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Bell’s inequality test with entangled atoms
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Previous work on Bell’s inequality realized in the laboratory has used entangled photons. Here we describe
how entangled atoms can violate Bell’s inequality, and how these violations can be measured with a very high
detection efficiency. We first discuss a simple scheme based on two-level atoms inside a cavity to prepare the
entangled state. We then discuss a scheme using three-level atoms, which requires a parameter regime much
easier to access experimentally using current technology. As opposed to other schemes, our proposal relies on
the presence of finite decay rates and its implementation should therefore be much less demanding.

PACS number~s!: 03.65.Bz, 03.67.Lx, 42.50.Lc
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I. INTRODUCTION

Bell’s inequalities have a central role in tests of quant
mechanics and relate to the degree of entanglement betw
subsystems, an essential resource in quantum informa
processing. There are a number of Bell inequalities for t
subsystems where each subsystem contains a qubit of i
mation. For example, there exist the originalspin @1#,
Clauser-Horne ~CH! @2#, Clauser-Horne-Shimony-Hol
~CHSH! @3#, and information theoretic@4# Bell inequalities,
to name but a few. The particular one considered gener
depends on the system under consideration. A scheme
violate one Bell inequality but not another. Recently an ov
view of Bell’s inequalities has been given by Peres@5#.

A number of experimental tests of Bell’s inequality ha
already been performed@6–12# using entangledphotons. In
this paper we propose an experimental test of Bell’s ineq
ity on two macroscopically separatedatoms. Each atom pos-
sesses a two-level system with the statesu0& and u1&. We
describe a scheme which allows us to prepare the atoms
arbitrary superposition of a maximally entangled state an
product state which is of the form

uw&5
a

A2
~ u10&2u01&)1A12uau2u00& ~1!

in a deterministic way. To do so we make use of the rece
proposed idea by Beigeet al. @13# of how to manipulate the
decoherence-free states ofN atoms inside a cavity. Togethe
with the control over the prepared state, which can be
tained by following a measurement proposal by Co
@14,15# based on ‘‘electron shelving,’’ this allows us to in
vestigate, characterize, and test Bell’s inequality with a v
high precision and detection efficiency.

The success rate for the preparation of the initial atom
state~1! will be denoted byP0. If a photon is emitted in the
preparation, the scheme fails. If these events are not dete
and ignored this leads to a decrease of the observed viola
of Bell’s inequality. On the other hand, if the scheme su
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ceeds the fidelity of the prepared state is very close to un
Therefore we estimate that Bell’s inequality is violated
long as the preparation probability exceeds 71%, if
scheme is intended to prepare the atoms in the maxim
entangled state. In this paper we determineP0 and show that
it can, in principle, be arbitrarily close to unity.

Other tests using atoms or ions have been proposed@16–
20#. For instance, an experiment based on the proposa
Cirac and Zoller@16# to entangle two atoms in a cavity ha
been performed by Hagleyet al. @21#. Four trapped ions,
respectively, have been entangled experimentally in a de
ministic fashion by Sackettet al. @22# following a proposal
by Mo” lmer and So”rensen@23#. But a test of Bell’s inequality
using atoms has yet to be realized. The main limiting fac
in these experiments isdissipation@21,22#. As opposed to
this, the scheme proposed here is based on the presen
finite decay rates and should therefore be less deman
experimentally.

The investigation we are examining here is not strictly
strong @24# test of quantum mechanics versus local reali
due to the limited spatial separation of the atoms. For a s
test the scheme would require separating the two atoms
distance larger than the speed of light times the measurem
time. However this atom based experiment closes the de
tion inefficiency loophole while the photon experimen
close the causality loopholes@11#. In the scheme we propose
the observable which is expected to violate Bell’s inequa
is measured ineachrun of the experiment and the state of th
two atoms can be determined with almost unity efficien
and a very high precision@15#. Hence this proposed exper
ment should be seen as complementary to the photon ex
ments.

The paper is organized as follows. We begin in Sec
with a description of a simple scheme based on two tw
level atoms inside a cavity that can be used to generate
entangled state~1!. We describe the single qubit rotation an
a way to measure the state of the atoms. The required pa
eter regime is, however, experimentally demanding. The
fore, in Sec. III a scheme is introduced based on two thr
level atoms. This system behaves exactly like in the tw
level case described above and the discussion in Sec.
used to obtain the same results. In Sec. IV we discuss ho
©2000 The American Physical Society02-1

https://core.ac.uk/display/15049315?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


o
lt

s

n
d
e
si
to

t

rg
a

fo
,

ou
ice
r
o
o

ta
ug
i-

on
o

ss
n

tion
ed.
is-

sys-

t us
t
n a
are

mil-

s

een
kes

e
the
t of

n
posi-

f the
sen

e

on
on

rs

ALMUT BEIGE, WILLIAM J. MUNRO, AND PETER L. KNIGHT PHYSICAL REVIEW A 62 052102
test Bell’s inequality and for which parameters a violation
the inequality is expected. A final discussion of the resu
can be found in Sec. V.

II. A SIMPLE SCHEME USING TWO-LEVEL ATOMS

To prepare two two-level atoms in the entangled state~1!
they are placed at fixed positions in a cavity which acts a
resonator for an electromagnetic field. The atoms~or ions!
can be stored in the nodes of a standing light field or i
linear trap. In the followingu0& i denotes the ground state an
u1& i the excited state of atomi, respectively, and we assum
that the cavity field is in resonance with the atomic tran
tion. We also assume that the coupling constant of each a
with the cavity field is the same and given byg, which can
be chosen to be real. The cavity should be nonideal; tha
a photon can leak out with a ratek as shown in Fig. 1. The
spontaneous decay rate of each atom equalsG. The distance
between the atoms inside the cavity should be much la
than an optical wavelength. This allows us to address e
atom individually with a laser pulse. The Rabi frequency
atom i will be denoted byV ( i ) and is in general complex
because we have already choseng to be real.

To test Bell’s inequality the atoms have to be moved
of the cavity. This can be done by moving the optical latt
or by applying an electric field, respectively, if the atoms a
inside a linear ion trap. Another possibility is to let the tw
atoms fly together through the cavity field during each run
the experiment.

In the experiment we propose, the probability for spon
neous emission of a photon or leakage of a photon thro
the cavity mirrors will be shown to be small. This immed
ately suggests that we use the quantum jump approach@25–
28#. This method leads to aconditional HamiltonianHcond
which gives the time evolution of the system under the c
dition of no photon emissions. Due to the non-Hermiticity
Hcond, the norm of the state vector

uc0~ t !&5e2 iH condt/\uc0& ~2!

decreases with time and the probabilityP0 for no photon
emission up to timet is given by the squared norm

P0~ t !5i uc0~ t !&i2. ~3!

FIG. 1. Experimental setup for the preparation of state~1!. The
system consists of two two-level atoms placed at fixed positi
inside a cavity. Each atom couples to the cavity mode with a c
stantg and its spontaneous decay rate is given byG. The ratek
corresponds to the leakage of photons through the cavity mirro
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If no photon is emitted, the state of the system at timet is the
state~2! normalized to unity.

A. The preparation of the entangled state

To prepare the atoms in state~1! we will take advantage
of the fact that two-level atoms inside a cavity posse
trappedstates@29–32# which can also be used to obtain a
example of a decoherence-free subspace@13,33–35#. If the
atoms are in a trapped state they cannot transfer excita
into the resonator field, even if upper levels are populat
Therefore, if the cavity field is empty and spontaneous em
sion can be neglected no photon can be emitted by the
tem and the system is in adecoherence-freestate.

To find the decoherence-free states of the system le
first assume that the two atoms are inside the cavity, buno
laser field is applied. We choose the interaction picture i
way that the atoms and the cavity mode plus environment
considered as the free system. Then the conditional Ha
tonian equals, as in Ref.@13,29#,

Hcond5 i\ g(
i 51

2

~bu1& i i ^0u2H.c.!

2 i\ G(
i 51

2

u2& i i ^2u2 i\kb†b, ~4!

where the operatorb is the annihilation operator for photon
in the cavity mode.

Decoherence-free states arise if no interaction betw
the system and its environment of free radiation fields ta
place. If we neglect spontaneous emissions (G50) this is
exactly the case if the cavity mode is empty@13# and it is
uc&5u0& ^ uw&[u0w&. In addition, the systems own tim
evolution due to the interaction between the atoms and
cavity mode should not move the state of the system ou
the decoherence-free subspace. Using Eq.~4! this leads as in
Ref. @13# to the condition

(
i 51

2

u0& i i ^1uw&50, ~5!

whereuw& is the state of the atoms only. From this conditio
we find that the decoherence-free states are the super
tions of the two atomic statesug&[u00& and

ua&[~ u10&2u01&)/A2 ~6!

while the cavity mode is empty.
Once prepared in a decoherence-free state the state o

system does not change in time with respect to the cho
interaction picture. The reason for this isHconduc&50 which
can be shown by using Eqs.~4! and ~5!.

To prepare the atoms in state~1! a weak laser pulse can b
used. As in Ref.@13# we assume in the followingV (1)

ÞV (2) and for all nonvanishing Rabi frequencies

G!uV ( i )u!g and k;g. ~7!

s
-

.

2-2



a
f
f
an
-
e-
it

id

th
c
ly
th

hi
ca
a
p

ut
to
o
d
it
on
a-

n
a
ls
th
rv

y
ys
em
ea
c

ho
b

ub
em

t a
en

ge
nt

the
cess

on
lu-
g

-
as-

-
ed

f
rily

und
n to

d of
ate
of

e
re-
s

BELL’S INEQUALITY TEST WITH ENTANGLED ATOMS PHYSICAL REVIEW A 62 052102
This corresponds to a strong coupling between the atoms
the cavity mode, whileg and k are of the same order o
magnitude. In this parameter regime we can make use o
effect which can easily be understood in terms of the qu
tum Zeno effect@36–38#. The reason for this is that the en
tangled state given in Eq.~1! corresponds to a decoherenc
free state. We assume now that the system is initially in
ground state which is also decoherence free. If now rap
repeated measurements are performed on the system
whether the state of the system still belongs to
decoherence-free subspace or not, the laser interaction
not move the state of the system out of this subspace. On
time evolution inside the subspace is possible. Hence
laser pulse can introduce entanglement into the system w
is not possible in the free atom case. Equivalently we
interpret this inhibition without invoking Zeno effects as
simple consequence of adiabatic elimination using the se
ration of the frequency scales in Eq.~7! @13#.

Let us defineDT as the time in which a photon leaks o
through the cavity mirrors with a probability very close
unity if the system is initially prepared in a state with n
overlap with a decoherence-free state. On the other han
system in a decoherence-free state will definitely not em
photon inDT. Therefore the observation of the free radiati
field over a time intervalDT can be interpreted as a me
surement of whether the system is decoherence free or
@39#. The outcome of the measurement is indicated by
emission or no emission of a photon. This interpretation a
holds to a very good approximation in the presence of
laser field because the effect of the laser over a time inte
DT can be neglected, which is why condition~7! has been
chosen. As has been shown in Ref.@39#, DT is of the order
1/k andk/g2 and much smaller than 1/uV (6)u,

V (6)[~V (1)6V (2)!/A2, ~8!

the typical time scale for the laser interaction. Here the s
tem continuously interacts with its environment and the s
tem behaves in a very good approximation like a syst
under continuous observation whose time evolution can
ily be predicted with the help of the quantum Zeno effe
@36#.

Using the measurement interpretation one can easily s
that the effect of the laser field on the atomic states can
described by theeffectiveHamiltonian Heff which equals
@13#

Heff5PDFSHcondPDFS ~9!

and wherePDFS is the projector on the decoherence-free s
space. To obtain the conditional Hamiltonian of the syst
in the presence of the laser field the Hamiltonian

H laser I5
\

2 (
i 51

2

~V ( i )u1& i i ^0u1H.c.! ~10!

has to be added to the right-hand side of Eq.~4!. If we
neglect spontaneous emission (G50) this leads to
05210
nd

an
-

s
ly
of

e
an-
a
e

ch
n

a-

, a
a

ot
n
o
e
al

s-
-

s-
t

w
e

-

Heff5
\

2
~V (2)u0a&^0gu1H.c.!. ~11!

By solving the corresponding time evolution, one finds tha
laser pulse of lengthT prepares the atoms in the state giv
in Eq. ~1! with

a52 i
V (2)

uV (2)u
sinS uV (2)uT

2 D . ~12!

Varying the length of the laser pulse allowsus to chan
arbitrarily the value ofuau and the amount of entangleme
in the system.

The Hamiltonian in Eq.~11! is Hermitian. Therefore the
norm of a vector developing withHeff is not decreasing and
in a first approximation, due to Eq.~3!, the emission of pho-
tons can be neglected. To a very good approximation
cavity mode never does become populated and the suc
rate of the preparation schemeP0 equals unity.

Figure 2 shows the probability for no photon emissi
during the state preparation resulting from a numerical so
tion of the conditional time evolution of the system usin
Eqs. ~3!, ~4!, and ~10!. This agrees very well with the ap
proximative results given above. As an example, we
sumed

T5p/uV (2)u, ~13!

which leads, due to Eq.~12!, to the preparation of the maxi
mally entangled state of both atoms. In addition we assum
V (2)52V (1) @40#. As expected, forG50 the success rate o
the preparation scheme can at least in principle be arbitra
close to 1. ForGÞ0 the probabilityP0 reaches a maximum
value for a certain Rabi frequencyV (1), but is always
smaller than 1. To improve the experiment one can surro
the cavity by detectors and repeat it were a decay photo
be registered.

We also determined the state of the atoms at the en
the laser pulse numerically. The fidelity of the prepared st
F in case of no photon emission is given by the overlap

FIG. 2. The probability for no photon emission during th
preparation of the maximally entangled state for different Rabi f
quenciesV (1) andV (2)52V (1), different spontaneous decay rate
G andk5g.
2-3
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ALMUT BEIGE, WILLIAM J. MUNRO, AND PETER L. KNIGHT PHYSICAL REVIEW A 62 052102
the state of Eq.~2! after normalization with the state given i
Eq. ~1!. For the parameters chosen in Fig. 2,F is found to be
always higher than 95%.

B. Realization of a single qubit rotation

In this section we describe how the single qubit rotat
on atomi, defined by the operatorU rot

( i ) ,

U rot
( i )~j,f![cosj2 i sinj~eifu0& i i ^1u1H.c.!, ~14!

can be realized, wherej and f are arbitrary parameters
Thereby the same laser as in Sec. II A can be used. To a
the situation that the time evolution of the system is
stricted to changes inside the decoherence-free subspac
atom should be moved out of the cavity.

If we neglect again spontaneous emission (G50), the
laser Hamiltonian which describes the time evolution
atom i is given by

H laser I5
\

2
~V ( i )u1& i i ^0u1H.c.!. ~15!

Calculating the corresponding time evolution operator fo
laser pulse lengthT leads to Eq.~14! with

j5
uV ( i )uT

2
and eif5

V ( i )

uV ( i )u
. ~16!

To change the phasef, the phase of the Rabi frequencyV ( i )

has to be chosen very carefully, whilej can easily be varied
by varying the lengthT of the pulse.

Again, for GÞ0 a photon may be emitted spontaneou
during the single qubit rotation which leads to a failure of t
experiment and therefore to a further decrease of the suc
rate of the scheme to test Bell’s inequality proposed her

C. State measurement on a single atom

Whether an atomi is in stateu0& i or u1& i can be measured
with a very high precision following a proposal by Coo
@14#. To do this, we make use of a short strong laser pu
and an auxiliary level 2. The probe pulse couples one of
states, for instance the stateu0& i to stateu2& i , and has the
Rabi frequencyV2. The spontaneous decay rate of the au
iliary level is G2. If the length of the laser pulseT fulfills a
minimum length,

T@max$1/G2 ,G2 /V2
2%, ~17!

the absence or occurrence of photons from the 0-2 trans
indicates whether the atom is found in stateu0& i or u1& i ,
respectively. If the system is initially prepared in level
photons are emitted until the end of the pulse. If the atom
in u1& i the laser has no effect on the atomic state and
photon emissions will occur. For an arbitrary state of t
atom

uw&5a0u0& i1a1u1& i ~18!
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it has been shown by Beige and Hegerfeldt@15# that photons
are emitted with probabilityua0u2 as predicted for an idea
measurement. The proposition for this scheme to work is
the laser pulse is long enough that an atom initially in st
u0& i emits definitively a photon which leads to conditio
~18!. As discussed in Ref.@15# the precision of this measure
ment can be very high, even if the efficiency of the detect
measuring the photons from the 0-2 transition is very lo
The population difference between the two levels is given

^sz
( i )&5122ua0u2 ~19!

averaged over many runs.

III. AN IMPROVED SCHEME USING THREE-LEVEL
ATOMS

To observe a violation of Bell’s inequality the preparatio
of the maximally entangled stateua& should succeed with a
probability above 71% in each run of the experiment. F
this, as can be seen in Fig. 2, the coupling constantg has to
be at least 100 times larger than the spontaneous decay
G. This is difficult to achieve experimentally using optic
frequencies, and has only been realized in microcavities w
circular Rydberg atoms coupled to a microwave cavity@41#.

In the following we describe how this problem can b
circumvented easily by making use of an additional atom
level. It is known that certain three-level atoms behave i
good approximation like the two-level atoms described
Sec. II C. We will show that they possess the sa
decoherence-free states and again a weak laser pulse c
used to create entanglement between the atoms. We des
how to perform a single qubit rotation and how to meas
the state of an atom.

A. The preparation of the entangled state

We consider now two three-level atoms with aL configu-
ration as shown in Fig. 3. The statesu0& i and u1& i are the
ground states of atomi and couple to an excited state d
noted byu2& i . To prepare the atoms in state~1! they have to
be moved into a cavity as described in Sec. II. In the follo
ing \v i denotes the energy of leveli. The frequencyvcav of
the single cavity mode to which the atoms are coupled eq

vcav5v22v02D, ~20!

FIG. 3. Atomic three-level scheme. The cavity mode and lase
couple to the 0-2 transition of the atom with the same detuningD
laser 1 has with respect to the 1-2 transition.
2-4
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where D denotes a detuning. A laser field with the sam
detuning and frequency

v laser 15v22v12D ~21!

excites the 1-2 transition of each atom with a Rabi freque
V1. In addition, at timet50 a laser pulse with the frequenc
v laser 05vcav is applied which couples to the 0-2 transitio
in atom i with a Rabi frequencyV0

( i ) .
In the following we assume again that the coupling co

stantg of each atom to the cavity mode is the same for b
atoms. The Rabi frequenciesV1 and V0

( i ) are chosen to be
much smaller thang, while g and the spontaneous decay ra
of the excited stateG are much smaller than the detuningD,
such that

uV0
( i )u5uV1u!g!D and G!D. ~22!

We will see later that the decay ratek of photons inside the
cavity should fulfill the condition

k;g•V1 /D ~23!

and is therefore now much smaller thang.
To describe the time evolution of the system under

condition of no photon emission we make again use of
quantum jump approach@25#. We chose the interaction pic
ture with respect to the sum of the atomic Hamiltonian

H05\(
i 51

2

(
j 50

2

~v j u j & i i ^ j u2Du2& i i ^2u! ~24!

and the Hamiltonian describing the energy of the cav
mode and the free radiation fields forming the environm
of the system. Then the conditional Hamiltonian is time
dependent and given by

Hcond5 i\g(
i 51

2

~bu2& i i ^0u2H.c.!

1
\

2 (
i 51

2

~V0
( i )u2& i i ^0u1V1u2& i i ^1u1H.c.!

2 i\~G1 iD!(
i 51

2

u2& i i ^2u2 i\kb†b. ~25!

The ~unnormalized! state of the systemuc0& defined in Eq.
~2! will be written in the following as

uc0&5 (
n50

`

(
j 1 , j 250

2

cn j1 j 2
un j1 j 2&. ~26!

Due to the parameter choice~22! there are very differen
time scales in the~conditional! time evolution of the system
We first investigate the coefficientsc0 j 1 j 2

that change on the

very short time scale proportional to 1/D. If we assume that
only states withn50 are populated, we find from Eq.~25!
05210
y
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ċ00252
i

2
~V0

(1)* c0221V0
(2)c0001V1c001!2~G1 iD!c002,

ċ02052
i

2
~V0

(1)c0001V0
(2)* c0221V1c010!2~G1 iD!c020,

ċ01252
i

2
~V0

(2)c0101V1c0111V1* c022!2~G1 iD!c012,

ċ02152
i

2
~V0

(1)c0011V1c0111V1* c022!2~G1 iD!c021,

ċ02252
i

2
~V0

(1)c0021V0
(2)c0201V1c0121V1c021!

22~G1 iD!c022. ~27!

Because we are only interested in the time evolution of
system on the a time scale much longer than 1/D we can
adiabatically eliminate level 2 by eliminating the fast varyin
coefficients. They adapt essentially immediately to the s
of the other levels and we can set their derivatives in Eq.~27!
to zero to obtain

c00252
1

2D
~V0

(2)c0001V1c001!,

c02052
1

2D
~V0

(1)c0001V1c010!,

c01252
1

2D
~V0

(2)c0101V1c011!,

c02152
1

2D
~V0

(1)c0011V1c011!,

c02250, ~28!

where all terms that are due to Eq.~22! much smaller than
uV1u/D have been neglected.

To determine the decoherence-free states of the sys
we assume now that the weak laser field is not applied
setV0

(1)5V0
(2)50. For the same reasons as in the Sec. II

system is only decoherence-free if there are no photons
side the cavity. In addition, the cavity mode should nev
become populated@13#. The derivatives of all coefficients
with n51 have to vanish, if initially only states withn50
are populated. In this case we have, from Eqs.~25! and~28!,

ċ1005g
V1

2D
~c0011c010!,

ċ1015 ċ1105g
V1

2D
c011,

ċ11150. ~29!
2-5
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ALMUT BEIGE, WILLIAM J. MUNRO, AND PETER L. KNIGHT PHYSICAL REVIEW A 62 052102
The system is therefore in a decoherence-free state if
only if

c0011c0105c011[0 ~30!

and the decoherence-free states are the same as in Sec
the superpositions of the two statesu0g& and u0a&.

To prepare the atoms in the entangled state~1! the same
idea as in Sec. II can be used, because the three-level a
considered here behave to a very good approximation
the two-level atoms discussed in Sec. II if conditions~22!
and ~23! are fulfilled. Despite the values of the precise fr
quencies the differential equations~29! are exactly the same
as one obtains from Eq.~4! by neglecting spontaneous emi
sion by the two-level atoms. A comparison of both sets
differential equations gives the value of the constantgeff ,

geff52gV1 /~2D!, ~31!

that describes the effective coupling strength of the thr
level atoms to the cavity mode. To determine the effect
Rabi frequenciesVeff

( i ) of the weak laser pulse we calcula
the derivatives of the coefficientsc000, c001, c010, andc011.
If the cavity mode is not populated Eqs.~22!, ~25!, and~28!
lead to

ċ0005
i

4D
~V0

(1)* V1c0101V0
(2)* V1c00112uV1u2c000!,

ċ0015
i

4D
~V0

(1)* V1c0111V0
(2)V1* c00012uV1u2c001!,

ċ0105
i

4D
~V0

(1)V1* c0001V0
(2)* V1c01112uV1u2c010!,

ċ0115
i

4D
~V0

(1)V1* c0011V0
(2)* V1* c01012uV1u2c011!.

~32!

Except for the last term in each equation, the differen
equations~32! are exactly the same as one obtains from E
~4! neglecting spontaneous emission. A comparison with
~32! gives the effective Rabi frequencyVeff

( i ) ,

Veff
( i )52V0

( i )V1* /~2D!. ~33!

Here we can neglect the terms proportionaluV1u2 in Eq. ~32!
because they correspond to a level shift of the statesu0& i and
u1& i , which is the same for all states and causes there
only an overall phase factor of the prepared state. This fa
does not affect the outcome of the Bell measurement
scribed in Sec. IV. The effective spontaneous decay rateGeff
of the atoms inside the cavity can be bounded from ab
using Eq.~28! and we find

Geff,GuV1u2/~2D2!, ~34!

which is much smaller thangeff even if G and g are of the
same order of magnitude. The ratek does not change due t
the presence of level 2 and it iskeff5k.
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By analogy to Sec. II, Eq.~7!, we assume now

Geff!uVeff
( i )u!geff and keff;geff , ~35!

which leads to the conditions~22! and~23!. If this condition
is fulfilled we expect that the weak laser pulse with the R
frequenciesV0

( i ) does not move the system out of th
decoherence-free subspace, if the system is initially in
ground stateu000& and its effect can again be described
the effective HamiltonianHeff given in Eq.~11!. One only
has to replace in Eq.~33! the Rabi frequenciesV0

( i ) by Veff
( i )

to obtainV (2).
Figure 4 shows the probability for no photon emission

a laser pulse of the length

T52A2pD/uV1~V0
(1)2V0

(2)!u ~36!

obtained from a numerical integration of Eq.~2!. Due to Eqs.
~13! and~33!, the laser field prepares the atoms in the ma
mally entangled stateua&. The fidelity is found to be always
higher than 87% for the parameters chosen in Fig. 4.
expected, the success rate of the scheme can now be
close to unity even if the spontaneous decay rateG is of the
same order of magnitude as the coupling constantg. The
results are the better the larger the detuningD becomes com-
pared toG andg.

B. Realization of a single qubit rotation

To perform the single qubit rotation on atomi we propose
to make use of an adiabatic population transfer@42,43#. In
order to do this, the atom has to be moved out of the cav
Then the same two lasers as in Sec. III A with the Ra
frequenciesV0

( i ) and V1, respectively, are applied simulta
neously on atomi. With respect to the interaction pictur
defined in Eq.~24! the conditional Hamiltonian is now given
by

Hcond5
\

2
~V0

( i )u2& i i ^0u1V1u2& i i ^1u1H.c.!

2 i\~G1 iD!u2& i i ^2u. ~37!

FIG. 4. The probability for no photon emission during th
preparation of the maximally entangled state for different Rabi f
quenciesV0

(1) and V152V0
(2)5V0

(1) , D550g, different sponta-
neous decay ratesG, andk5geff .
2-6
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Equation~22! allows us again to eliminate adiabatically lev
2. Neglecting all terms of higher order in 1/D we find that the
system can effectively be described by the Hamiltonian@43#

H52
\

4 F S V0
( i )* V1

D
u0& i i ^1u1H.c.D

1
uV1u2

D
~ u0& i i ^0u1u1& i i ^1u!G , ~38!

where Eq.~22! has been used. This Hamiltonian does n
depend onG and spontaneous emission can again be
glected to a very good approximation. The time evoluti
operator corresponds up to a total phase factor with the
erator given in Eq.~14! and we have

U~T,0!5expS i
uV1u2T

4D DU rot
( i )~j,f! ~39!

with

j5
uV1u2T

4D
and eif52

V0
( i )* V1

uV1u2
. ~40!

We will see later that the additional phase factor does
affect the outcome of the Bell measurement described in
next section. We can therefore ignore this factor and use
Hamiltonian~37! to realize the single qubit rotation.

C. State measurement on a single atom

To measure whether atomi is in stateu0& i or u1& i , respec-
tively, the same scheme as described in Sec. II C can
used.

IV. A TEST OF THE BELL INEQUALITY

Given that the state~1! can be generated, the next inte
esting question is whether such a state will violate one
Bell’s inequalities? For certain parameters it must but w
physical measurements are necessary to characterize thi
agreement with local realism?

A. The Bell inequality

The spin ~or correlation function! Bell inequality @1,3#
may be written formally as

BS5uE~u1 ,u2!2E~u1 ,u28!1E~u18 ,u2!1E~u18 ,u28!u<2,
~41!

where the correlation functionE(u1 ,u2) is given by

E~u1 ,u2!5^su1

(1)su2

(2)&. ~42!

Here u1 and u2 are real parameters. In the following th
operatorsa

( i ) with a5x, y, or z is thea Pauli spin operators
for the two-level system of atomi and the operatorsu i

( i ) is

defined as
05210
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su i

( i )5cosu isx
( i )1sinu isy

( i ) . ~43!

We describe now how the inequality~41! could be tested
experimentally.

B. Description of the experimental test

To test Bell’s inequality the atoms have to be prepa
first in a state for which a violation of Bell’s inequality~41!
is expected. This can be done with the help of the sche
discussed in Sec. II A by preparing the atoms in state~1!.
The parametera can be varied by changing the lengthT of
the laser pulse.

For certain initial states and in certain cases~including
here! the correlation function depends only on the differen
between the anglesu1 andu2 and we have

E~u1 ,u2!5E~u12u2,0!. ~44!

This can be proven easily and holds because the stateu11& is
not populated. Populatingu11& by the preparation scheme
proposed here is not possible, because the time evolutio
the system is restricted to decoherence-free states@44#. As an
example to test Bell’s inequality we chooseq5u12u2

5u22u185u182u28 . This leads tou12u2853q. Using Eq.
~44! the inequality~41! simplifies for this parameter choic
to

BS5u3E~q,0!2E~3q,0!u<2. ~45!

A violation of this inequality corresponds touBSu.2.
To find a way to measure the correlation functio

E(q,0) we make use of the relation

U rot
( i )†~j,f!sz

( i )U rot
( i )~j,f!

5cos 2jsz
( i )2sin 2j~cosfsy

( i )1sinfsx
( i )!.

~46!

This allows us to rewritesu i

( i ) in terms ofsz
( i ) . By choosing

j5p/4 and by making use of some trigonometric relatio
one obtains from Eq.~43!

su i

( i )5U rot
( i )†S p

4
,
3p

2
2u i Dsz

( i )U rot
( i )S p

4
,
3p

2
2u i D , ~47!

whereU rot
( i ) is the single qubit rotation defined in Eq.~14!.

Using this and Eqs.~42! and ~44! one can show that

E~q,0!5 K U rot
(1)†S p

4
,
3p

2
2q Dsz

(1)U rot
(1)S p

4
,
3p

2
2q D

3U rot
(2)†S p

4
,
3p

2 Dsz
(2)U rot

(2)S p

4
,
3p

2 D L . ~48!

This expectation value can be measured in the follow
way. First, the single qubit rotation described in Sec. II B h
to be applied on both atoms withj5p/4 andf53p/22q
for atom 1 andj5p/4 andf53p/2 for atom 2. Afterwards
the observablessz

(1) andsz
(2) have to be measured. This ca
2-7
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be done by measuring whether the atoms are in their gro
state or not as described in Sec. II C or III C, respectively
an analogous wayE(3q,0) can be determined experime
tally.

It is important to point out that the correlation functio
represents an ensemble average obtained by performing
measurements over many runs, each time repreparing
initial state.

C. Expected violation of Bill’s inequality

It is straightforward to show that the correlation functio
for the initial state~1! is given by

E~q,0!52uau2cosq ~49!

and hence Eq.~45! can assume a maximum ofuBSu
52A2uau2 where we have chosenq5p/4. Therefore, a vio-
lation of the spin Bell inequality is possible foruau2

.1/A2. The quantityuau2 can be expressed in terms of th
fundamental system parameteruV (2)uT only with the help of
Eq. ~12!. In Fig. 5 we plotuBSu versusuV (2)uT andq.

A significant region of violation is observed with th
maximum ofuBSu52A2 occurring atuV (2)uT5p. The state

FIG. 5. Plot of uBSu versusuV (2)uT and q. A violation of the
spin Bell’s inequality occurs foruBSu.2 and are displayed asis-
landsin the uV (2)uT-q plane. The angles have been chosen so a
maximise the violation utilizing the maximally entangled state.
s.

-
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of the atoms at such a time is a maximally entangled st
This test on Bell’s inequality should be feasible with curre
technology.

V. DISCUSSION

In this paper we have made use of a recently propo
scheme@13# to prepare in a controlled way with a very hig
success rate two atoms in an arbitrary superposition o
maximally entangled state and a product state. We show
the spin Bell inequality@1,3# can be characterized, teste
and violated closing the detection loophole. To do so we
the highly efficient measurement proposal by Cook@14#
based on ‘‘electron shelving.’’ The system discussed h
has the appeal that the atoms are massive particles comp
with photons and hence our proposal tests quantum mec
ics in an all new macroscopic regime. In addition, while t
photon experiments close the casualty loophole, the p
posed atom experiment would close the detection efficie
loophole. Therefore, the experiment we discuss is com
mentary to the current photon experiments being perform

To summarize, entanglement is a necessary quantum
source used in quantum information. While entangled p
tons have to date been the engine of much recent work, t
‘‘flying’’ nature renders them inappropriate for the storage
information. We have discussed a means in which trap
ions or atoms become entangled in a controled way us
dissipation, and the degree to which the resulting entan
ment can be measured through Bell correlations.
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