#S~ f̄ i !(
~a!

S~a~1!!aa~2! f̄
i 5
~II.17!

S~ f̄ i !e~a!a f̄ i3~21!@ f̄ i #@a#

5S~ f̄ i !e~a!a f̄ i 5
~II.20!

e~a!aF , ~II.22!

where we have used the fact that

e~a!50 if @a#51. ~II.23!

The property~II.8! for bF andDF is proved similarly. We then prove property~II.9!, which reads
in terms of the twisted objects

m•~m^ 1!•~1^ bF ^ aF!~1^ S^ 1!FF
2151. ~II.24!

Let us write

F215(
n

X̄n ^ Ȳn ^ Z̄n . ~II.25!

Then, in view of~II.18!,

lhs of ~II.24!

5m•~m^ 1!•~1^ b ^ a!~1^ S^ 1!@~1^ F21!FF
21~F ^ 1!#

5m•~m^ 1!•~1^ b ^ a!~1^ S^ 1!@~1^ D!F•F21
•~D ^ 1!F21#

5m•~m^ 1!•~1^ b ^ a!~1^ S^ 1!

• (
n,~ f !,~ f̄!

@ f i X̄n f̄ j ~1! ^ f ~1!
i Ȳn f̄ j ~2! ^ f ~2!

i Z̄n f̄ j #

3~21!~@X̄n#1@ f̄ j ~1!# !~@ f ~1!
i

#1@ f ~2!
i

# !1@ Z̄n#~@ f̄ j ~1!!#1@ f̄ j ~2!#)1@Ȳn#~@ f j ~1!#1@ f ~2!
i

# !1@ f ~2!
i

#@ f̄ j ~2!#
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5(
n

f i X̄n(
~ f̄!

f j ~1!bS~ f̄ j ~2!!S~Ȳn!(
~ f !

S~ f ~1!
i !a f ~2!

i Z̄n f̄ j

•~21!~@X̄n#1@Ȳn#!~@ f ~1!
i

#1@ f ~2!
i

# !1~@Ȳn#1@ Z̄n#!~@ f̄ j ~1!#1@ f̄ j ~2!# !1~@ f ~1!
i

#1@ f ~2!
i

# !~@ f̄ j ~1!#1@ f̄ j ~2!# !

5(
n

f i X̄n(
~ f !

f j ~1!bS~ f̄ j~2!!S~Ȳn!(
~ f !

S~ f ~1!
i !a f ~2!

i Z̄n f̄ j

•~21!~@X̄n#1@Yn#!@ f i #1~@Yn#1@ Z̄n#!@ f̄ j #1@ f i #@ f j #

5(
n

f i X̄n•~21!~@Xn#1@Yn#!@ f i #1~@Yn#1@ Z̄n#!@ f j #1@ f i #@ f j #

•(
~ f !

f j ~1!bS~ f j ~2!!S~Ȳn!(
~ f !

S~ f ~1!
i !a f ~2!

i Z̄n f̄ j

5
~II.7!,~II.8!

(
n

f i X̄ne~ f̄ j !bS~Ȳn!e~ f i !aZn f j

•~21!~@Xn#1@Yn#!@ f i #1~@Yn#1@Zn#!@ f j #)1@ f i #@ f j #

5
~II.23!

(
n

f i X̄ne~ f̄ j !bS~Ȳn!e~ f i !aZ̄n f̄ j5m•~m^ 1!•~1^ b ^ a!~1^ S^ 1!

•@„~1^ e!F ^ 1…•F21
•„~e ^ 1!F21

^ 1…#

5
~II.12!

m•~m^ 1!•~1^ b ^ a!~1^ S^ 1!F21 5
~II.9!

1.

The property~II.10! for the twisted objects, which reads

m•~m^ 1!•~S^ 1^ 1!~1^ aF ^ bF!~1^ 1^ S!FF51, ~II.26!

is proved in a similar way.

Definition 3: A quasi-Hopf superalgebra~A,D,e,F! is called quasi-triangular if there exists an
invertible homogeneous elementRPA^ A such that

DT~a!R5RD~a!, ;aPA, ~II.27!

~D ^ 1!R5F231
21R13F132R23F123

21, ~II.28!

~1^ D!R5F312R13F213
21R12F123. ~II.29!

Throughout,DT5T•D with T being the graded twist map which is defined, for homogeneous
elementsa,bPA, by

T~a^ b!5~21!@a#@b#b^ a; ~II.30!

andF132, etc. are derived fromF[F123 with the help ofT:

F1325~1^ T!F123,

F3125~T^ 1!F1325~T^ 1!~1^ T!F123,

F231
215~1^ T!F213

215~1^ T!~T^ 1!F123
21,

5268 J. Math. Phys., Vol. 40, No. 10, October 1999 Y.-Z. Zhang and M. D. Gould

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  130.102.82.2 On: Tue, 18 Oct 2016

05:40:18



and so on. We remark that our convention differs from the usual one which employs the inverse
permutation on the positions~cf. Ref. 4!.

It is easily shown that the properties~II.27!–~II.29! imply the graded Yang–Baxter-type
equation,

R12F231
21R13F132R23F123

215F321
21R23F312R13F213

21R12, ~II.31!

which is referred to as the graded quasi-Yang–Baxter equation, and the counit properties ofR:

~e ^ 1!R515~1^ e!R. ~II.32!

Theorem 2: Denoting by the set(A,D,e,F,R) a quasi-triangular quasi-Hopf superalgebra, then
(A,DF ,e,FF ,RF) is also a quasi-triangular quasi-Hopf superalgebra, with the choice ofRF

given by

RF5FTRF21, ~II.33!

where FT5T•F[F21. Here DF and FF are given by (II.13) and (II.14), respectively.
The proof of this theorem is elementary computation. As an example, let us illustrate the proof

of the property~II.28! for DF , RF , andFF . Applying the homomorphismT^ 1 to (FF
21)123,

one obtains

~FF
21!2135F13~T^ 1!~1^ D!F•F213

21
•~DT

^ 1!F21
•~FT!12

21

5F13(
~ f !

~21!@ f ~1!
i

#@ f i #~ f ~1!
i

^ f i ^ f ~2!
i !F213

21~DT
^ 1!F21

•~FT!12
21, ~II.34!

which gives rise to, by applying the homomorphism 1^ T to both sides,

~FF
21!2315F12(

~ f !
~21!~@ f ~1!

i
#1@ f ~2!

i
# !@ f i #~ f ~1!

i
^ f ~2!

i
^ f i !F231

21~1^ T!~DT
^ 1!F21

•~FT!13
21

5F12~D ^ 1!FT
•F231

21~1^ T!~DT
^ 1!F21

•~FT!13
21. ~II.35!

Then,

~DF ^ 1!RF5~F ^ 1!~D ^ 1!RF•~F21
^ 1!

5F12~D ^ 1!~FTRF21!•F12
21

5F12~D ^ 1!FT~D ^ 1!R~D ^ 1!F21
•F12

21

5
~II.28!

F12~D ^ 1!FT
•F231

21 R13F132R23F123
21 ~D ^ 1!F21

•F12
21

5
~II.35!

~FF
21!231~FT!13~1^ T!~DT

^ 1!F•R13F132R23F123
21 ~D ^ 1!F21

•F12
21

5
~II.14!

~FF
21!231~FT!13~1^ T!~DT

^ 1!F•R13F132R23~1^ D!F21
•F23

21~FF
21!123
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5~FF
21!231~FT!13~1^ T!@~DT

^ 1!F•R12#•F132R23~1^ D!F21

•F23
21~FF

21!123

5
~II.27!

~FF
21!231~FT!13~1^ T!@R12~D ^ 1!F#•F132~1^ DT!F21

•R23F23
21~FF

21!123

5~FF
21!231~FT!13R13~1^ T!@~D ^ 1!F#•F132~1^ DT!F21

•R23F23
21~FF

21!123

5
~II.33!

~FF
21!231~RF!13F13

21~1^ T!@~D ^ 1!F#

•F132~1^ DT!F21~FT!23
21~RF!23~FF

21!123

5~FF
21!231~RF!13~1^ T!@F12

21~D ^ 1!FF123~1^ D!F21
•F23

21#

•~RF!23~FF
21!123

5
~II.14!

~FF
21!231~RF!13~1^ T!~FF!123•~RF!23~FF

21!123

5~FF
21!231~RF!13~FF!132~RF!23~FF

21!123. ~II.36!

Let us now consider the special case thatA arises from a normal quasi-triangular Hopf
superalgebra via twisting withF. A quasi-triangular Hopf superalgebra is a quasi-triangular quasi-
Hopf superalgebra witha5b51 andF51^1^1. HenceA has the followingZ2 graded quasi-
Hopf algebra structure:

DF~a!5FD~a!F21, ;aPA,

FF5F12•~D ^ 1!F•~1^ D!F21
•F23

21,
~II.37!

aF5m•~S^ 1!F21, bF5m•~1^ S!F,

RF5FTRF21.

The twisting procedure is particularly interesting when the twistorFPA^ A depends on an ele-
mentlPA, i.e., F5F(l), and is a shifted cocycle in the following sense. Herel is assumed to
depend on one~or possible several! parameters.

Definition 4: A twistor F~l! depending onlPA is a shifted cocycle if it satisfies the graded
shifted cocycle condition:

F12~l!•~D ^ 1!F~l!5F23~l1h~1!!•~1^ D!F~l!, ~II.38!

where h(1)5h^ 1^ 1 and hPA is fixed.
Let „A,Dl ,e,F(l),R(l)… be the quasi-triangular quasi-Hopf superalgebra obtained from

twisting the quasi-triangular Hopf superalgebra by the twistorF(l). Then we have the following.
Proposition 1: We have

F~l![FF5F23~l1h~1!!F23~l!21, ~II.39!
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Dl~a!TR~l!5R~l!Dl~a!, ;aPA, ~II.40!

~Dl ^ 1!R~l!5F231~l!21R13~l!R23~l1h~1!!, ~II.41!

~1^ Dl!R~l!5R13~l1h~2!!R12~l!F123~l!. ~II.42!

As a corollary, R~l! satisfies the graded dynamical Yang–Baxter equation

R12~l1h~3!!R13~l!R23~l1h~1!!5R23~l!R13~l1h~2!!R12~l!. ~II.43!

III. QUANTUM SUPERGROUPS

Let G be a Kac–Moody superalgebra15,16 with a symmetrizable generalized Cartan matrixA
5(ai j ) i , j ,PI . As is well known, a given Kac–Moody superalgebra allows many inequivalent
systems of simple roots. A system of simple roots is called distinguished if it has minimal odd
roots. Let$a i ,i PI % denote a chosen set of simple roots. Let~ , ! be a fixed invariant bilinear form
on the root space ofG. Let H be the Cartan subalgebra and throughout we identify the dualH*
with H via ~ , !. The generalized Cartan matrixA5(ai j ) i , j PI is defined from the simple roots by

ai j 5H 2~a i ,a j !

~a i ,a i !
, if ~a i ,a i !Þ0,

~a i ,a j !, if ~a i ,a i !50.

~III.1!

As we mentioned in the previous section, quantum Kac–Moody superalgebras are quasi-
triangular quasi-Hopf superalgebras witha5b51 andF51^1^1. We shall not give the standard
relations obeyed by the simple generators~or Chevalley generators! $hi ,ei , f i ,i PI % of Uq(G), but
mention that for certain types of Dynkin diagrams extraq-Serre relations are needed in the
defining relations. We adopt the following graded Hopf algebra structure,

D~h!5h^ 111^ h,

D~ei !5ei ^ 11t i ^ ei , D~ f i !5 f i ^ t i
2111^ f i ,

~III.2!
e~ei !5e~ f i !5e~h!50,

S~ei !52t i
21ei , S~ f i !52 f i t i , S~h!52h,

wherei PI , t i5qhi andhPH.
The canonical elementR is called the universal R-matrix of Uq(G), which satisfies the basic

properties@e.g.,~II.27!–~II.29! with F51^1^1 and~II.32!#

DT~a!R5RD~a!, ;aPUq~G!,

~D ^ 1!R5R13R23,
~III.3!

~1^ D!R5R13R12,

~e ^ 1!R5~1^ e!R51,

and the graded Yang–Baxter equation@cf. ~II.31! with F51^1^1#

R12R13R235R23R13R12. ~III.4!
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The Hopf superalgebra Uq(G) contains two important Hopf subalgebras Uq
1 and Uq

2 which are
generated byei and f i , respectively. By Drinfeld’s quantum double construction, the universal
R-matrix R can be written in the form

R5S 1^ 11(
t

at
^ atD •q2T, ~III.5!

where$at%PUq
1 and $at%PUq

2 . The elementT is defined as follows. If the symmetrical Cartan
matrix is nondegenerate, thenT is the usual canonical element ofH^H. Let $hl% be a basis ofH
and$hl% be its dual basis. ThenT can be written as

T5(
l

hl ^ hl . ~III.6!

In the case of a degenerate symmetrical Cartan matrix, we extend the Cartan subalgebraH by
adding some elements to it in such a way that the extended symmetrical Cartan matrix is
nondegenerate.17 ThenT stands for the canonical element of the extended Cartan subalgebra. It
still takes the form~III.6!, but now$hl% ($hl%) is understood to be the~dual! basis of the extended
Cartan subalgebra. After such enlargement, one hash5( l(h

l ,h)hl5( l(hl ,h)hl for any givenh
in the enlarged Cartan subalgebra.

For later use, we work out the explicit form of the universal R-matrix for the simplest
quantum affine superalgebra Uq@sl(1û1)]. This algebra is generated by Chevalley generators
$ei , f i ,hi ,d,i 50,1% with ei , f i odd, andhi , d even. Here and throughoutd stands for the deri-
vation operator. Let us writehi5a i . Then we haveh05d2«11d1 and h15«12d1 , where
$«1 ,d1 ,d% satisfy («1 ,«1)5152(d1 ,d1), («1 ,d1)5(d,d)5(d,«1)5(d,d1)50. We extend the
Cartan subalgebra by adding to it the elementhex5«11d1 . A basis for the enlarged Cartan
subalgebra is thus$hex,h0 ,h1 ,d%. It is easily shown that the dual basis is$hex,h0,h1,c%, where
hex5 1

2(«12d1)5 1
2h1 , h05d, and h15«11d2 1

2(«12d1)5d1 1
2hex. As is well known,

Uq@sl(1û1)] can also be realized in terms of the Drinfeld generators18 $Xn
6 ,Hn ,Hn

ex,nPZ,c,d%,
where Xn

6 are odd and all other generators are even. The relations satisfied by the Drinfeld
generators read19

@c, a#5@H0 , a#5@d, d#5@Hn , Hm#5@Hn
ex, Hm

ex#50, ;aPUq@sl~1û1!],

qH0
ex

Xn
6q2H0

ex
5q62Xn

6 ,

@d, Xn
6#5nXn

6 , @d, Hn#5nHn , @d, Hn
ex#5nHn

ex,

@Hn , Hm
ex#5dn1m,0

@2n#q@nc#q

n
, ~III.7!

@Hn
ex, Xm

6#56
@2n#q

n
Xn1m

6 q7unuc/2,

@Hn , Xm
6#505@Xn

6 , Xm
6#,

@Xn
1 , Xm

2#5
1

q2q21 ~q~c/2!~n2m!cn1m
1 2q2~c/2!~n2m!cn1m

2

!,

where@x#q5(qx2q2x)/(q2q21), @a, b#[ab2(21)@a#@b#ba denotes the supercommutator, and
c6n

6 are related toH6n by relations
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(
n>0

c6n
6 z7n5q6H0 expS 6~q2q21! (

n.0
H6nz7nD . ~III.8!

The relationship between the Drinfeld generators and the Chevalley generators is

e15X0
1 , f 15X0

2 , h15H0 , hex5H0
ex,

~III.9!
e05X1

2q2H0, f 052qH0X21
1 , h05c2H0 .

With the help of the Drinfeld generators, we find the following universal R-matrix,

R5R8•q2T, ~III.10!

where

T5hex^ hex1h0^ h01h1^ h11d^ c

5 1
2~H0^ h0

ex1H0
ex

^ H0!1c^ d1d^ c,

R85R,R0R.,

R,5 )
n>0

→
exp@~q2q21!~q2nc/2Xn

1
^ qnc/2X2n

2 !#, ~III.11!

R05expF2~q2q21! (
n51

`
n

@2n#q
~Hn^ H2n

ex 1Hn
ex

^ H2n!G ,

R.5 )
n>0

←
exp@2~q2q21!~Xn11

2 qnc/22H0^ q2nc/21H0X2n21
1 !#.

Here and throughout,

)
k>0

→
Ak5A0A1A2¯, )

k>0

←
Ak5¯A2A1A0 . ~III.12!

It seems to us that even for this simplest quantum affine superalgebra Uq@sl(1û1)] the universal
R-matrix has not been written down in its explicit form before.

Let us compute the image ofR in the two-dimensional evaluation representation (p,V) of
Uq@sl(1û1)], whereV5C1u15Cv1^ Cv2 with v1 even andv2 odd. Letei j be the 232 matrix
whose (i , j )-element is unity and zero otherwise. In the homogeneous gradation, the simple gen-
erators are represented by

e15A@u#qe12, f 15A@u#qe21, h15u~e111e22!, hex52e111c0~e111e22!,
~III.13!

e05zA@u#qe21, f 052z21A@u#qe12, h052u~e111e22!,

whereu and c0 are arbitrary constants. Then it can be shown that the Drinfeld generators are
represented by

Hn5zn
@nu#q

n
~e111e22!, Hn

ex5zn
@2n#q

n
qnue111zncn~e111e22!,

~III.14!
Xn

15znqnuA@u#qe12, Xn
25znqnuA@u#qe21,
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where againcn are arbitrary constants. In the following we setcn to be zero. Then the image
RVV(z;u,u8)5(pu ^ pu8)R depends on two extra nonadditive parametersu, u8, and is given by

RVV~z;u,u8!5
q2u2u82z

12zq2u2u8
e11^ e111e22^ e221

q2u82zq2u

12zq2u2u8
e11^ e221

q2u2zq2u8

12zq2u2u8
e22^ e11

1A@u#q@u8#qq2u
q2q21

12zq2u2u8
e12^ e212A@u#q@u8#qq2u8

z~q2q21!

12zq2u2u8
e21^ e12.

~III.15!

Equation~III.15! is nothing but the R-matrix obtained in Ref. 20 by solving the Jimbo equation.

IV. ELLIPTIC QUANTUM SUPERGROUPS

Following Jimboet al.,4 we define elliptic quantum supergroups to be quasi-triangular quasi-
Hopf superalgebras obtained from twisting the normal quantum supergroups~which are quasi-
triangular quasi-Hopf superalgebras witha5b51 andF51^1^1! by twistors which satisfy the
graded shifted cocycle condition.

A. Elliptic quantum supergroups of face type

Let r be an element in the~extended! Cartan subalgebra such that (r,a i)5(a i ,a i)/2 for all
i PI , and

f5Ad ~q~1/2!( l
hlh

l2r
!, ~IV.1!

be an automorphism of Uq(G). Here$hl% and $hl% are as in~III.6! and are the dual basis of the
~extended! Cartan subalgebra. Namely,

f~ei !5eit i , f~ f i !5t i
21f i , f~qh!5qh. ~IV.2!

In the following we consider the special case in which the elementl introduced before belongs to
the ~extended! Cartan subalgebra. Let

fl5f2
•Ad ~q2l!5Ad ~q( l hlh

l22r12l! ~IV.3!

be an automorphism depending on the elementl and R be the universal R-matrix of Uq(G).
Following Jimboet al.,4 we define a twistorF(l) by the infinite product

F~l!5)
k>1

←
~fl

k
^ 1!~qTR!21. ~IV.4!

It is easily seen thatF(l) is a formal series in parameter~s! in l with leading term 1. Therefore the
infinite product makes sense. The twistorF(l) is referred to as a face-type twistor. It can be
shown thatF(l) satisfies the graded shifted cocycle condition

F12~l!~D ^ 1!F~l!5F23~l1h~1!!~1^ D!F~l!, ~IV.5!

where, if l5( ll lh
l , thenl1h(1)5( l(l l1hl

(1))hl . The proof of~IV.5! is identical to the non-
super case given by Jimboet al.,4 apart from the use of the graded tensor products. Moreover, it
is easily seen thatF(l) obeys the counit property

~e ^ 1!F~l!5~1^ e!F~l!51. ~IV.6!

We have the following definition.
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Definition 5 (Face-type elliptic quantum supergroup): We define elliptic quantum supergroup
Bq,l(G) of face type to be the quasi-triangular quasi-Hopf superalgebra
„Uq(G),Dl ,e,F(l),R(l)… together with the graded algebra anti-homomorphism S defined by
(III.2) and al5m•(S^ 1)F(l)21, bl5m•(1^ S)F(l). Here e is defined by (III.2), and

Dl~a!5F~l!D~a!F~l!21, ;aPUq~G!,

R~l!5F~l!TRF~l!21, ~IV.7!

F~l!5F23~l1h~1!!F23~l!21.

We now consider the particularly interesting case whereG is of affine type. Thenr contains
two parts,

r5 r̄1gd, ~IV.8!

whereg5(c,c12r̄)/2, r̄ is the graded half-sum of positive roots of the nonaffine partḠ, andc
is highest root ofḠ; d is the derivation operator which gives the homogeneous gradation

@d, ei #5d i0ei , @d, f i #52d i0f i , i PI . ~IV.9!

We also set

l5l̄1~r 1g!d1s8c, r ,s8PC, ~IV.10!

wherel stands for the projection ofl onto the~extended! Cartan subalgebra ofḠ. Denoting by
$h̄ j% and$h̄ j% the dual basis of the~extended! Cartan subalgebra ofḠ and settingp5q2r , we can
decomposefl into two parts,

fl5Ad ~pdq2cd!•f̄l , f̄l5Ad ~q( j h̄j h̄
j 12~ l̄2 r̄!!. ~IV.11!

Introduce a formal parameterz ~which will be identified with spectral parameter! into R andF(l)
by setting

R~z!5Ad ~zd
^ 1!R,

F~z,l!5Ad ~zd
^ 1!F~l!, ~IV.12!

R~z,l!5Ad ~zd
^ 1!R~l!5F~z21,l!TR~z!F~z,l!21.

Then it can be shown from the definition ofF(l) that F(z,l) satisfies the difference equation

F~pq2c~1!
z,l!5~f̄l ^ 1!21

„F~z,l!…•qTR~pq2c~1!
z!,

~IV.13!
F~0,l!5F Ḡ~ l̄!.

The initial condition follows from the fact thatR(z)qd^ c1c^ duz50 reduces to the universal
R-matrix of Uq(Ḡ).

Let us give some examples.

1. The case Bq ,l†sl „1z1…‡

In this case the universal R-matrix is given simply by

R5exp@~q2q21!e^ f #q2T5@11~q2q21!e^ f #q2T,
~IV.14!

T5 1
2~h^ hex1hex^ h!.
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Let us write

l5~s811! 1
2h1s1

2hex, s8,sPC. ~IV.15!

Sinceh commutes with everything,fl is independent ofs8. Settingw5q2(s1h), we have

fl5Ad~w1/2hex!. ~IV.16!

The formula for the twistor becomes

F~w!5)
k>1

„12~q2q21!wkq2he^ f qh
…

512~q2q21!(
k51

`

wkq2he^ f qh

512~q2q21!
w

12w
q2he^ f qh. ~IV.17!

2. The case Bq ,l†sl „1̂z1…

Taking a basis$c,d,h,hex% of the enlarged Cartan subalgebra of sl(1û1), we write

l5rd1s8c1~s911! 1
2h1s1

2hex, r ,s8,s9,sPC. ~IV.18!

Thenfl is independent ofs8 ands9. Set

p5q2r , w5q2~s1h!. ~IV.19!

SetF(z;p,w)[F(z,l). Then~IV.13! take the form

F~pq2c~1!
z;p,w!5~f̄w

21
^ 1!„F~z;p,w!…•qTR~pq2c~1!

z!, ~IV.20!

F~0;p,w!5Fsl~1u1!~w!, ~IV.21!

wheref̄w5Ad(w(1/2hex).
The image of~IV.20! in the two-dimensional representation (p,V) given by ~III.13! ~by

setting u51! yields a difference equation forFVV(z;p,w)5(p ^ p)F(z;p,w). Noting that p
•f̄w5Ad (Dw

21)•p, whereDw5e111we22, we find

FVV~pz;p,w!5Ad ~Dw^ 1!„FVV~z;p,w!…•KRVV~pz!, ~IV.22!

where K5(p ^ p)qT5q2e11^ e111qe11^ e221qe22^ e111e22^ e22 and RVV(pz) is given by
~III.15! ~with u5u851!. Equation~IV.22! is a system of difference equations ofq-KZ ~Kaizhnik–
Zamolodchikov! equation type,21 and can be solved with the help of theq-hypergeometric series.
The solution with the initial condition~IV.21! is given by

FVV~z;p,w!51f0~z;p,w!e11^ e111e22^ e221 f 11~z;p,w!e11^ e221 f 22~z;p,w!e22^ e11

1 f 12~z;p,w!e12^ e211 f 21~z;p,w!e21^ e12, ~IV.23!

where

1f0~z;p,w!5
~pq22z;p!`

~pq2z;p!`
,

5276 J. Math. Phys., Vol. 40, No. 10, October 1999 Y.-Z. Zhang and M. D. Gould

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  130.102.82.2 On: Tue, 18 Oct 2016

05:40:18



f 11~z;p,w!52f1S wq22 q22

;p,pq2z

w
D ,

f 12~z;p,w!52
w~q2q21!

12w 2f1S wq22 pq22

;p,pq2z

pw
D , ~IV.24!

f 21~z;p,w!5
zpw21~q2q21!

12pw21 2f1S pw21q22 pq22

;p,pq2z

p2w21
D ,

f 22~z;p,w!52f1S pw21q22 q22

;p,pq2z

pw21
D .

Here

2f1S qa qb

;p,x

qc
D 5 (

n50

`
~qa;p!n~qb;p!n

~p;p!n~qc;p!n
xn,

~IV.25!

~a;p!n5 )
k50

n21

~12apk!, ~a;p!051.

B. Elliptic quantum supergroups of vertex type

As we mentioned before, a given Kac–Moody superalgebrasG allows many inequivalent
simple root systems. By means of the ‘‘extended’’ Weyl transformation method introduced in Ref.
22, one can transform from one simple root system to another inequivalent one.23 For G
5sl(nûn), there exists a simple root system in which all simple roots are odd~or fermionic!. This
system can be constructed from the distinguished simple root system by using the ‘‘extended’’
Weyl operation repeatedly. We find the following simple roots, all of which are odd~or fermi-
onic!,

a05d2«11dn ,

a2 j5d j2« j 11 , j 51,2,...,n21, ~IV.26!

a2i 215« i2d i , i 51,2,...,n

with d, $« i% i 51
n and$d i% i 51

n satisfying

~d,d!5~d,« i !5~d,d i !50, ~« i ,« j !5d i j ,
~IV.27!

~d i ,d j !52d i j , ~« i ,d j !50.

Such a simple root system is usually called nonstandard. It seems to us that sl(nûn) is the only
nontwisted affine superalgebra which has a nonstandard system of simple roots, all of which are
fermionic.
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As will be shown below, forG5sl(nûn) with the above fermionic simple roots, one can
construct a different type of twistor. Following Jimboet al.,4 we say this twistor is ofvertex type.

Let us writehi5a i ( i 50,1,...,2n21) with a i given by ~IV.26!. We extend the Cartan sub-
algebra of sl(nûn) by adding to it the elementhex5( i 51

n (« i1d i). A basis of the extended Cartan
subalgebra is$hex,h0 ,h1 ,...,h2n21 ,d%. Denote by$hex,h0,h1,...,h2n21,c% the dual basis. We
have

hex5
1

2n (
i 51

n

~« i2d i !,

h2k5d1(
i 51

k

~« i2d i !2
k

n (
i 51

n

~« i2d i !, ~IV.28!

h2k115d1 (
i 51

k11

« i2(
i 51

k

d i2
2k11

2n (
i 51

k

~« i2d i !,

wherek50,1,...,n21. The canonical elementT in the extended Cartan subalgebra reads

T5hex^ hex1 (
i 50

2n21

~hi ^ hi !1d^ c. ~IV.29!

Let t be the diagram automorphism of Uq@sl(nûn)] such that

t~ei !5ei 11 mod 2n , t~ f i !5 f i 11 mod 2n , t~hi !5hi 11 mod 2n . ~IV.30!

Obviously, the automorphismt is nongraded since it preserves the grading of the generators and,
moreover,t2n51. Then we can show

t~hex!52hex1jc, t~c!5c, t~hex!52hex1
1

2n
c,

t~h2k!5h2k11 mod 2n1
j

2n (
i 51

n

~« i2d i !2
j1n22k21

2n
c, ~IV.31!

t~h2k11!5h2k12 mod 2n1
j

2n (
i 51

n

~« i2d i !2
n22k21

2n
c,

wherek50,1,...,n21 andj is an arbitrary constant. Introduce element

r̃5 (
i 50

2n21

hi1jnhex, ~IV.32!

which gives the principal gradation

@ r̃, ei #5ei , @ r̃, f i #52 f i , i 50,1,...,2n21. ~IV.33!

It is easily shown that

t~ r̃ !5 r̃, ~t ^ t!T5T. ~IV.34!

Notice also that

~t ^ t!•D5D•t, ~IV.35!
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~t ^ t!R5R.

Here the second relation is deduced from the uniqueness of the universal R-matrix of Uq@sl(nûn)].
It can be shown that

(
k51

2n

~tk
^ 1!T5 r̃ ^ c1c^ r̃2

2~n221!23j

6
c^ c. ~IV.36!

Therefore, if we set

T̃5
1

2n S r̃ ^ c1c^ r̃2
2~n221!23j

6
c^ cD , ~IV.37!

then we have

(
k51

2n

~tk
^ 1!~T2T̃!50. ~IV.38!

Introduce an automorphism

f̃ r5t•Ad ~q@~r 1c!/n#r̃ !, ~IV.39!

which depends on a parameterr PC. Then the 2n-fold product

)
2n>k>1

←
~f̃ r

k
^ 1!~qT̃R!21. ~IV.40!

is a formal power series inp1/2n where p5q2r . Moreover, it has leading term 1 thanks to the
relation ~IV.38!. Following Jimboet al.,4 we define the vertex-type twistor

E~r !5 lim
N→`

)
2nN>k>1

←
~f̃ r

k
^ 1!~qT̃R!21. ~IV.41!

Then one can show thatE(r ) satisfies the graded shifted cocycle condition

E12~r !~D ^ 1!E~r !5E23~r 1c~1!!~1^ D!E~r !. ~IV.42!

Moreover,E(r ) obeys the counit property

~e ^ 1!E~r !5~1^ e!E~r !51. ~IV.43!

We have the following.
Definition 6 (Vertex-type elliptic quantum supergroup): We define elliptic quantum super-

group Aq,p@sl(nûn)] of vertex type to be the quasi-triangular quasi-Hopf superalgebra
„Uq@sl(nûn)],D r ,e,F(r ),R(r )… together with the graded algebra anti-homomorphism S defined
by (III.2) anda r5m•(S^ 1)E(r )21, b r5m•(1^ S)E(r ). Here e is defined by (III.2), and

D r~a!5E~r !D~a!E~r !21, ;aPUq@sl~nûn!,

R~r !5E~r !TRE~r !21, ~IV.44!

F~r !5E23~r 1c~1!!E23~r !21.
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Similar to the face-type case, introduce a formal parameterz ~or spectral parameter! into R
andE(r ) by the formulas

R̃~z!5Ad ~zr̃
^ 1!R,

E~z,r !5Ad ~zr̃
^ 1!E~r !, ~IV.45!

R̃~z,r !5Ad ~zr̃
^ 1!R~r !5E~z21,r !TR̃~z!E~z,r !21.

Then it can be shown from the definition ofE(r ) that E(z,r ) satisfies the difference equation

E~p1/2nq~1/n!c~1!
z,r !5~t ^ 1!21

„E~z,r !…•qT̃R̃~p1/2nq~1/n!c~1!
z !, ~IV.46!

E~0,r !51. ~IV.47!

The initial condition follows from~IV.38! and the fact that we are working in the principal
gradation. Equation~IV.46! implies that

E„~p1/2nq~1/n!c~1!
!2nz,r …5E„z,r )…• )

2n21>k>0

←
qT̃~t ^ 1!2n2kR̃„~p1/2nq~1/n!c~1!

!2n2kz….

~IV.48!

Some remarks are in order. In nonsuper case,4 p and t are commutable in the sense thatp
•t5Ad (h)•p with h obeying hv i5v i 11 modm , where $v i% are basis of the vector moduleV
5Cm5Cv1%¯% Ccm of Aq,p(ŝlm) and t is the cyclic diagram automorphism of sˆlm . In the
super~or Z2 graded! case, however,p andt are not ‘‘commutable’’ in the above sense. This is
becauset is grading preserving while the 2n-dimensional defining representation spaceV5Cnun

5Cv1%¯% Cv2n is graded. So to compute the image, one has to work out the action oft at the
universal level and then apply the representationp. Therefore, the knowledge of the universal
R-matrix in its explicit form is required. This makes the image computation of the twistor more
involved in the supersymmetric case.

As an example, consider the simplest case of elliptic quantum affine superalgebra
Aq,p@sl(1û1)]. Let us calculate the image in the two-dimensional representation (p,V), V
5C1u1. As remarked above, we have to work at the universal level first and then apply the
representation. We have the following.

Lemma 2: In the principal gradation, the action oft on the Drinfeld generators is represented
on V by

t~Xn
1!5~21!nz2n11q2ne12, t~Xn

2!5~21!n11z2n21q2ne21,

t~Hn!5~21!n11z2n
@n#q

n
~e111e22!, ~IV.49!

t~Hn
ex!5~21!n11z2n

@2n#q

n S q2ne111
q2q21

2
@n#q~e111e22! D .

Applying p^p to the both side of~IV.48! and writing EVV(z;p)[(p ^ p)E(z,r ), where p
5q2r , we get

EVV~pz;p!5EVV~z;p!•~p ^ p!„~t ^ 1!R̃~p1/2z!…•R̃VV~pz!, ~IV.50!

whereR̃VV(z)5(p ^ p)R̃(z). In view of ~IV.49! and the explicit formula~III.11! of the universal
R-matrix, ~IV.50! is a system of eight difference equations.

We can also proceed directly. We have, with the help of Lemma 2,
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~p ^ p!~t2k
^ 1!„Ad ~pkz!r̃

^ 1…R21q2T̃5K•Ē2k ,
~IV.51!

~p ^ p!~t2k21
^ 1!„Ad ~pk21/2z!r̃

^ 1…R21q2T̃5r2k21•K21
•Ē2k21 ,

whereK5(p ^ p)qT and

r2k215
~11q2p2k21z2!~11q22p2k21z2!

~11p2k21z2!2 ,

Ē2k5
1

12q2p2kz2 „~12q22p2kz2!e11^ e111~12q2p2kz2!e22^ e22

1~12p2kz2!e11^ e221~12p2kz2!e22^ e11

2~q2q21!pkze12^ e211~q2q21!pkze21^ e12…, ~IV.52!

Ē2k215
1

11q22p2k21z2 „~11q2p2k21z2!e11^ e111~11q22p2k21z2!e22^ e22

1~11p2k21z2!e11^ e221~11p2k21z2!e22^ e11

1~q2q21!pk21/2ze12^ e212~q2q21!pk21/2ze21^ e12…. ~IV.53!

Then

EVV~z;p!5)
k>1

←
r2k21KĒ2kK

21Ē2k215r~z;p!„EVV
1 ~z;p!1EVV

2 ~z;p!…, ~IV.54!

where

r~z;p!5
~2pq2z2;p2!`

~pqz;p!`~2pqz;p!`
, ~IV.55!

EVV
1 ~z;p!5)

k>1

←
1

~11p2k21z2!2 „~12q22p2kz2!~11q2p2k21z2!e11^ e11

1~12q2p2kz2!~11q22p2k21z2!e22^ e22

1~q2q21!pk21/2z~12q22p2kz2!e12^ e12

2~q2q21!pk21/2z~12q2p2kz2!e21^ e21…, ~IV.56!

EVV
2 ~z;p!5)

k>1

←
1

11p2k21z2 „~12p2kz2!e11^ e221~12p2kz2!e22^ e11

2~q2q21!pkze12^ e211~q2q21!pkze21^ e12…. ~IV.57!

The infinite product inEVV
2 (z;p) can be calculated directly and we find

EVV
2 ~z;p!5bE~z!~e11^ e221e22^ e11!1cE~z!~e12^ e212e21^ e12!, ~IV.58!

where

bE~z!6cE~z!5
~pq61z;p!`~2pq71z;p!`

~2pz2;p2!`
. ~IV.59!
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As for EVV
1 (z;p), it can be written as

EVV
1 ~z;p!5X11~z;p!e11^ e111X22~z;p!e22^ e22

1X12~z;p!e12^ e121X21~z;p!e21^ e21, ~IV.60!

whereXi j (z;p) are the solution to the following system of four difference equations:

X11~pz;p!5
1

12q22p2z2 „~11q22pz2!X11~z;p!2p1/2z~q2q21!X12~z;p!…,

X12~pz;p!5
1

12q2p2z2 „2p1/2z~q2q21!X11~z;p!1~11q2pz2!X12~z;p!…,

~IV.61!

X21~pz;p!5
1

12q22p2z2 „p
1/2z~q2q21!X22~z;p!1~11q22pz2!X21~z;p!…,

X22~pz;p!5
1

12q2p2z2 „~11q2pz2!X22~z;p!1p1/2z~q2q21!X21~z;p!….
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