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Information transfer and fidelity in quantum copiers
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Centre for Laser Science, Department of Physics, University of Queensland, QLD 4072, Brisbane, Australia

~Received 22 December 1999; published 12 May 2000!

We find that very different quantum copying machines are optimal depending on the indicator used to assess
their performance. Several quantum copying machine models acting on nonorthogonal input states are inves-
tigated, and assessed according to two types of criteria: transfer of~Shannon! information encoded in the initial
states to the copies, and fidelity between the copies and the initial states. Transformations that optimize
information transfer for messages encoded in qubits are found for three situations:~1! when the message is
decoded one state at a time;~2! with simple schemes that allow the message to be encoded using block-coding
schemes; and~3! when the copier produces independent copies. If the message is decoded one symbol at a
time, information is best copied by a Wootters-Zurek copier.

PACS number~s!: 03.67.Hk, 03.65.Bz
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I. INTRODUCTION

Quantum copying has attracted considerable interes
recent years, ever since the discovery of the no-cloning th
rem @1,2#, and the universal quantum copying machine@3#
which copies arbitrary unknown qubits with the best fideli
To date, most treatments have used fidelity to characte
the quality of the copies produced. The fidelity between t
quantum states characterized by density operatorsr̂ 1 andr̂ 2
is

F~ r̂ 1 ,r̂ 2!5 HTrFA~ r̂ 1!1/2r̂ 2~ r̂ 1!1/2G J 2

. ~1!

A good summary of its properties is given in Ref.@4#. In the
case where one of the states is pure, the fidelity is simply
square of the overlap between the two states.

Many authors@5–15# have made use of two fidelity mea
sures for quantum copiers: theglobal fidelity of the com-
bined output~both copies! of the copier, with respect to a
product state of~unentangled! perfect copies, and thelocal
fidelity of one copy with respect to the original input sta
Here, we will concentrate on a different indicator of copyi
success: mutual information content between the copies
the originals. One finds that which copier is optimal depen
greatly on which indicator is used. In practice, this will me
that what sort of quantum copier is best depends on what
wants to do with the copies afterward.

This article proceeds in the following fashion. After com
menting on some drawbacks of fidelity, and why one mig
want to use different indicators, we outline exactly what
mean by information content between copies and original
Sec. II. General features of the copiers that will be cons
ered are mentioned in Sec. III. Copiers optimized for ma
mum copied information are given in Sec. IV~and deriva-
tions are given in Appendixes A and B! for three cases:~1!
when the information is decoded from the copies one stat
a time; ~2! when efficient block-coding schemes are used
transmit as much information as is allowed by the Hole
bound; and~3! when the copies are an unentangled prod
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state. In Sec. V the performance of these copiers is asse
according to information transfer and fidelity criteria, an
compared to the performance of fidelity-optimized copie
known previously.

II. MUTUAL INFORMATION AND FIDELITY MEASURES

A. Fidelity, and some of its drawbacks

Fidelity is used in many fields as an indicator of closen
between two states, and is often quite useful. It is proba
also one of the easiest such indicators to calculate. Howe
it sometimes suffers from a number of drawbacks~examples
of which are given below! when used as a measure of clos
ness over broad classes of systems, so there will be ti
when one wants to use a different indicator.

While a fidelity of 1 obviously implies identical states
and 0 implies orthogonal states, what intermediate val
mean is highly dependent on the particular states that
being compared, particularly if both states are impure. T
a statement such as ‘‘The fidelity between the two states
x,’’ to be unambiguous, often needs considerable additio
information on the states that were compared. To give
example: For standard optical coherent states of comp
amplitudea, given by

ua&5e2(1/2)uau2(
n50

`
an

n!
un&, ~2!

the fidelity between two pure coherent statesua& and
ua11& is always constant:

F~ ua&^au,ua11&^a11u!5
1

e
. ~3!

Now if a50, the two states are the vacuum and a lo
photon-number coherent state—states with qualitatively
ferent properties. However, ifa is large, thenua& and
ua11& are macroscopic, and experimentally indistinguis
able, but the fidelity between them is still 1/e.

Another drawback of fidelity is that it is not directly re
lated to other quantities commonly measured in experime
While the fidelity is an expectation value of an observa
©2000 The American Physical Society04-1
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~the observable being either one of the two states!, it cannot
usually be calculated from the results of experiments wh
aim is to do something other than measure fidelity. It is
in general directly related to expectation values or meas
ment probabilities of other quantities, so it does not s
much about the usefulness of a copy. In this sense, fide
characterizes the closeness of the mathematical repres
tion of physical states more than the closeness of the ph
cal properties of those states. Of course, in many situati
these two types of closeness are equivalent, but not alw

For the specific case of quantum copiers, global or lo
fidelities are not robust to unitary transformations made
the copies individually after all copying has been complet
and also can be very high even though the copies are un
related with the originals. For example, suppose a messa
encoded in a binary alphabet of orthogonal statesu0&,u1&,
and sent through a lossless communication channel tha
terchanges the states, i.e., they undergo the transformat

u0&→u1&, ~4!

u1&→u0&, ~5!

then the fidelity of the transmitted with respect to the init
state iszero, but nothing of interest has been lost. It is su
ficient for an observer receiving the message to relabel
states which they receive to recover the original messag

Conversely, consider the situation where very non
thogonal statesua& and ub& are used to encode a messag
Using appropriate error-correction schemes, some infor
tion can be reliably transmitted with this encoding. Howev
now suppose that the message is intercepted by an ea
dropper, who simply sends the same stateA1/2 (ua&1ub&) on
to the intended receiver every time. The fidelity between s
and received states is still very high, but the received m
sage carries no information from the sender.

Global fidelity measures are often particularly remov
from experimental results, since they compare the combi
state of both copies with a perfect copy state that is gener
unattainable due to the no-cloning theorem. However,
practice, one usually makes copies so they can subsequ
be considered only individually.

B. Mutual information measures

A different, natural, measure of copying efficiency th
can be used is the amount of mutual~Shannon! information
@16# shared between the original states, and the copies.
mutual information does away with some of the drawba
of fidelity, as discussed below.

Consider two observers: one of them, the sender~labeled
A), is sending states chosen from some ensemble, wher
a priori probability of sending thei th variety of state isPi

A .
The other observer, the receiver~labeledB), makes mea-
surements on one of the copies, obtaining thej th measure-
ment result with probabilityPj u i

B , given that thei th state was
sent into the copier. The amount of information~in bits per
sent state! that the receiver has obtained from the sende
the Shannon mutual information, given by
06230
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I ~A:B!5(
i , j

Pi
APj u i

B log2

Pj u i
B

Pj
B

, ~6!

wherePj
B is the overall probability of the receiver obtainin

the j th measurement result, averaged over the input stat
To use this measure to characterize a copying mach

rather than the specific message encoding or the ingenui
the receiver in constructing a measuring apparatus, th
points should be noted. First, even if a perfect copier is us
the amount of information that can be transmitted from ori
nals to copy depends on the ensemble of states that is us
encode the message. Thus, the information about the orig
extractable from the copyI (A:B) must be compared to th
amount of information extractable from the originalI (A:A).

Second, if observerB makes a suboptimal~in terms of
recovering the original message! set of measurements, the
B’s stupidity will affect the mutual information. To eliminat
the effect ofB’s ingenuity ~or lack of it!, it has to be as-
sumed that optimal measurements are made to recove
encoded message.

Third, a characterization of the copier would usually i
volve examining its information-copying performance for
given set of input states. However, these may occur w
various a priori probabilities Pi

A . We will take the case
where these probabilities are chosen to encode the maxim
amount of information in the signal states to be most rep
sentative of the behavior of information in the copier. Th
the mutual information quantities that will be used in lat
sections of this article areI m(A:B) and I m(A:A), given by

I m~A:B!5max
$Pi

A%

@max
$EB%

I ~A:B!#, ~7!

where $Pi
A% denotes the set ofa priori probabilities ofA

using thei th state in the encoding of the message, and$EB%
is the set of all positive valued operator measures@17#. We
will call I m the copied information.

While this quantity can be more laborious to calculate
has some advantages over fidelity. It is unchanged by r
beling or by local unitary transformations on the copies af
they have left the copier, as well as always being zero if
copies are independent of the originals.

Also, such mutual information is a physical quantity
interest in its own right, and is in fact what one is interest
in many fields~such as cryptography, for example!. Even
where this is not the case, mutual information between or
nals and copies can often be calculated from probability d
tributions of experimental measurements. Furthermore,
clear what the statement ‘‘the mutual information trans
from A to B is x’’ means physically, with no further knowl-
edge of the actual quantum states that were sent. It coul
said that the information-copying capacity of a quantu
cloner quantifies thepractical usefulness, in many situations,
of the copies produced by it.

There is a qualitative difference between informatio
theoretic quantities such as copied information, and qua
ties such as fidelity. Fidelity, and similar quantities such
the Hilbert-Schmidt norm, or the Bures distance, are qua
4-2
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INFORMATION TRANSFER AND FIDELITY IN . . . PHYSICAL REVIEW A61 062304
fications of relations between two quantum states~or, more
precisely, between their mathematical representations!, while
information-theoretic quantities deal with the relations b
tweenensemblesof states. This is the reason that they a
robust to such postcopying effects as relabeling of the c
states.

C. Ultimate and one-state copied information

Consider the situation discussed in the preceding sub
tion. ObserverA encodes a message into a sequence of qu
tum states, chosen from a set of states$r̂ i

A% labeled by the
index i. Each of the sent states has ana priori probabilityPi

A

of being thei th one in the set. When the copying machi
acts on the signal stater̂ i

A , it produces a copy stater̂ i
B ,

which is usually different from the original. It has bee
shown@18,19# that the mutual information betweenA andB
can be no more thanI H(A:B), given by

I m~A:B!<I H~A:B!5SS (
i

Pi
Ar̂ i

AD 2(
i

Pi
AS~ r̂ i

A!,

~8a!

whereS( r̂ ) is the von Neumann quantum entropy of sta
r̂ :

S~ r̂ !52Tr @ r̂ log2 r̂ #, ~8b!

a result known as the Holevo theorem.
In practice, the transmitted information will usually b

significantly less thanI H(A:B). However, it has been show
@20,21# that if A encodes the message using only cert
sequences of states out of all the possible ones~although still
respecting thea priori probabilities of individual states!, and
B makes measurements on whole such sequences rathe
on individual states, then as the length of these seque
increases, the information capacity per state can appro
arbitrarily close to the Holevo boundI H(A:B). This is called
a block-coding scheme, and such a communication setu
analogous to sending and distinguishing only wh
‘‘words’’ at a time in the message, rather than individu
‘‘letters.’’ In this analogy, letters correspond to individu
quantum states, and words to sequences of them. Natur
only special choices of the ‘‘words’’ to be used will ap
proach the Holevo bound, Eq.~8!.

With this in mind, there are two obvious candidates fo
mutual information quantity with which to characterize cop
ers: theultimate copied informationgiven by I H , and the
one-state copied information I1, which is the maximum in-
formation obtainable if measurements are made on only
state at a time. Both will be considered in what follows.

III. GENERAL PROPERTIES OF THE COPYING SETUPS
CONSIDERED

In the interest of clarity and simplicity~and, one must
admit, ease of analysis!, only the most basic relevant copyin
setups have been investigated. This should make the p
06230
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Thus, we will consider the case where observerA encodes
a message into a binary sequence of pure quantum s
r̂ i

A5uc i
A&^c i

Au ( i 51,2) with equala priori probabilities of
being sent (Pi

A5 1
2 ). The Pi

A are chosen to be one-half fo
two reasons:~1! this is the simplest case;~2! this is the situ-
ation where the maximum amount of information is encod
in the input states.

Since there are only two input states, the dimension of
relevant Hilbert space can be reduced to 2 by appropr
unitary transformations, because the states span at mo
two-dimensional manifold in Hilbert space. Any such can
written ~discarding an irrelevant phase factor! in an orthogo-
nal basis$u1&,u2&% as

uc 1
A&5cosuu1&1eim sinuu2&, ~9a!

uc 2
A&5sinuu1&1e2 im cosuu2&, ~9b!

where the parameteru ranges from 0 top/4 ~other values of
u are equivalent to a relabeling of the two states!. In the rest
of the article,m will be taken to be zero for simplicity, al-
though all results can easily be extended to the nonzero c
This, then, gives a one-parameter family of input states:

uc 1
A&5cosuu1&1sinuu2&, ~10a!

uc 2
A&5sinuu1&1cosuu2&. ~10b!

These can be fully labeled by the fidelity between them,

f 5F~ r̂ 1
A ,r̂ 2

A!5sin2~2u!. ~11!

In a similar fashion, by taking the least complex case,
copiers considered will be unitary, create only two copi
and be symmetric. By symmetric we mean that the redu
quantum states of both copies by themselves are equal.

The unitarity of the copying process implies a ‘‘blac
box’’ process: no external disturbance is required during
copying. Probabilistic copiers@10,22# are not considered
here.

Physically, there are two subsystemso andc ~which can
be considered two dimensional for reasons outlined abo!
put into the unitary copying machine, and two come out.
the input, the subsystemo contains the original state to b
copied, whilec contains a ‘‘blank’’ state that is always th
same, irrespective of what enters ato. Both subsystems con
tain the~usually imperfect! copies when they exit the copie
while an ancillary machine state subsystem~x! is also used in
some of the copiers. At the input, all three subsystems
unentangled, while at the output, entanglement is usu
present. Due to unitarity, the full entangled output states c
sisting of all three subsystemso, c, andx are pure, but the
states of individual subsystems are in general mixed.
4-3
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IV. THREE INFORMATION-OPTIMIZED QUANTUM
COPIERS

In this section, we present transformations for seve
copiers optimized for information transfer to the copie
given a binary sequence of equiprobable input states.
these copiers are symmetric. The input states are in gen
nonorthogonal, and the degree of orthogonality is charac
ized by f, the square of the overlap between the two inp
statesr̂ 1

A andr̂ 2
A . These will be compared to known fidelity

optimized copiers in the next section.

A. Copiers that optimize the one-state copied information

Rather than carry out a tedious optimization, it stands
reason that if any unitary copier allows one to extract
much information about the originals from the copies
from the originals themselves, then it achieves the optim
Is there such a copier?

Perhaps surprisingly, one finds that the Wootters-Zu
~WZ! quantum copying machine@1,3# ~used in the original
proof of the no-cloning theorem! allows one to extract as
much information~using a one state at a time extractio!
from either of the copies as from the original. One can im
ine that the same information transfer could be achieved
making measurements on the originals, and sending the
sults classically, but that a simple unitary transformat
with no coupling to the external environment can achieve
same is perhaps less obvious. What is more, the WZ co
does much better than any fidelity-optimized copiers, as
be seen later.

Explicitly, the transformation of the input states~10! is
given by

uc1
A&→sinuu11&1cosuu22&, ~12a!

c2
A&→cosuu11&1sinuu22&, ~12b!

where the basis vectorsu12&, etc., indicate tensor product
u1&ou2&c of the basis vectors for theo and c copy sub-
systems, respectively. The combined state of the copie
highly entangled, but the reduced density matrices of
copies~the full output density matrices traced over all su
systems except one copy! are in the classically mixed state

r̂ 1
B5S cos2u 0

0 sin2u D , ~13a!

r̂ 2
B5S sin2u 0

0 cos2u D . ~13b!

The one-state copied information, which is the same
can be extracted from the originals, is

I 1
WZ5 1

2 @~11q!log2~11q!1~12q!log2~12q!#,
~14a!
06230
l
,
ll
ral
r-
t

o
s
s
.

k

-
y

re-
n
e
er
ll

is
e
-

s

whereq, which we will call the distinguishability paramete
is

q5A12 f . ~14b!

From the purely classical nature ofr̂ i
B , it follows that the

ultimate copied informationI H
WZ is no bigger thanI 1

WZ . In
fact, applying more WZ copying machines to the cop
made by the first one, in a cascade effect, creates larger n
bers of copies, each of which still carries the same amoun
~one-state! information as the original message. In this wa
arbitrary numbers of optimal copies can be made—simila
to how one can make arbitrary numbers of copies of class
information.

The local fidelity between a copy and the originals is

F~ r̂ i
A ,r̂ i

B!512
f

2
. ~15!

There are other copiers related to the WZ copier wh
allow the same optimal one-state information transfer. O
example is the family of copying transformations created
applying identical local unitary transformations on both co
ies after they come out of the WZ copier. The particu
transformation presented above in Eq.~12! is the one that
gives the best local fidelity out of this family of transform
tions.

B. Copiers without ancilla that optimize
the ultimate copied information

It is also of interest how well information can be tran
mitted when the possibility of complicated block-codin
schemes is allowed, as discussed in Sec. II C. To make
calculations relatively tractable analytically, we have ma
two restrictions on the copiers that we considered for t
task.

First, only copiers that do not use an ancillary subsyst
x, entangled with the copies, have been considered. I
probably possible to obtain somewhat better performanc
ultimate information copying by using such helper su
systems, since discardingx after copying is completed par
tially relaxes the conditions that the copy stateso andc must
satisfy to preserve unitarity~since one then has more param
eters left to optimize over!. It is not clear how much bette
one could do with such helper states, but we suspect
much better, since from Fig. 2 below, the copier conside
here is only marginally better than several others obtained
optimizing over different indicators such as fidelity and on
state copied information.

Second, for similar reasons, we have assumed that s
both possible input statesr̂ i

A are of equal purity Tr@( r̂ i
A)2#

~totally pure, in fact!, then both reduced copy statesr̂ i
B will

be of equal purity also:

Tr @~ r̂ 1
B!2#5Tr@~ r̂ 2

B!2#. ~16!
4-4
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This is also a property shared by all other copiers mentio
in this article. The usual assumptions of Sec. III, such as b
copies being equal, apply also.

So, an ancillaless copier, that produces two identical~usu-
ally imperfect! copies of any of two possible pure sign
states, that makes copies of the same purity whichever o
two input states is sent, and that~given the above! maximizes
the amount of information that can be transmitted to each
the copies by any block-coding scheme when the two in
states are equiprobable, is given by the somewhat len
characterization below. The details of how this was obtain
have been left for Appendix A.

There is a whole family of copying transformations, r
lated by local unitary transformations on the copies after t
have stopped interacting with each other, which give
same ultimate information copiedI H

u . Of these, we will
specify that particular one in this family which gives th
greatest local fidelity between the copies and originals. T
transformation can be written in terms of the parametersr m
andfm , which have to be determined numerically. In term
of the initial states~10!,

uc1
A&→A11r m

2
ub1&1A12r m

2
ub2&, ~17a!
h
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uc2
A&→Ax

2
ub1&1Ax

2
2r m cosfmub2&

1A12x1r m cosfm

2
~ ub3&1ub4&), ~17b!

where

x5 1
2 ~11cos2fm12r m cosfm1A12r m

2 sin2fm!,
~17c!

and the fourubj& are orthogonal basis states, given in term
of the usualu1& and u2& basis states used in Eqs.~10! and
~12! by the matrix equation

S ub1&

ub2&

ub3&

ub4&

D 5US u11&

u21&

u12&

u22&

D , ~18!

where the unitary matrixU is
U5
1

2 S 11sinfm/2 12sinfm/2 cosfm/2 cosfm/2

12sinfm/2 11sinfm/2 2cosfm/2 2cosfm/2

2cosfm/2 cosfm/2 11sinfm/2 sinfm/221

2cosfm/2 cosfm/2 sinfm/221 11sinfm/2

D . ~19!
of
As can be seen from the above, the basis statesubj& are
entangled over the two copies.

The parameterfm is actually the angle between the Bloc
vectors of the two possible reduced copy statesr̂ i

B , which
can be written

r̂ 1
B5

1

2 S 11q qH

qH 12qD , ~20a!

r̂ 2
B5

1

2 S 12q qH

qH 11qD , ~20b!

where the parametersq andqH are

q5r m sin
fm

2
, ~21a!

qH5r m cos
fm

2
, ~21b!

and appear in the expressions forI 1 and I H .
Now cosfm is dependent onr m , and is given in terms of
it as the second largest@23# real root of the following quartic
polynomial in cosfm:

05cos4fm@r m
2 ~22r m

2 22A12r m
2 !#1cos3fm@4r m

2 ~1

2A12r m
2 !#1cos2fm$2@r m

4 12r m
2 14 f ~A12r m

2 21!#%

1cosfm@4r m
2 ~11A12r m

2 24 f !#1@~4 f 21!22~1

2r m
2 !212~r m

2 24 f !A12r m
2 #. ~22!

The ultimate copied information is given by

I H
u 5 1

2 @~11r m!log2~11r m!1~12r m!log2~12r m!#

2 1
2 @~11qH!log2~11qH!1~12qH!log2~12qH!#,

~23!

which can be made a function ofr m only, using Eq.~22!. To
obtain the optimum copier, we find numerically the value
r m that maximizesI H

u on r mP@A12 f ,1#.
The one-state copied informationI 1

u is given by the same
expression in the distinguishability parameterq as for the
WZ copier @Eq. ~14a!#, with q now given by Eq.~21a!.
4-5
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FIG. 1. One-state copied information~in bits
per signal state! I 1 for the copying machines dis
cussed in Secs. IV and V and Appendix C, as
fraction of the maximum one-state informationI 1

o

extractable from the input states~10!, plotted as a
function of the fidelity f between the two pure
input signal states.
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It is interesting to note that, for input states which a
sufficiently nonorthogonal (f &0.206), the copier given her
is just the WZ copier described in Sec. IV A. In these cas
fm5p and r m5A12 f . This sudden change in behavio
~particularly evident in Fig. 1 and Fig. 3 below! may be due
to excluding the use of ancillary subsystems. Allowing the
may make theI H optimal copier consistently better~although
possibly not by much! than the Wootters-Zurek for all value
of f, even the small ones.

The local fidelity between copies and originals for th
copier is

F~ r̂ i
A ,r̂ i

B!5 1
2 ~11qA12 f 1qHAf !. ~24!
06230
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C. An optimal copier that gives unentangled copies

As has been remarked by many previously, optimal qu
tum copiers typically produce highly entangled copies. T
also applies to the two quantum copiers given in Secs. IV
and IV B. Nevertheless, copies of some quality can be m
without entanglement between them. This might be desira
in some situations.

Once again two simplifying assumptions have been m
to make the calculation easier. It has been assumed tha
copies are, again, unentangled with ancillary machine sta
and that the output state of the copier is simply a prod
state of the two identical copies, rather than a classical m
ture of several such product states. The case with additio
machine states present might allow somewhat higher in
V

e

ut
FIG. 2. Ultimate~Holevo bound! copied in-
formation ~in bits per signal state! I H for the
copying machines discussed in Secs. IV and
and Appendix C, depending on the fidelityf be-
tween the two pure input signal states. Th
Holevo bound on information extractable from
the originals is also given under the name ‘‘Inp
States.’’
4-6
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FIG. 3. Local fidelity F( r̂ i
A ,r̂ i

B) between a
copy and the original, for the copying machine
discussed in Secs. IV and V and Appendix C,
a function off, the fidelity between the two inpu
signal states.
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mation transmissionI H with block-coding methods, for the
same reasons as in Sec. IV B. This would be interesting
check, but we have not done this to date. Allowing class
correlations between copies and a machine state subsysx
does not, however, improve information transmission.

Given the above two restrictions, a copier that optimiz
both the one-state and ultimate copied information, wh
keeping the copies unentangled, is given by

uc1
A&→

11A12Af

2
u11&1

12A12Af

2
u22&

1 1
2 f 1/4~ u12&1u21&), ~25a!

uc2
A&→

12A12Af

2
u11&1

11A12Af

2
u22&

1 1
2 f 1/4~ u12&1u21&), ~25b!

with notation identical to Eqs.~12!. See Appendix B for
details of the optimization.

This gives pure state copies~they must be pure from the
unitarity of the transformation, since the input states
pure, and the output state isr̂ i

B
^ r̂ i

B)

r̂ 1
B5

1

2 S 11A12Af f 1/4

f 1/4
12A12Af

D , ~26a!

r̂ 2
B5

1

2 S 12A12Af f 1/4

f 1/4
11A12Af

D . ~26b!
06230
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A family of copiers which do as well in the informatio
measures, but worse in local fidelity between originals a
copies, is given by making unitary transformations on t
copies individually.

The one-state copied informationI 1
NE is given by the same

expression inq as for the WZ copier~14a!, with q now given
by

q5A12Af . ~27!

The ultimate copied information is

I H
NE512

11 f 1/4

2
log2~11 f 1/4!2

12 f 1/4

2
log2~12 f 1/4!.

~28!

The local fidelity of copies with respect to originals is

F~ r̂ i
A ,r̂ i

B!5 1
2 @ f 3/4111A~12 f !~12Af !#. ~29!

It turns out that this copier also gives the best local fide
out of such unentangling copiers~see Appendix B!.

V. A COMPARISON OF THE COPIERS

To see how well the copiers rate in terms of the inform
tion measuresI H and I 1, we first need to determine how
much information could be extracted from the input state
they were not copied. Since the input states are not ortho
nal for f .0, then a full bit of information cannot be ex
tracted from each state even though they are equiprobab

One finds that the information extractable one state a
time is

I 1
o5 1

2 @~11q!log2~11q!1~12q!log2~12q!#, ~30!
4-7
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with the distinguishability parameterq5A12 f . This is the
same as with the Wootters-Zurek copier~14a!. The ultimate
information extractable from the signal if block-codin
methods are used is, however, unlike that for the WZ cop
much larger:

I H
o 512

11Af

2
log2~11Af !2

12Af

2
log2~12Af !.

~31!

It is interesting to compare the performance of the cop
given in Sec. IV to previously known fidelity-optimize
ones. Three will be considered here, and a brief summar
the copies they produce is given in Appendix C in terms
the input state overlap parameterf.

These three copiers are as follows.~1! The universal
quantum copying machine@3# ~UQCM!, which copies arbi-
trary qubits with a local fidelity of 5/6. This is the maximum
possible if it is to copy all with equal fidelity.~2! A copier
found by Brußet al. @8# that optimizes the global fidelity
when copying one of two nonorthogonal input states.~3! A
copier also found by Brußet al. @8,24# that optimizes the
local fidelity when copying one of two nonorthogonal inp
states. So let us see how they compare in performance.

A. One-state copied information

The one-state copied information is a good indicator
the efficiency of communicating classical data to the t
copies. The recovery and coding of the information in t
case relies only on measurement of one-qubit states,
classical error-correction schemes.

Looking at Fig. 1, one sees that the Wootters-Zu
copier, apart from achieving the optimum and transmitting
much one-state information to both copies as was enco
originally, is also far better at it than any of the other copie
shown ~except for the small-f region, where the ultimate
information optimized copier becomes the WZ!. The WZ
copier has by far the simplest transformation out of th
copiers, so it seems that for basic information transmiss
the simplest copier is the best.

The fidelity-optimized copiers do not do as well as t
WZ, which in itself is to be expected, as after all they we
optimized for fidelity, not information transfer. Howeve
they do very much worse, causing the loss of much inform
tion that could be regained if better copiers were used. T
shows quite clearly that fidelity is not necessarily a go
measure of the quality of the copies for all situations. It
perhaps also surprising that, even though we are conside
information transmitted toonecopy here, the copier that ha
been optimized for global fidelity between the combined o
put state and perfect copies, does significantly better than
one that has been optimized for local fidelity between
single copy and original.

The UQCM gives much less information transfer than
other copiers, since all the others have been specifically
lored for the two signal states, whereas the UQCM m
handle any arbitrary states with equal fidelity.
06230
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The copiers that give optimum unentangled copies
generally significantly worse than the other copiers ap
from the UQCM, but one sees that all the copiers apart fr
the WZ copier and UQCM converge to the same efficien
~much worse than the optimum! for high values off, i.e.,
when the signal states are not very orthogonal.

Note that a plot of the actual~rather than relative! amount
of information extractable from the original signalI 1 is
shown in Fig. 2 as the Wootters-Zurek curve, sinceI H

WZ

5I 1
o .

B. Ultimate copied information

The ultimate~Holevo bound! copied informationI H gives
an absolute maximum on how much information could p
sibly be transmitted by a given copier, with the best signal
scheme that is possible. In general, to achieve this bound
encoding/decoding scheme has to be very elaborate, and
often not achievable in practice due to complexity. In t
case of qubit systems being transmitted here, this would
tail making measurements of many-qubit observables to
code the information: a difficult task at present.

As can be seen in Fig. 2, most of the copiers cluster
below the optimal capacity achieved by the copier of S
IV B. While this is not necessarily the absolute optimum th
can be achieved, as there remains the possibility that in
ducing helper machine states may increase this bound,
bunching makes it seem plausible that no large gains ca
achieved beyond this. This ultimate-information optim
copier is quantitatively not much better than the Wootte
Zurek copier. Its greatest gains, which are still quite mode
come when the overlap between signal states is high, wh
the absolute information content in the signal is small.

It can be seen that, while the no-cloning theorem did
stop one from perfectly copying information contained
one state at a time, its effect is strong where block-cod
schemes are allowed. This is because, if we restrict ourse
to the one case at a time situation, we are not utilizing th
properties of the states that are affected by the no-clon
theorem. The difference between what can be extracted f
a copy and from the originals is quite striking, and for high
overlapping input states, over 60% of the information in t
originals is unavailable from a copy.

The behavior of the copiers for high overlap betwe
states is as one would expect. That is, the Wootters-Zu
copier becomes much less efficient than the others w
block-coding schemes are used, as the other copiers do
fully entangle the copies with each other, thus allowing o
to extract some extra information by looking at several
quential states together.

Since the Wootters-Zurek copier hasI 15I H , by compar-
ing the values of I H for the local and global-fidelity-
optimized copiers to the WZ copier, one can see that
these fidelity-optimal copiers, much more information th
I 1 can be sent to the copies by allowing complicated blo
coding schemes which use correlations between subseq
signal states. This approach, however, is unhelpful with
Wootters-Zurek copier, and is of very little help when usi
the UQCM.
4-8
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INFORMATION TRANSFER AND FIDELITY IN . . . PHYSICAL REVIEW A61 062304
As for the other information measure, the global-fidelit
optimized copier does slightly better than the local fidel
one. The unentangled copier does slightly worse than
rest, except for the UQCM which is consistently worse on
counts, as it is not tailored to the input states like the oth

C. Local fidelity

This is shown for various copiers in Fig. 3. The UQCM
absent from the plot, as its local fidelity lies far below t
others shown there. Figures 1 and 3 show quite clearly
fidelity and information transfer quantify quite differen
properties of the copying transformation, and one has to k
in mind which properties are desired, before deciding o
quantity to characterize efficiency.

As expected, the best local fidelity occurs for the cop
that was optimized for this, and the global fidelity optim
copier is almost as good. The WZ copier is no good at fid
ity at all for significantly overlapping states. The unentang
copier is once again slightly worse than most of the othe
The sharp change in behavior for the ultimate-informat
optimal copier is particularly evident in this plot.

VI. COMMENTS AND CONCLUSIONS

It was seen in the previous section that quantum cop
optimized for fidelity measures are far from optimal for ba
information transmission to the copies, and, vice ver
information-optimized copiers are far from optimized for
delity between copies and originals. This indicates that v
ous measures of quality should be used for quantum dev
depending on what final use is to be made of the states
ated.

Some other general trends that were seen for the quan
copying devices that were considered, include the followi
The ultimate-copied-information-optimized copier behav
more similarly to the fidelity-optimized ones than to the on
state optimized WZ copier~where it differs from the WZ!.
The fidelity-optimized copiers are not bad when one allo
multiparticle measurements on the copies, but are far fr
optimal if one does not. This may be because the fidel
optimized copiers preserve some of the quantum superp
tion of the input states~as evidenced by the off-diagona
terms in the density matrices of the copies!, whereas the WZ
copier makes the copies purely classical mixtures when t
are considered individually. To get extra information tran
mission by making measurements on multistate observab
one needs some quantum effects between the succe
copy states, and these effects are lacking with the WZ cop

A small, but perhaps surprising feature was that
global-fidelity-optimized copier gave better performance
the information measures than the local-fidelity-optimiz
one, even though only information flowing to one copy w
considered. Other features seen include the poor perform
of the UQCM relative to the other copiers—unsurprisin
since the other ones are tailored specifically to the two sig
states, and the poorer performance when the copies are m
unentangled with each other.

For all copiers considered, when the input signal states
nonorthogonal, the information carrying capacity of a cha
06230
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nel between two observers is significantly greater when
receiver gets undisturbed states (I H

o ) than when the receive
gets one copy, even when the copier is highly optimiz
(I H

u ). This is an information-theoretic manifestation of th
no-cloning theorem.

APPENDIX A: DERIVATION OF THE
ULTIMATE-INFORMATION OPTIMAL COPIER

The copier sought has the following properties: it tak
one of two (i 51,2) pure input states@25# r̂ i

A of Hilbert
space dimension 2, and by a unitary transformation creat
state r̂ i consisting of two~possibly entangled! copies (r̂ i

o

and r̂ i
c), again of Hilbert space dimension 2. The state

each copy, when the other copy is ignored, is identical, a
both possible copy states~corresponding to input states! have
equal purity, as measured by their self-fidelity Tr@ r̂ 2#. As-
suming all states considered are normalized, these condit
can be written as

normalization: Tr@ r̂ i
A#51, ~A1!

input pure: r̂ i
A5uc i

A&^c i
Au, ~A2!

unitarity: r̂ i5uc i&^c i u, ~A3!

Tr @ r̂ 1r̂ 2#5Tr @ r̂ 1
Ar̂ 2

A#5 f , ~A4!

symmetry: r̂ i
o5Trc@ r̂ i #5 r̂ i

c5Tro@ r̂ i #5 r̂ i
B , ~A5!

equal purity: Tr@~ r̂ 1
B!2#5Tr @~ r̂ 2

B!2#. ~A6!

And, of course, on top of these conditions, the Holevo bou
on ultimate information copiedI H is to be maximized.

The output states can be written in terms of a vector
complex expansion coefficients in some basis as

uc j&5
1

A2
@a j ,b je

ifb j ,g je
ifg j ,d je

ifd j #, ~A7!

where a j ,b j ,g j ,d jP@0,A2#, and the angles f . . .

P@0,2p). Normalization givesa j
21b j

21g j
21d j

252. One of
the expansion coefficients can be made real and posi
without affecting the final bound, by multiplying by appro
priate unphysical phase factors, so let us do this to thea j .

Now, any two states in a two-dimensional Hilbert spa
~such as the reduced states of the two possible copiesr̂ 1

B and

r̂ 2
B), can be described by two Bloch vectorsr i . The states

are then given by

r̂ i~r1!5 1
2 ~ Î 1s•r i ! where s5@ŝ 1 ,ŝ 2 ,ŝ 3# ~A8!

and ŝ j are the Pauli matrices. By an appropriate choice
basis, one of the two Bloch vectors can be chosen to lie in
arbitrary direction, while the other is separated by so
anglef r from the first, both of them lying in a plane of ou
choosing. Thus there are only three parameters for these
4-9
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states that are not arbitrary, depending on the choice of b
the lengths of the Bloch vectorsr i , and the angle betwee
themf r . Also, since

Tr @ r̂ i~r i !
2#5 1

2 ~11ur i u2!, ~A9!

and we are assuming equal copy purity~A6!, both Bloch
vectors are of equal lengthr 5ur i u. Let us choose these Bloc
vectors to be

r15r @0,0,1# and r25r @sinf r ,0,cosf r #. ~A10!

Thus, without any loss of generality, the copies can be w
ten in an appropriate basis as

r̂ 1
B5

1

2 S 11r 0

0 12r D , ~A11a!

r̂ 2
B5

1

2 S 11r cosf r r sinf r

r sinf r 12r cosf r
D . ~A11b!

Using Eqs.~A11!,~A7!, and conditions~A1!,~A5!, one ob-
tains the following restrictions on the expansion coefficie
of the total output statesr̂ i :

g15b1 , g25b2 ,

b1
2511r 2a1

2 , b2
2511r cosf r2a2

2 , ~A12a!

d1
25a1

222r , d2
25a2

222r cosf r ,

b1~a1eifb11d1efd12fb1!50, ~A12b!

b2~a2eifb21d2efd22fb2!5r sinf r . ~A12c!

Now Eq. ~A12b! implies that eitherb150 or (a15d1 and
2fb15fd11p). The second possibility is uninteresting,
it immediately leads tor 50, which givesI H50—certainly
not the optimum case, one hopes!

Also, using the unitarity condition~A4! and the equal
purity condition~A6!, one obtains the restrictions

2 f 5x1r ~r 21!cosf r1CA12r 2Ax~x22r cosf r !,

~A13!

r 2~12cos2f r !52~11r cosf r2x!@x2r cosf r

1KAx~x22r cosf r !#, ~A14!

respectively. For brevity, the mutually independent para
etersx,K,C have been introduced, where

x5a2
2 , ~A15a!

K5cos~fb21fg22fd2!, ~A15b!

C5cos~fg22fg1!. ~A15c!

Note that the condition~A14! is equivalent to Eq.~A12c!.
Using Eqs.~8!, ~A8!, and ~A11! leads toI H being given

by the expression
06230
is:

t-

s

-

I H5 1
2 @~11r !log2~11r !1~12r !log2~12r !#2 1

2 @~1

1qH!log2~11qH!1~12qH!log2~12qH!#, ~A16!

with

qH5r cos
f r

2
. ~A17!

One finds thatI H(r ,cosfr) is a monotonically decreasin
function of cosfr—thus, to maximizeI H for a given value of
r 5r o , it suffices to minimize cosfr ~i.e., make the angle
between the possible copy Bloch vectors as close top as
possible!. I H(r ,cosfr) is also a monotonically increasin
function of r.

For any particular values ofr and cosfr , there are three
parameters left to vary to try to satisfy Eqs.~A13! and~A14!,
after the relations~A12! have been used:x, K, andC. Each of
the two Eqs.~A13!,~A14! will give an allowable range forx
~exactly which point in these ranges is satisfied by the cop
then depends onC and K). The ends of these ranges a
given by

] cosf r

]C
50 or C561 ~A18a!

for Eq. ~A13!, and

] cosf r

]K
50 or K561 ~A18b!

for Eq. ~A14!. Only those values of cosfr for which the two
x ranges partially overlap give allowable copiers. Now, f
any particularr 5r o , if we vary cosfr , the x ranges will
vary also. In particular, at that value of cosfr which lies at
the boundary of allowed cosfr(ro) values, at least one ex
tremity of the firstx range, due to Eq.~A13!, will coincide
with an extremity of the secondx range due to Eq.~A14!. Of
course, not all cases wherex range extremities coincide wil
correspond to a cosfr(ro) extremity, but any parameters fo
which suchx extremities coincide will give viable copier
@they could be well within a region of allowed cosfr(ro)
values#. Hence, if we look at all the parameters@given by
Eqs. ~A13!, ~A14!, and ~A18!# where x range extremities
occur, then one of them will give the desired minimu
cosfr(ro) value. It turns out that this cosfr(ro) minimum
corresponds toK5C51 when r P@A12 f ,1#. For r
,A12 f , cosfr(ro) can reach its absolute minimum value
21, but sinceI H is also monotonically increasing inr, the
optimumI H copier must haver>A12 f , so these low values
of r can be ignored. This leads to the second largest real
of polynomial~22! as the expression for cosfr(r) that maxi-
mizesI H for a givenr>A12 f . The final value ofr which
maximizesI H out of all the copiers considered,r H , is given
now by a straightforward, one-parameter maximization
I H„r ,cosfr(r)… over r P@A12 f ,1#. Because this calculation
is simple, straightforward, and accurate numerically, but
so simple analytically, an analytical solution has not be
attempted.
4-10
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INFORMATION TRANSFER AND FIDELITY IN . . . PHYSICAL REVIEW A61 062304
Now, to find the particular transformation which, give
input states~10!, not only maximizesI H but also makes the
local copy-original fidelity as large as possible, first make
Bloch vectors of the copies be in the same plane as the B
vectors of the input states, and then make both pairs s
metric about a common axis. The Bloch vectors of the in
states are

s15@Af ,0,A12 f # and s25@Af ,0,2A12 f #.
~A19!

These are in the (ŝ 1-ŝ 3) plane, and symmetrically space
about@1,0,0#. So, to achieve the desired optimum local fid
ity copier, the appropriate transformation of the input sta
is found to be

uc i
A&→~UH ^ UH!uc i&, ~A20a!

whereuc i& is given by Eq.~A7!, and the unitary transforma
tions are

UH5S cosjH sinjH

2sinjH cosjH
D where jH5

f r~r H!2p

4
.

~A20b!

This can be written as Eqs.~18! and ~19!.

APPENDIX B: DERIVATION OF UNENTANGLED
OPTIMAL COPIER

Consider copiers producing product states of the cop
This transformation can be written

r̂ i
A→ r̂ i

B
^ r̂ i

B
^ r̂ i

x , ~B1!

where r̂ i
B are the copies andr̂ i

x is a helper machine state
The only other constraint on the copier is that it must
unitary, which means that traces are preserved. This im
diately leads tor̂ i

B and r̂ i
x being pure because the inp

states are pure~via Tr@ r̂ 2#). Furthermore,

f 5~Tr@ r̂ 1
Br̂ 2

B# !2Tr@ r̂ 1
xr̂ 2

x#5 f 12
2 f x , ~B2!

where f 12 and f x are the fidelities between, respectively, t
two copy and two machine states produced after inpu
originals. Thus, sincef x<1, it follows thatAf < f 12<1.

Let us start with optimizing for one-state informatio
transfer I 1. It is easily shown that for equiprobable inp
states,I 1 satisfies Eq.~14a! with the distinguishability pa-
rameter given by

q5A12 f 12. ~B3!

This is most straightforward to show using the Bloch vect
of the copies. SinceI 1 is monotonically increasing withq, it
will be maximized whenq is maximized. This is whenf 12

5Af .
Now let us look atI H . For qubit copy states, this is aga

given by Eq.~A16!, and since the copies are pure,r 51, and
06230
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one findsqH5Af 12. With r 51, I H depends only onqH , and
will reach extreme values either when

dIH

dqH
5

1

2
log2S 12qH

11qH
D50, ~B4!

or at the endpoints of theqH range:qH5( f 1/4or1). One sees
that Eq.~B4! is only satisfied forqH5 f 125 f 50, so for gen-
eral f, extreme values ofI H are reached atf 1251 or f 12

5Af . f 1251 leads toI H50, so the optimal value forf 12 is
againAf . Thus the same copiers that are optimal inI 1 are
also optimal inI H .

Lastly, let us look at local fidelity. The fidelity betwee
any two pure states is given by

F~ r̂ 1 ,r̂ 2!5 1
2 ~11cosf!, ~B5!

in terms of f, the angle between their Bloch vectors. T
minimize the average over both possible inputs of this Blo
angle between originals and copies, we choose the Bl
vectors of the copies to lie in the same plane as the Bl
vectors of the originals, and to be symmetric about the sa
axis. Obviously, in this case, the local fidelity will be max
mized if the Bloch angle between the copies is as simila
the Bloch angle between the originals as possible~since the
Bloch angle between original and copy is half the differen
between these!. Since f 125Af > f , this means that we wan
f 125Af again. Hence, the unentangled optimal copier giv
in Sec. IV C is optimal in all three indicators considered
this article.

Choosing Bloch vector parameters such that Eq.~B1!
holds,f 125Af , and local fidelity is optimized, easily leads t
the copier given in Eq.~25!. It is simplest to use Bloch
vectors for this calculation.

APPENDIX C: SOME FIDELITY-OPTIMIZED COPIERS

This section gives a brief summary of the fidelit
optimized copiers that are compared to the informatio
optimized ones in Sec. V. Expressions are given in terms
f, the square overlap between the two input states. M
more detail is given in the literature.

1. The copier that optimizes the global fidelity

The quantum copying machine that optimizes the glo
fidelity between the combined state of both copies and a s
consisting of unentangled perfect copies has been found
Bruß et al. @8# The copies produced are~with the help of a
little algebra!

r̂ 1
B5

1

2 S 11A12 f

11 f

f 1Af

11 f

f 1Af

11 f
12A12 f

11 f

D , ~C1a!
4-11
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r̂ 2
B5

1

2 S 12A12 f

11 f

f 1Af

11 f

f 1Af

11 f
11A12 f

11 f

D . ~C1b!

The local fidelity is@from Eq. ~47! in Ref. @8##

F~ r̂ i
A ,r̂ B,i !5

1

2 S 11
~12 f !A11 f 1 f ~11Af !

11 f D ,

~C2!

and the one-state copied information is given by Eq.~14a!
with distinguishability parameter

q5A12 f

11 f
. ~C3!

The ultimate copied information is given by the express
~A16!, wherer, the magnitude of the Bloch vectors of th
copies, is in this case

r 5
A11 f ~112Af !

11 f
, ~C4a!

and the parameterqH is

qH5
f 1Af

11 f
. ~C4b!

2. The copier that optimizes the local fidelity

As in Appendix C 1, Brußet al. have found the copie
that optimizes the local fidelity between a copy and the or
nals@8,24#. From Eqs.~C1!–~C6!, and~C12! and subsequen
discussion in Ref.@8#, the copies are in the states

r̂ 1
B5

sec 2f

2 S cos 2f1A12 f ~11Af !sin 2f

~11Af !sin 2f cos 2f2A12 f
D ,

~C5a!

r̂ 2
B5

sec 2f

2 S cos 2f2A12 f ~11Af !sin 2f

~11Af !sin 2f cos 2f1A12 f
D ,

~C5b!
hu

a-

06230
n

i-

where the anglef is defined by

sin 2f5
Af 211A122Af 19 f

4Af
. ~C5c!

The local fidelity is@rearranging Eq.~C11! of Ref. @8##

F~ r̂ i
A ,r̂ i

B!5 1
2 $11cos 2f@12 f 1Af ~11Af !sin 2f#%.

~C6!

After some algebra, one finds that

q5A12 f cos 2f, ~C7a!

r 5cos 2fA12 f 1~11Af !2 sin2 2f, ~C7b!

qH5sin 2f cos 2f~11Af !, ~C7c!

which can be used in expressions~14a! and ~A16!, respec-
tively, to find I 1 and I H .

3. The UQCM

The universal quantum copying machine@3# copies any
two-dimensional input states with an equal, optimal, lo
fidelity of 5/6. This copier is unique among those mention
in this article, in that it uses a machine helper state wh
becomes entangled with both copies after the process is c
plete. Given the input states~10! used in this article, the
UQCM will create the copies

r̂ 1
B5

1

6 S 31A12 f 2Af

2Af 322A12 f
D , ~C8a!

r̂ 1
B5

1

6 S 32A12 f 2Af

2Af 312A12 f
D . ~C8b!

To calculateI 1 and I H , use

q5 2
3 A12 f , ~C9a!

r 5 2
3 , ~C9b!

qH5 2
3 Af ~C9c!

in expressions~14a! and ~A16!.
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