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Level-one representations and vertex operators
of quantum affine superalgebra  U,[g/(N|N)]

Yao-Zhong Zhang
Department of Mathematics, University of Queensland, Brisbane,
Queensland 4072, Australia
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Level-one representations of the quantum affine superalgeg{rgl(MN)] asso-
ciated with the appropriate nonstandard system of simple rootg-&edex opera-
tors (intertwining operatonsassociated with the level-one modules are constructed
explicitly in terms of free bosonic fields. @999 American Institute of Physics.
[S0022-248809)02111-9

[. INTRODUCTION

The algebraic analysis approactbhased on quantum affine algebra symmetries enables one
not only to solve massive or off-critical integrable models directly in the thermodynamic limit but
also to compute their correlation functidrend form factor$in the form of integrals by applying
the techniques similar to those used so successfully in the critical (semdor example, Ref)5
The key components behind this method are infinite dimensional highest weight representations of
the quantum affine algebras and the correspondimgrtex operatofswhich are intertwiners of
these representations. As in the critical cases, this procedure requires the explicit construction of
the highest weight representations and vertex operators in terms of free bosonic fields.

By now, the level-one representations and vertex operators have been constructed in terms of
free bosons for most quantum affine bosonic algeksas, e.g., Refs. 7—12In contrast, much
less has been known for the case of quantum affine superalgebras. For the type | quantum affine
superalgebr&) q[gI(l\A/I IN)], M#N, the level-one representations and vertex operators have been
investigated in Ref. 13see Ref. 14 for a leved-free boson realization oh‘Jq[sI(2|1)]). In
particular, the level-one irreducible highest weight representatiobsl[cgl(ﬁll)] were studied in
some details and the corresponding characters were défividtese representations have been
re-examined and used to compute the correlation functions ofj-tteformed supersymmetric
—J model in Ref. 15.

So far in the literature, the very interesting casévbf N has been largely ignored. The only
exception i$® where the special case M =N=2 was treated and the type | vertex operators
involving infinite dimensional evaluatiofor level-zerg representations were also constructed for
this special case. By contrast, we shall consider the geiMeralN case and investigate both type
| and type Il vertex operators with respect to finite dimensional evaluation moduledVHd
case is interesting since it seems to us thétgl(m N)] is the only untwisted superalgebra which
has a nonstandard system where all simple roots are odd or fermionic. It also seems to be the only
superalgebra where a vertex type quasi-Hopf twistor can be consttliatetithus the correspond-
ing elliptic quantum supergrouﬂq,p[gl(MN)] can be introduced.

In this paper, we construct a level-one representatioth,gfgl(MN)] by bosonizing the
Drinfeld generators. We also construct the vertex operators associated with the level-one repre-
sentations in terms of the free bosonic fields.

It should be pointed out that thd =N case, treated in this paper, is more complicated than
theM # N case considered in Ref. 13. For thle= N case, the Cartan matrix is degenerate, i.e., not
invertible. As is well known, the invertibility of Cartan matrix is essential in the construction of
vertex operators. We overcome this problem by enlarging the Cartan subalgebra in an appropriate
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way. Moreover, we shall work in a nonstandard system of simple roots, in contrast to Ref. 13 in
which a standard system was used. Then our method is a generalization and modification of that
used in Ref. 13. We also remark that the ideas in the present paper is applicable to the study of
higher level vertex operator representations of quantum affine superalgebras.

The layout of this paper is the following. In Sec. II, we describe the Drinfeld realiZ&tafn

Uq[gI(NlN)] in the nonstandard system of simple roots and determine the “main téthisthe
coproduct formulas of the Drinfeld generators. In Sec. Ill, we derive thedBnensional evalu-

ation (or level-zerg representations dﬂq[gI(NlN)]. In Sec. IV, we investigate the bosonization

of Uq[gI(NlN)] and construct an explicit level-one representation in terms of free bosonic fields.
Section V is devoted to the study of the bosonization of the level-one vertex operators.

Il. QUANTUM AFFINE SUPERALGEBRA U,[g/(N|N)]

As is well-known, a given Kac—Moody superalgetrallows many inequivalent systems of
simple roots. A system of simple roots is called distinguished if it has minimal odd rootsa| et

i=0,1,...,2N—1} denote a chosen set of simple roots of the affine superalgﬂbn?HN). Let(,)
be a fixed invariant bilinear form on the root space. Hebe the Cartan subalgebra and through-

out we identify the dual* with  via (,). As is shown in Ref. 17gI(N|N) has a simple root
system in which all simple roots are odor fermionig. This system can be constructed from the
distinguished simple root system by using the “extended” Weyl operatiepeatedly. We have
the following simple roots, all of which are oddr fermionig

ag=0— €+ €y,
a=€—€41, 1=1,2,...,N-1 (1.1)

with 6, {€,}2", satisfying
(8,0)=(8,6)=0, (e, e)=(—1)""15 . (1.2)

Such a simple root system is usually called non-standard. The generalized symmetric Cartan
matrix (a;;/) takes the form

ap1=(ag,a1)=—1, agmn-1=(ag,azn-1)=1,
a”,E(oq,a|/)=(—l)|+1(5|’|/,1—§|Y|,+1), |,|,:1,2,...,2\|_1. (”3)
This Cartan matrix is degenerate. To obtain a nondegenerate Cartan matrix, we extend7Ref. 22

by adding to it the element

2N
a2N=k21 €. (11.4)

In the following, we denote b§ the extended Cartan subalgebra andy the dual ofH. The
enlarged Cartan matrix has the following extra matrix elements:

anon=(azn,aon)=0, an=(e;,an)=2-(—-1)"" (1.5)

Let{hg,hy,....h,y.d} be a basis oft, whereh,, is the element if{ corresponding tar,
andd is the usual derivation operator. We shall write= «; (i=0,1,...,AN) with «; given by
(1L1), (1.4). Let{Ag,A4,...,Apy,C} be the dual basis with; being fundamental weights ared
the canonical central element. We htve
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2N

1
— _1\k+1
AZN_ZN IZJ_ ( 1) €k
i i 2N
Aj=d+ 2 (¥ e o0 2 (-1 ey, (11.6)
k=1 k=1

wherei=0,1,...,. N—1.
The quantum affine superalgebtbq[gl(N|N)] is a quantum(or g-) deformation of the

universal enveloping algebra gf(N|N) and is generated by the Chevalley generaers f; q",
dli=0,1,...,.N—-1, j=0,1,...,NN}. The Z,-grading of the Chevalley generators[ig]=[f;]=1,
i=0,1,...,2N-1 and zero otherwise. The defining relations are

hh'=h'h, VheH,

q"ieq "i=q%ie, [d.e]=doe;,
qhifig Ni=qdif;, [d,fi]=—8ofi,
hi_ ~—h
q'—q
(e afi']:5ii'Wa

[e e/ 1=[f.f;,]=0, for a; =0,
[[€0.€1]q-1.[€0,€2n-1]4]=0,
[[ee-1]q-v' L€ € 1]q-1'2]=0,
[[e2n-1.€2n-2]q-1.[€2n-1.€0]q]=0,
[[fo.f1lq-1.[fo.fon-1]q]=0,
(L fi—adq-0t [ fr fiealge-2 ] =0,
[[fano1,fon-2lg-n[fon1,f0lq]=0, 1=12,. . N-2. (I1.7)

Here and throughoufa,b],=ab— (—1)[#PIxba and[a,b]=[a,b];. The fourth ordeg-Serre
relations are obtained by using Yamane’s Dynkin diagram procedure.

Uq[gI(N|N)] is aZ,-graded quasitriangular Hopf algebra endowed with the following co-
productA, counite and antipodes

A(hy=h®1+1h,

Ale)=e21+qi®e, A(f)=fioq N+1af;,
e(e)=e(f;)=e(h)=0,

S(ej))=—q e, S(f)=—fg", Sh)=-—h, (1.8)

wherei=0,1,...,N—1 andhe H. Notice that the antipod& is a Z,-graded algebra antihomo-

morphism. Namely, for any homogeneous elementsbe Uq[gI(N|N)] S(ab)
=(—1)lallPIg(b)S(a), which extends to inhomogeneous elements through linearity. Moreover,

S(a)=q %ag®, VaeUy[gl(N|N)], (1.9)
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wherep is an element ir{ such that p,;)=(«;,a;)/2 for any simple root;, i=0,1,2,...,N
—1. Explicitly,

12N
:Egl(_l)kek’ (.10)

which coincides withp, the half-sum of positive roots afl(N|N) in the present simple root
system. The multiplication rule on the tensor products 4s-graded: &®b)(a’'®b’)

= (1)l (ga’ @ bb") for any homogeneous elemeaish,a’,b’ e U,Lgl(N|N)]. We can also
introduce the element i,

2N-1
p= > A+ ENA,y, (11.11)
i=0
which gives the principal gradation
[p.el=e, [p.fi]=—f, =01, N-1 (1.12)

In (11.11), & is an arbitrary constant.

U¢[g!(N|N)] can also be realized in terms of the Drinfeld generafops:", H, q*+o, ¢
dlmeZ, nez—{0},i=12,.N-1,j=1,2,..,N}. TheZ,-grading of the Drinfeld generators
is given by[X,']1=1 for all i=1,..2N—1, meZ and [H!]= [H{]1=[c]=[d]=0 for all j
=1,...,2N, neZ—{0}. The relations satisfied by the Drinfeld generators rdads Refs. 23, 24
for the Drinfeld realization qu[gI(N|N)] in the distinguished system of simple roots

[c.a]=[d,Hb]=[H},HI'1=0, VaeUgl(N|N)],

gHoX g Hb=q=aix T, [d,XZ1]=nX3", [d,HI]=nH]

. [aj;/n]q[nc] e Lainlg L
[Hh HRI=Onimo s [Hh X 1= = =G g e,
o, i - —_— o
[Xa ' Xp"! =—q_'('fl(q<°’2><“ ™ im— g POy,

[Xo ! Xa' 1=0 for a;;=0, [Xn'y Xm' Jgzar—[Xmi1 . Xq 'Igza, =0,
(X" X' g0t [Xg ! X*'“]qm)'ﬂ]
G X g [Xn X T g =0, 1=2,.,2N=2,  (11.13)

where[x],=(q*—q)/(q—q"*) andy, ' are related tdH. , by relations

neZ

>y Jz‘”—q+H5exr{t(q—q‘1)nZO HL, z""]. (11.14)

The following relations can be proved by induction:

. 1 1)*Pi~Y(=p—1 P
=—1 X C PR (b P (Mo 1P

J
n
=0 = py+2p,+—-+U,=n [SFLERN T
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1 (-1 (Ep -1 P
— oy YP1 - (gHoy )P,
-n qil_q p1+2p2+~2~+npn:n [STRAR o (q 11/71) (@ ¢7n)
(11.15)

The Chevalley generators are related to the Drinfeld generators by the formulas,
hi=Hj, e=X;", fi=X;", i=1,2,...,N—-1,
2N-1

hZN:HZN, hOZC_ kzl Hlé,

eo=[Xg 2 LIXg M2, (X5 2% 2 XD glq 1 Talq- 20~ ko1 o,

fo= (= NG L[ [[XT XS g 1.X8 B g XA 2] 1 XA . (11.16)

The coproduct of the Drinfeld generators is not known in full. However, for our purpose it
suffices to derive the “main terms'® in the coproduct formulas. We have
Proposition 1: Forme Z_y, neZ-yand i=1,2,...,. N—-1,

m—1

A(Xr-;,i):Xrﬁr—],i®qmc+qu+2mc®X;—],i+ kZO q(1/2)(m+3k)c¢r-;£k@q(m—k)cxl-(i-,i modN_®N2+,

n—-1
AXEH =X 1 eq "+ g Hoe X + kgl qHan=ke . gqk-mex ' modN_© N2,

n—-1

A(X;,i):X;,i®qH'0+qnc®x;,i+l(21 q(n—k)cxk—,i®q(1/2)(k—n)cwr+1-;ik modN2,®N+ ,

A(XTiy =X @qHo2meq g=meg x i
m—1

+ E q(k—m)CX:i(i®q—(1/2)(m+3k)cwk—7,im modN2,®N+ '
k=0

A(Hin)= |_|in(g)q(1/2)ncJr q(3/2)nc®Hin modN_®N., ,
A(H" )=H' ©q ®2nctq-12ancg i modN_eN, , 1.17)
where N. and N2 are the left ideals generated by and X**X ", k k'=1,..,2N—1; I,
| e Z, respectively
Remark:(i) We do not write down the formulas faX(Hzi'\,ﬂ) because they are not needed in

this paper.A(H_Z:'\:]) can be determined by requiring thAtpreserves the commutation relations
(1.113). (i) ModuloN, ®N_+N_®N, , the elementss-; (n=0) are grouplike,

n
A({/,;r,l) — kZO q(3/2)kC¢/;lr7,Ik® q(l/z)(n*k)()w;r,l ;

n
Ayop)= 2, a- PPy tioq@R0cmey (11.18)

Define the Drinfeld currents or generating functions,
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X*2)= 2 X 'z "L, ytl2)= 2 gz (1.19)
nezZ neZ

In terms of these current§l].13) read

Y@ W=y W)y (2),

(z—wg® ") (z—wq i)
(z—wo 3i")(z—wq *ai")

i)y (W)= g (wyyti(z),

Z_WqI(CIZ)Iaij

g 2)X (W) =g X (wyyg(2),

Z_qu(c/Z)raij

Z—W i(c/Z)Iaij

Y ()X (w)= q“‘”mxi”(m ¥ (2),

5”7

[X*(z),X (W)]:m

z

5(%) b W) - a(gq_*) ¢"‘<wq‘<°’2>)) ,
X=1(2) X (w)+ X (w)X*1(2)=0, for a;,=0,

(z=wg ) X=X (W) +(2g 8 =W)X (W)X (2) =0,

(X (20), X512 T X (20) X5 Hw) T2 T}z 220 =0, =232

These current commutation relations can be derived from the super VérSiohthe RS algebrd
by means of the Gauss decomposition technique of Ding and Fré&nkel.

lll. LEVEL-ZERO REPRESENTATION

We consider the evaluation representadrof Uq[gI(N| N)], whereV is an 2N-dimensional
graded vector space with basis vectfvs,v,,...,von}. The Z,-grading of the basis vectors is
chosen to be[vj]:[(—l)i+1]/2. Let g be the NX2N matrices satisfying €; /)
= &)k 0jr Or equivalentlye; ;v = djxvi, (which implies that for any operatok its matrix ele-
mentsA, ; are defined byAv;=A; ;v;). In the homogeneous gradation, the Chevalley generators
onV, are represented by

ei=ei'i+1, fi:(_ 1)i+1ei+1vi , i= 1,2,...,2\|_ 1,

2N
hi=(—1)"Ye i+e 1541, thZKZ (—1) " ey,

_ ] _
€=2&n1, fo=—Z "€ n, Nho=—€11—€mon- (n.1)

Let V*S be the left dual module 0¥, defined by

(a-v*)(v)= (-1 Iy*(sa)v), Vanq[gI(l/\l\|N)], veV,v* e V¥, (n.2)

Namely, the representations df S are given by

myss(8) = m(S(a)%, YaeUg[gl(N]N)], (11.3)



6116 J. Math. Phys., Vol. 40, No. 11, November 1999 Yao-Zhong Zhang

where st denotes the supertransposition defined Agy)¥=(—1)UI(1*IIDA,; ;. Note that in
general (Ai,j)S’)Stz(—l)[A]Ai,j #A ;. Let V;‘S be the 2\-dimensional evaluation module corre-
sponding toV*S. On Vi‘s, the Chevalley generators are represented by
PR i+l .
eiz_(_l)|q( 1)Iei+l,i1 fiz_q( W €ii+t1s i=12,...,.N-1,

2N
hi=(=1)'(e+e€1i+1), han= 21 (—1) ey,

eo=zqe . fo=2 'q 'emns, ho=er1temon. (1n.4)

Proposition 2: The Drinfeld generators are represented grby
, o Imly _
Hip= (= 1) == ™(q72) (e €1 4;41),

N

N
_qmlgl e2|’2|+|21 (y+(I=1)(1—ag™)(ey_12-1+€2.2)|,

[2m],
anNZZm =

2N
Ho=(—1)"" e i+e11i+1), HéN:gl (=D ey,

X' =(q2) e i1, Xp'=(=1)'Hq52) ey, (I11.5)
and on \} ® by
. [m] i .
Hiy= (— 1520 Mg ) ey e 00),
2N m[zm]q -m . . * -m
Hn=-2 | A 2182"2'+|21(_y +(I =D (1=g ™) (ex-12-1T€x2) |
2N
Ho=(—1)'(ei+e1j+1), H§N=kzl(—1)kekyk,
X' == (= 1)'a V(@) e gy, Xp'= =00 (g6 My g, (111.6)
where i=1,...,N—1,x=3|_,(—1)'"*=[(—1)"*+1)/2 and y y* are arbitrary constants.

IV. FREE BOSON REALIZATION AT LEVEL ONE

~We use the notations similar to those in Refs. 9 and 13. Let us introduce bosonic oscillators
{Al ¢l Qa, Qulnez, j=1,2,...N, I=1,2,..N} which satisfy the commutation relations

A [ay;/n]qln] .
(AL A= 6nemo— - [Ab.Qajl=3y,

Il [n]g |

[Cn ,Cm]= 5II’5n+m,OTy [Co :Qc"]: Oy . (|V.1)

The remaining commutation relations are zero. Introduce the currents
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. Al
i(- _ ) j _ N kn5—n
H(z;k)=Qai+Aplnz ;O [n]qq z ",
¢
() =04+cInz— _ N -n V.2
C(z2)=Q¢+cylnz rgo [n]qz ( )

and set
HL(2)=Hi(q"*Mz,— ) —HI(q" 2z, )=*(q—q H >, A,,z""+AlIng. (IV.3)
n>0

We make a basis transformation and exprA#sand Qai in terms of a new set of bosonic
oscillators{al,, Q.i|j=1,2,....2N} as

H . . . qn+q*n 2N
Al=(-1)"}a +alt), AN= > Izl(_l)wlalm
2N
Qu=(—1)"Qu+Qu+1), QAZN:|21 (-1)'*1Q,, (V.4)

wherei=1,...,.2N—-1 and{aL ,Q.i} satisfy the commutation relations

[nlg

[a,al 1=(—1)"18; 6nymo——, [a),Qul=(—1)*15;, . (IV.5)

Now we state our main result in this section on the free boson realizatqu[g‘l(N| N)] at level
one.

Theorem 1: The Drinfeld generators of g[gl(/N\|N)] at level one are realized by the free
boson fields as

c=1, ¢Hi@=e"? j=12..N,

X*i(2)=1e" M EFVIY () o, =12, N1, (IV.6)
where
k—1

k

— 2I-1 = 21-1

Fi,2k*l:1_[ eiy‘*lﬂ'ao , Fi,Zk:H e+\e7171'a0
I=1 I=1

Y+,2k—1(z):eck(z),

1

v &-1(5) = (e~ Ma9_g-cNaty)
D= q=aq 5! )
Y+,2k(z):Y7,2kfl(Z): 1 (efck(qz)_efck(q‘lz))
2(9—q 1) ’
Y K ()= - Y 2 g =—e’?, k=12,.N. (IV.7)

Proof: We prove this theorem by checking that they satisfy the defining relatib@8) of
Ug[gl(N[N)] with c=1. It is easily seen that the first two relations(Ih20) are true by con-
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struction. The third and fourth ones follow from the definitionXof-'(z) and the commutativity
betweena), and c'n. So we only need to check the last three relationdli20).
We write

Z"i(z) =" @TI2E (IV.8)
It is easily shown that

:Zt(z)z+ (w): for a;,=0 andi<i’,
—:Z"(z)z* (w): for a;,=0 andi>i’,
ZH(22 (w)={ (z—q Ww):Z2*i(z)2+ (w): for a,=1 andi<i’,  (V.9)
—(z—q~w):z* (22" (w): for a;,=1 andi>i’,
(z—q *w) " L:z"i(z2)z" V' (w): for ay =—1,

:Z7W(2)27" (w): for a;,=0 andi<i’,
—:Z"(2)z""(w): for a;,=0 andi>i’

Z (227" (w)={ (z—qw):Z (202" (w): for a;,=1 andi<i’, (IV.10)
—(z—qw):Z7(2)Z2~"(w): for a;,=1 andi>i’,
(z—qw) Lz (z)27" (w): for a; =—1,

:Z*(z)z7 (w): for a;,=0 andi<i’,
—:Z"(z)z"(w): for a;,=0 andi>i’,

ZH (227 (w)={ (z—w)"LZz"i(z)z7V (w): for a;,=1 andi<i’,  (IV.11)
—(z—w)"L:iz%(2)27"(w): for a;,=1 andi>i’,
(z—w):Z"(z)z~V (w): for a; =—1.

We have similar formulas foz *"' (w)Z*"(z), Z='"(w)Z (), andZ~""(w)Z*"(2).

We now compute operator produc¥s i(z) Y+ (w) and Y i(2)Y " (w). It is easily seen
from the definition ofY™*"/(z) that the nontrivial products are those corresponding=td’ and
a;;=1. Note thata;;, =1 wheneveii =2k—1,i’'=2k (ori=2k, i'=2k—1) wherek=1,2,...N
—1. The corresponding operator products are

. ck(z) 7ck(qw). . ck(z) ﬂ:k(q_lw).
VAL )y 2 () = 1 et e . et e :
w(g—q~h) z—qw z-q'w )"
k k K/ y—1 k
1 :e_c (qz)ec (W) :e_c (q Z)ec (W)
Y*,Zk*l 7 Y*,Zk W)= — _
YW= g a | T q z-w )

YL )Y &K (w) = — (z—w): Y& L 2) Y & (w):

Y+,2k(Z)Y—,Z<— l(W) — (q(z_ W) : e—Ck(qz)e—Ck(qW):

o
zwq—q 1)

— q_ 1(Z_W) e Ck(qilz)e_ck(qil

w)

—(qz—q lw):e @2gci@ W

—(q 'z qw):e @ 2g-ckaw.) (IV.12)
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Since Y**(2)=Y % 1(2) and Y *(z)=—-Y"*"(2), the productsY*'(z)Y*'(w) and
Y*1(z)Y™!(w) can be deduced frorfiV.12). For example,

K
Y+,2k(Z)Y7,2k(W) - _ Y+‘2k(Z)Y+'2k7 1(W) —

1 ‘e~ cKa 1Dgo
z(g—q 1) q ‘z—w qz—w
(IV.13)

By means of(1V.9), (IV.11), (IV.10), and(IV.12) we can show that the last three relations in
(11.20) are satisfied bylV.7). For instance,

w). . a=cKa2)gcw). )

1 1 1
[X"X(2),27* Yw)]=— W=7 :zw(z)z—&k-l(vv):(HJr m)

X ((qz—q w):e C(@eca W 4 (q 1z qw):e @ Dg-claw:)
1 w

— 72K N7 KLy s
= zzw(q—q’l)z'z (2)Z (W).5(Z)

k Kiqg— Kiq— k
X ((qz—q~tw):e C(@2e ¢ @ W 1 (g~ 1z— qw):e (@ D cilaw:)

=0. (IV.14)
V. BOSONIZATION OF LEVEL-ONE VERTEX OPERATORS

In this section, we study the level-one vertex operﬁtofsuq[gl(l/\l\|N)]. Let V(\) be the
highest Weigth[gI(N|N)]-moduIe with the highest weight Consider the following intertwin-
ers ofU[gl(N|N)]-modules?

V() VN —=V(w)@V,, (V.1)
LV (7)1 V= V(u)®VES, (V.2)
WYH(2): V(M= V,@V(u), (V.3)
WY H(2): VN = VESeV(p). (V.4)

They are intertwiners in the sense that for anyuq[gl(mN)],
E(2) x=A(X)-E(2), E@=2{Y(2), 2/ (2), ¥\H2), ¥\ “2). (V.5)

These intertwiners are even operators, that is their gradings[@V@V(z)]:[@fv*(z)]
=[¥Y*(2)]=[¥) *(2)]=0. According to Ref. 20%V(z) (®#V"(2)) is called type I(dua)
vertex operator andf‘{’*(z) (\If\{*”(z)) type Il (dual) vertex operator.

We expand the vertex operators as

2N 2N
cpg“’(z)zj; PV (2)®v;, @gv*(z)zjgl LV (2)0vT,

2N 2N
\Pxﬂ(z):; Vi@ WYA(2), q»x*ﬂ(a:jgl Vi) 4(2). (V.6)

Then the intertwining propertyV.5) reads in terms of components,
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2 o (2x@v(— HMI=3 xq oY (2)@x v (— DI,
> oV (2)xevi (- DMTIHN= xq @Y ()@ xpvE (- 1)V K@),
2 VW)= 2 XV @Xp WH(2) (- )i,

> VJ*®\P\A/:'#(Z)X:E X(1>vj*®x(2)\P;’3“(z)(—1)["1*][)‘(2)], (V.7)

where we have used the notatidi{x) =2,X1)®X(,y and the fact that the vertex operators are
even which implie§ ®{(2)]= [cbf;}j’*(z)] =[¥\4(2)]= [\p;’jﬂ(z)] =[v;]1=[(-1)+1]/2.
Introduce the even operatogsz), ¢*(z), ¥(z), and y* (2),

2N 2N

dD=3 $i(Dev, D=3 # @V,

2N 2N

WD=2, viey(@), (D=2 viev (. (V.8)

The grading of the components is given [)gbj(z)]:[d)}‘(z)]=[1,&,—(2)]=[¢p]7‘(z)]=[(—1)j
+1]/2. Now we state
Proposition 3: Assume that the operatap$z), ¢*(z), ¥(z), ¢*(z) satisfy the intertwining
relations (V.7). Then the operatorg(z) and ¢(z) with respect to Y are determined by the
componentspon(2) and 4(2), respectively. With respect to’g\?, the operators¢* (z) and
#*(z) are determined bye: (z) and ¢3\(2), respectively. More explicitly, we have for |
=1.2,. . N-1,
(—D'¢1(2)=[¢1+1(2). i 1q2),
[¢1(2),f1]q-1'=0,
[¢k(z)1f|]=01 k;é|1|+11 (Vg)
A0 D) =6 (D). Filg v,
(¢ 1(2),fi]q-0' =0,
[¢k(2),f1=0, k#1,1+1, (V.10)
h+1(2)=[(2),]q-1'2,
[1+1(2),€]q-0'"2=0,
[¢(2),6]=0, k#I,1+1, (V.11)
(=)' g g () =[41(2).8q o,

(47 (2),8]q-'=0,
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[¢7(2),6]=0, k#1,1+1. (V.12
Next we determine the relations of the componepig(z), &3 (2), #1(2), ¢5n(2) and the
Drinfeld generators. By means of proposition 1 and the intertwining relations, we have
Proposition 4: For¢(z) associated with V,

[ $an(2), X" (W)]=0,

Qion(2)q =g AN-1¢h,\(2),

[H yPan(2) = — 6 on- 1q(3/2)n[n]q2 don(2),
[H ., dan(2)]= _5i,2N—1q7(1/2)n¥Zin¢2N(Z); (V.13

for ¢*(z) associated with ¥/,
[¢7(2),X"(w)]=0,
q"ei(2)q~"i=q%1¢1 (2),

[n]

[Hy. 1 (2)]=6,,0°7"—=2"¢7 (2),

[HL 61 (@)1= 0,10~ 2 0705 o) (V.14

for (z) associated with V,
[41(2), X' (W)]=0,
Q") =g %y (2),

[Hh (2] =~ 8,02 s 2),

[th,w1<z>]=—6i,1q*<3’2>”ﬁz* "Yy(2); (V.15)

and for ¢* (z) associated with ¥/,
[¢5n(2), X (W)]=0,
a"yin(2)q =gl 1yg(2),

[n]

[Hy 5n(2)]= 6 an-10 V2" == 250(2),

[H. o ¥3n(2)]= 8 oy 10~ ¥2"— " ]q Z "Y5n(2). (V.16)
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In order to obtain bosonized expressions of the vertex operators, we introduce the following
combinations of the bosonic oscillators

N-1 5
. L -
AL'= ;1 a ALt qrq " ai,leAﬁN:

2N 2N
AS'= 2 a0, QR= 2 Q112 N1, (V.19

which satisfy the relations

o [n]2
(AN AR]= i nemo

S, [n]?
[AL' AL ]:aii'15n+m,qu-

(A5 Qarl=8i\ [A5.QL1=5,
[Agi,Q:i’]=ai}l, i,i’=1,2,_..,2\|_1- (V18)

Introduce the currents,

* |

. A
*,0(5 ) — O * | _ ~ N Knlo—n
H*)(z;k)=Q,+A5" Inz r;o[n]qq z " (V.19

Now we state our main theorem in this section on the bosonic realization of the operators
&(2), ¢*(2), ¥(z), andy* (2) at level one. Thanks to the previous propositions, we only need to
determine one component for each operator and the other components are represented by the
integral of the currents.

Theorem 2: The component$,\(z), ¢7 (2), #1(z), and ¢35, (z) can be realized explicitly as
follows:

N—-1
d)ZN(Z) = :e—H* ,ZN*l(qZ;(l/z))eCN(qZ):e_ \f—_lwaé H e \3_—17T[(2N+|)/2N]a(2)|+1,

=1

N-1
gz = _ 21+1
¢’l*(z)::eH* (qz,(1/2)):H e " Inl(2N-)/2Nag "t

I=1

N—1
,pl(z):;e*H*J(qZ:f(l/Z)): 1 e\e‘Tlﬂ-[(ZNfl)/ZN]ag'*l,

=1

*,2N—1 . N2 N
¢§N(Z):W:GH 4z~ (112) (g~ cN(@’2)_ g~ (2)).
N—-1
xe*»’*_lfaclJH e*\ff_lw[(2N+1)/2N]a(2)'+l. (V.20
=1

Proof: This theorem is proved by checking that the construction satisfies all the intertwining
relations.
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Remark:The following inverse elements of the extended Cartan matrix are needed to deter-
mine the cocycle factors appearing in above theorem:

-1 -1 _ _
HN-12T AN-1,2+17 N’ 1=1,2,..N—1,

P |
AoN-1,17 aaZN—l,m—ZNa

—1 -1 N_l

A a-1= AT T 1=1,2,..N—-1,
Lm0, k=g V.21
an-170 =5y (V.21)

We are now in a position to state the following result:

Proposition 5: The vertex operato®V(z), V" (z), WY#(z), and W) #(2), if they exist,
have the same bosonized expressions as the operat@s ¢* (z), ¥(z), and *(z), respec-
tively.

This proposition follows immediately from the fact that the formers and the latters obey the
same intertwining properties. Identifying2V(z), ®&V"(2), WY*(2), and WY “(z) with ¢(2),
¢* (2), ¥(z), and *(z), respectively, then the bosonic realization of the vertex operators is
easily seen to be given by propositions 3, 4 and theorem 2.
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