
Astron. Astrophys. 363, 1091–1105 (2000) ASTRONOMY
AND

ASTROPHYSICS

Self-broadening in Balmer line wing formation in stellar atmospheres

P.S. Barklem1, N. Piskunov1, and B.J. O’Mara2

1 Uppsala Astronomical Observatory, Box 515, 751-20 Uppsala, Sweden
2 Department of Physics, The University of Queensland, St Lucia, 4072, Australia

Received 7 July 2000 / Accepted 2 October 2000

Abstract. Details of a theory of self-broadening of hydrogen
lines are presented. The main features of the new theory are that
the dispersive-inductive components of the interaction (van der
Waals forces) have been included, and the resonance compo-
nents have been computed by perturbation theory without the
use of the multipole expansion. The theory is applied to lower
Balmer lines and the theoretical and observational impact of the
new broadening theory is examined. It is shown that this theory
leads to considerable differences in the predicted line profiles in
cool stars when compared with previous theories which include
only resonance interactions. In particular, the effect is found to
be very important in metal poor stars. The theory provides a nat-
ural explanation for the behaviour of effective temperatures de-
rived from Balmer lines by others using a theory which includes
only resonance broadening. When applied to Balmer lines in the
solar spectrum the theory predicts an improved agreement be-
tween observed and computed profiles for models which also
match limb darkening curves and rules out a model which does
not. However significant discrepancies still remain which could
be due to inadequacies in our theory or the atmospheric model
or both.
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1. Introduction

Hydrogen line wings are one of the strongest tests of model
stellar atmosphere structure. In the majority of stars hydrogen
is a dominant source of continuous opacity and thus for strong
hydrogen lines the abundance parameter is excluded. In hot
stars, where the broadening of hydrogen lines is dominated by
protons and electrons produced by the ionisation of hydrogen,
the hydrogen line profiles are dependent only on atmospheric
structure and properties of the hydrogen atom. In cool stars the
metallicity is important as ionisation of metals is the principal
source of ions and electrons which contribute to the Stark broad-
ening of the lines while hydrogen atoms in their ground state
produce self-broadening of the lines. Further, hydrogen lines
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can be observed in all stars, unlike for example limb darkening
curves which are one of the strongest tests for solar photosphere
models. The large range of opacities within a single line means
that many different depths are probed.

If the behaviour of the hydrogen atom in the conditions of
stellar atmospheres is understood, the hydrogen absorption lines
can be a powerful diagnostic. The transition probabilities are
known with extremely high accuracy. Furthermore, the line pro-
file shape is particularly sensitive to atmospheric structure, due
to the unique situation of the broadening which derives from the
“accidental degeneracy” of states in the hydrogen atom. How-
ever, this degeneracy means that the broadening is extremely
complex by comparison with metallic lines.

Recently there have been a number of applications of hy-
drogen lines, particularly lower Balmer lines, to the analysis of
stellar photospheric models, and in particular models of stellar
convection (Fuhrmann et al. 1993, 1994; Van’t Veer-Menneret
& M égessier 1996; Castelli et al. 1997; Gardiner et al. 1999). Of
course, such analyses will be dependent on the accuracy of the
theories describing the hydrogen atom properties. Of particular
importance for analyses of photospheres is the broadening of
the wings in stellar photospheric conditions. This is especially
true when testing convection theories, as convection affects the
atmosphere in the deeper layers which do not contribute to the
core of the line.

It was pointed out by Lortet & Roueff (1969) that the ef-
fect of neglecting dispersive-inductive forces should be signifi-
cant, however, this seems to have gone largely unnoticed. They
showed that relative to resonance broadening, dispersive inter-
actions make a significant contribution to the self-broadening of
Balmer lines. For Paschen lines they demonstrated that disper-
sive interactions should dominate the self-broadening. How-
ever, in their analysis they used an inadequate theory of the
dispersive-inductive interaction which is known to underesti-
mate this type of broadening by typically a factor of two. In
this paper a theory of self-broadening of hydrogen lines which
includes a better treatment of both resonance and dispersive-
inductive interactions, which was announced in an earlier letter
(Barklem et al. 2000, hereafter Paper I), is presented. It is shown
that the inclusion of these interactions has a significant effect
on the predicted profiles of Balmer lines in cool stars.
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2. Hydrogen line wing broadening mechanisms

Hydrogen lines are broadened by a number of different mecha-
nisms. In the wings of the lines the collisional processes dom-
inate the line profile shape. The more important of the known
broadening mechanisms for hydrogen line wings in stellar at-
mospheres are

– quasistatic broadening by collisions with ions/protons
– impact broadening by collisions with electrons
– impact broadening by collisions with hydrogen atoms
– radiative broadening
– impact broadening by collisions with helium atoms
– impact broadening by collisions with hydrogen molecules

The first three of these are expected to dominate with relative
contributions depending on the effective temperature and metal-
licity of the star, and the particular line under study.

The quasistatic ion field splits the line up into Stark com-
ponents which are broadened by collisions with fast moving
electrons, hydrogen atoms and helium atoms. As they carry an
overall electric charge, electrons are substantially more effective
at broadening than hydrogen atoms. However, in cool stars like
the sun, with a solar composition, hydrogen atoms outnumber
electrons by typically four orders of magnitude and by perhaps
six orders of magnitude if the star is metal deficient. This re-
sults in collisions with hydrogen atoms being very important. In
cool stars, helium atoms usually have a number density about
an order of magnitude less than hydrogen atoms, they have no
resonance interaction with hydrogen and have only half the po-
larisability and speed of hydrogen atoms so their contribution
to the broadening is relatively unimportant. Broadening by col-
lisions with hydrogen molecules will only become important in
very cool stars which are not considered here.

3. Unified stark broadening theories

Due to its importance in later analysis and discussions, we first
make a brief summary of the situation for the Stark broaden-
ing, which includes the effects of the ion field and the elec-
trons. Stark broadening of hydrogen lines has received consid-
erable attention. The most used of the treatments are those of
Vidal et al. (1970, 1971, 1973), and more recently Stehlé (1994).
The theory of Vidal et al. (1970) was the first “unified theory”
of electron and ion collisional broadening of hydrogen lines.
This theory was for the first time capable of computing the line
profile over the whole line, from the impact limit at line centre
to the quasistatic limit in the line wings, including the tran-
sition region. The calculations of Stehlé (1994) are based on
the theory of Frisch & Brissaud (1971a, 1971b), the so called
Model Microfield Method (MMM). The major advantage of
these calculations, over the Vidal et al. (1973) calculations, is
the modelling of the dynamics of ions and non-Markovian ef-
fects (overlapping collisions). As stated by Stehlé & Jacque-
mot (1993), “MMM can be seen as an interpolating formalism
between well described asymptotic ‘static’ and ‘impact’ limits”.
By comparison the Vidal et al. (1970) theory is simply a unified
treatment of the two limits.

The Vidal et al. (1973) and Stehlé (1994) calculations are
in reasonable agreement, mostly showing differences in the line
core due to ion dynamics. In cool stars the ions are produced
by the ionisation of heavy metals like iron which move rela-
tively slowly so the effects of ion motion will be very small.
The Stehĺe calculations show quite good agreement with exper-
iment (Stehĺe 1994), noticeably better than Vidal et al. (1973)
in the line core. However, this difference is often lost in astro-
physical applications when the profiles are folded with Doppler
profiles (Lemke 1997). Both theories show reasonable agree-
ment in the wings.

4. Self-broadening theory

In the case of hydrogen, self-broadening refers to the broad-
ening of hydrogen lines by collisions with other neutral hy-
drogen atoms. It has been known for some time, that similar
atoms undergo a resonance interaction when the states of the
two atoms are capable of optical combination (Eisenschitz &
London 1930). It is also well known that two neutral atoms
have dispersive and inductive interactions, often called the van
der Waals interaction. The dispersive interaction corresponds to
the simultaneous fluctuation of the atoms brought about by the
repulsive electrostatic interaction of the electrons in each atom
which promotes and demotes the electrons to virtual states. At
long range the dispersive interaction dominates and a multipole
expansion of the electrostatic interaction is valid whose first
term leads to an interaction of the formC6/R6. There are also
components of the interaction which correspond to the induc-
tion of virtual transitions in one atom due to the static field of
the other, such interactions are usually less important.

We now outline a new theory of self-broadening in the im-
pact approximation which includes both resonance and disper-
sive and inductive interactions, in a single theory.

4.1. Overlapping lines in the impact approximation

As already explained, in stellar spectra the hydrogen lines are
split into components by the quasistatic ion field and these
components are then impact broadened by electrons, hydrogen
atoms, and to a negligible extent, helium atoms. The combined
impact broadening of the Stark components by electrons and
hydrogen can be handled in a consistent way by the use of over-
lapping line theory.

Baranger (1958) was first to examine the problem of pres-
sure broadening of overlapping lines in the impact approxi-
mation. The review by Peach (1981) covers many aspects of
line broadening theory including the case of overlapping lines.
Adopting the notation of Peach the line shape for a transition
between states of principle quantum numberni andnj is given
by

L(ω) =
1
π

Re
∑

`i`j`′
i`

′
j

〈〈ni`i(nj`j)∗||δ||ni`
′
i(nj`

′
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′
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in the reduced line/doubled-atom space, withδ the opera-
tor corresponding to the electric dipole operator, andh0 the
Hamiltonian. The operatorh is the operator corresponding to
N{1 −SiS

†
j}av in line space, whereN is the perturber density

and{}av indicates averaging over all possible orientations of
the collision.S is the collision or scattering matrix, and here
the subscript refers to the two different upper and lower state
subspaces.

The dipole operator determines the strength of each com-
ponent’s contribution to the complete line, including possible
interference between components. In the reduced line space the
matrix elements ofδ are related to the reduced state space matrix
elements by

〈〈ni`i(nj`j)∗||δ||ni`
′
i(nj`

′
j)

∗〉〉
= 〈ni`i||d||nj`j〉〈ni`

′
i||d||nj`

′
j〉 (2)

where via the Wigner-Eckhart theorem (e.g. Edmonds 1960)
one can find

〈ni`i||d||nj`j〉 = (−1)`i [(2`i + 1)(2`j + 1)]
1
2

×
(

`i 1 `j

0 0 0

)
〈ni`i|r|nj`j〉 (3)

where〈ni`i|r|nj`j〉 is now simply the radial component which
can be computed by standard methods such as those discussed
by Condon & Shortley (1935). We use the readily available
computer code from Vidal et al. (1971).

4.2. Semi-classical treatment

The second matrix in Eq. (1) determines the line profile shape
characteristics for each component. In the semi-classical theory,
assuming straight line trajectories we can show that
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whereb is the impact parameter of the collision, andf(v) the
distribution of velocitiesv. This matrix is a complex square
matrix of orderninj , and once computed can be inverted easily
by standard numerical techniques to give the matrix required in
Eq. (1).

Determination of theS matrices can be simplified if it is
assumed that there are no`-changing collision-induced tran-
sitions so that theS matrices are block diagonal. We compute
these matrices via the method proposed by Roueff (1974) which
accounts for changes in the orientation of the atoms during the
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Fig. 1. Model for electrostatic interaction between the two hydrogen
atoms.

collision relative to the single orientation in which the potentials
are computed, via theS matrix. The relevant expressions for the
evolution have been presented in Anstee & O’Mara (1991) and
Barklem & O’Mara (1997).

In our treatment of the broadening of metallic lines it is
assumed that there are no collision-induced transitions, an as-
sumption which is justified by the collisions being too slow. In
hydrogen, due to the accidental near` degeneracy, this assump-
tion may break down. This is discussed in Sect. 4.5.

4.3. The interaction potential

We model the interaction between two hydrogen atoms as shown
in Fig. 1. With reference to Fig. 1 the electrostatic interaction is

V =
1
R

+
1

r12
− 1

r2
− 1

p1
. (5)

The resonance interaction occurs between like atoms due to
a possible exchange of excitation. When one considers the inter-
action of a ground state hydrogen atom with an excited hydrogen
atom the states|100〉|n`m〉 and|n`m〉|100〉 are degenerate. If
the excited state is a p state it has an allowed dipole transition
to the ground state and the off-diagonal elements are quite large
compared to the diagonal matrix elements ofV which at large
separations can be neglected. It can be shown (see for example
Margenau & Kestner 1969; Fontana 1961) that the strength of
the resonance interaction∆En1m,100 to first order is given by
the matrix elements ofV between these two states. Analytic
expressions for these matrix elements, to within a final numeri-
cal integration over the radial co-ordinate have been calculated
from V in Eq. (5) with the assistance of the Mathematica pack-
age without resort to a multipole expansion ofV . These matrix
elements must, at long range, reduce to the form

∆En1m,100 ≈ C3(n, m)
R3 (6)

whereC3 is a constant that must be computed. Table 1 shows
values computed forC3 for lower lying states of hydrogen in-
teracting with a ground state perturber. These were computed
by direct evaluation of the dipole-dipole matrix element inte-
grals using Mathematica. Then = 2 andn = 3 elements were
computed entirely analytically. The higher states required some
numerical evaluation. These values are in excellent agreement
with Stephens & Dalgarno (1974) and Kolos (1967) for the 1s2p
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Table 1.The computed values ofC3 for resonance interactions due to
ground state hydrogen perturbers.

State C3 (a.u.)

1s2pσ −1.1098579
1s2pπ 0.5549290
1s3pσ −0.1779785
1s3pπ 0.0889893
1s4pσ −0.0618475
1s4pπ 0.0309238
1s5pσ −0.0290382
1s5pπ 0.0145191

and 1s3p interactions and with our calculations based on an un-
expandedV when the interatomic separation is large. Note that
the interaction can be of either sign and declines dramatically
with increasing principal quantum number which results in a
multipole expansion ofV being invalid for all but 2p states
when employed in line broadening calculations.

For those perturbed atom states which are not connected to
the ground state by an allowed dipole transition, the off diagonal
matrix elements ofV (corresponding to forbidden transitions)
are zero or negligible. Thus the interaction potential to second
order for these states is

∆En`m,100 = 〈n`m|〈100|V |100〉|n`m〉
+

∑
ij

〈n`m|〈100|V |ai〉|bj〉〈bj |〈ai|V |100〉|n`m〉
E100 + En`m − Ei

a − Ej
b

(7)

The summation excludes the states|ai〉|bi〉 = |100〉|n`m〉 and
|ai〉|bi〉 = |n`m〉|100〉. At large separation this expression is
dominated by the second term and behaves as

∆En`m,100 ≈ C6(n, `, m)
R6 (8)

whereC6 is always negative implying an attractive force unlike
the situation for the resonance interaction where the force can
be attractive or repulsive.

For p states, only the second order term above applies. Thus,
as suggested by Margenau & Kestner (1969), the interaction
energy to second order is the sum of the resonance interaction
and the second order dispersive-inductive term such that

∆En1m,100 = 〈n1m|〈100|V |n1m〉|100〉
+

∑
ij

〈n1m|〈100|V |ai〉|bj〉〈bj |〈ai|V |100〉|n1m〉
E100 + En1m − Ei

a − Ej
b

(9)

the summation excluding the degenerate states as above. For
these states however, the first order term dominates due to the
resonance interaction.

In order to simplify the infinite sum over all product states
of the system in the above second order expressions we employ
the first of two approximations suggested by Unsöld (1927)
where, at a fixed separationR between the atoms, the energy
denominator is replaced by a constant valueEp(R). The infinite
sum in the above second order expression can then be completed

Table 2.ImpliedEp values for long range H–H interactions computed
from theC6 calculations of Stephens & Dalgarno (1974).

State C6 (a.u.) Ep (a.u.)

1s1s −6.499027 −0.9232
1s2s −204.7356 −0.4103
1s2pσ −174.1659 −0.4823
1s2pπ −94.4574 −0.5082
1s3sσ −920.477 −0.4498
1s3pσ −1117.789 −0.4509
1s3pπ −632.963 −0.4550
1s3dσ −725.402 −0.4466
1s3dπ −629.676 −0.4574
1s3dδ −393.8156 −0.4571

using the closure relation reducing the expression to the simpler
form

∆E(2)(R) =
1

Ep(R)
[〈n`m|〈100|V 2|100〉|n`m〉−

〈n`m|〈100|V |100〉|n`m〉2] (10)

Furthermore we make the approximation that we may use the
value ofEp at infinite separation,Ep(∞), at all separationsR.

For the first few states of hydrogen we have inferred the
value ofEp from previous calculations of the van der Waals
coefficientC6 by Stephens & Dalgarno (1974), and these are
tabulated in Table 2. For higher states the value ofEp is well
approximated by−4/9 atomic units, a value obtained by ne-
glecting the contribution to the energy denominator made by
virtual states of the excited atom, the second approximation
suggested by Unsöld (1955). In the case of the long range H–H
interaction being considered here it is expected that the value
of Ep will converge towards this value for higher lying states,
and this is seen to be the case in Table 2, particularly for states
with σ-symmetry which make the largest contribution to the
interaction and hence the line broadening.

In Paper I anEp value of−4/9 was used for all states. When
Ep values from Table 2 are used we do not find any significant
change to the broadening and consequently the estimate−4/9
is used for all higher states.

4.4. Potential curves

The first and second order dispersive-inductive terms, in the con-
text of the Uns̈old approximation, were computed using meth-
ods described by Anstee & O’Mara (1991, 1995) and Barklem
& O’Mara (1997). For p states the total interaction can be ob-
tained by simply adding the second order interactions to the
resonance interaction.

We have made comparisons of a number of our spin-
averaged type potential curves with appropriate molecular-type
spin dependent curves from the literature. Our potential curves
fulfilled our expectations from previous experience. That is,
they show excellent agreement at long range. They then have
reasonable agreement with molecular curves at “intermediate”
separations (we define these separations as where the poten-
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tial starts to deviate from the long range asymptotic expansion
behaviour), far better agreement than the multipole expansion
results. At shorter range we see generally poor agreement as the
use of perturbation theory breaks down at these separations. For
1s2`m interactions good agreement was observed forR greater
than 10–15a0. It will be shown however that our curves are of
acceptable accuracy in the region that is predicted by the model
to be important in broadening.

Following Anstee & O’Mara (1991) the interatomic sep-
arations important in the determination of the line broadening
cross-sections have been identified by multiplying potentials by
a Gaussian “lump” of unit peak amplitude and width of 2 Bohr
radii and adding them to original potentials thus amplifying
them by up to a factor of two. The line broadening cross-section
can then be calculated as a function of the lump position and
plotted against the lump position. A corresponding lump appears
in this plot which clearly identifies the interatomic separations
important in the line broadening.

Using this procedure it was found that the broadening of the
3d state is most sensitive to potentials at intermediate separa-
tions, ie. those where the potential curve starts to deviate from
the long range behaviour, around 10–30a0 in this case. This
is the same as has been observed in the broadening of metallic
lines by hydrogen collisions (Anstee & O’Mara 1991; Barklem
& O’Mara 1998). Due to the strong resonance interaction with
aR−3 dependence at long range for 2p states it was found that
the broadening is much more sensitive to the long range inter-
action. Even at a lump position of 60a0 the cross-section still
showed some sensitivity, not yet having converged to the value
of 1180 atomic units. It was also observed that the model ap-
pears to be more sensitive to the 1s2pπ curve than the 1s2pσ
at intermediate separations, however, we see that at larger sep-
arations the broadening is more sensitive to the 1s2pσ curve.
This behaviour was somewhat unexpected and may be result
of the dispersive–inductive interaction being attractive for each
of these states while the resonance interaction is attractive for
σ states and repulsive forπ states. In conclusion, it has been
shown that the model used here is insensitive to the accuracy of
the potentials at small separations where the curves used in this
work are known to be inaccurate.

The dependence of the cross-section for the p–d component
of Hβ withEp for the 2p and 4d states was also investigated. This
transition was chosen as theEp values for the upper state are
the most uncertain. It was seen that the broadening is practically
independent of the 2p stateEp value, since this potential is
dominated by the first order resonance component which is not
dependent onEp. The dependence on theEp of the upper state
is actually reasonably strong when considering sayEp varying
over the range−0.8 to −0.4, however, it can be safely assumed
that theEp(∞) values for the 1s4d interactions lie between
−0.457 and−0.444. Within this range the cross-section was
found to deviate by only around 1 per cent.

Our calculations do not include exchange effects. Our in-
vestigations of metallic lines suggest that exchange effects start
to become important whenn∗ − ` > 3 wheren∗ is the ef-
fective principal quantum number which equalsn in hydrogen.

Table 3.The broadening characteristics of the p–d component of lower
Balmer lines. The cross-sectionσ is given in atomic units for a colli-
sion speed of104 m s−1. The velocity parameterα gives the velocity
dependence assumingσ(v) ∝ v−α. The approximate maximum de-
tuning for validity of the impact approximation for the self-broadening,
computed forv = 14000 m s−1, is given.

Line σ α ∆λmax
(a2

0) (Å)

Hα 1180 0.677 35.0
Hβ 2320 0.455 13.2
Hγ 4208 0.380 7.7

As shown by Lortet & Roueff (1969), the p–d transition domi-
nates the Balmer lines and exchange effects thus should not be
important in the broadening for Hα, Hβ and Hγ.

4.5. Validity of approximations

The validity of approximations used in the calculations, is now
considered. All of the assumptions or approximations used
in previous work for metallic lines are retained (Anstee &
O’Mara 1991). We have mentioned the various approximations
in the previous discussion of the theory. The approximations
made are the impact approximation (including the binary col-
lision assumption), use of Rayleigh–Schrödinger perturbation
theory, the classical straight path approximation and the neglect
of collision-induced transitions. In hydrogen lines the impact
approximation and neglect of collision-induced transitions may
breakdown. The impact approximation may be suspect in the
far line wings due to the fact that the lines are often so broad.
The neglect of collision-induced transitions becomes doubtful
as the levels arèdegenerate. Hence we will discuss these two
approximations.

The validity of the impact approximation for self-
broadening of hydrogen lines was discussed by Lortet &
Roueff (1969). In view of our new calculations we can revisit
this analysis, now without the need to split the conditions into
resonance and van der Waals parts. The impact approximation
is strictly valid when the detuning (in angular frequency units)
is far less than the inverse collision duration. If one considers
the detuning for which these quantities are equal, the absolute
maximum detuning for which the impact approximation is valid
can be estimated by

∆λmax =
λ2

2πc

v√
σ(v)/π

(11)

where as usualσ(v) is the broadening cross-section for collision
velocityv. Using the cross-section data which we discuss in the
next section (see Table 3) we have computed∆λmax for the
lower Balmer lines and these are shown in Table 3 for a colli-
sion speed of 14000 m s−1. Such a collision speed corresponds
approximately to 5000 K temperature. For the sun, hydrogen
line wings are formed in regions of the atmosphere which are
typically hotter than this, and thus∆λmaxis greater as̄v ∝ √

T
andσ ∝ T (1−α)/2 with 0 < α < 1, whereα is defined in the
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caption to Table 3. The impact approximation is only strictly
valid when the detuning is far less, say around five times less,
than the inverse collision duration. Using this as the criterion the
impact approximation is only secure at detunings of less than
about 7.0Å for Hα and about 2.6̊A for Hβ in these conditions.

Examining the extent of the solar profiles one sees that the
approximation is valid for most of the Hα profile but is not
valid in the outer wings of the Hβ and Hγ profiles. Outside
of the limits set in Table 3 one could use methods which are
reviewed by Allard & Kielkopf (1982). However, outside the
impact regime collisions at very short range become important
where the method we use to calculate the interatomic interaction
is no longer valid.

In our calculations it is assumed that the collisions do not
cause transitions between nearly degenerate states of the samen
but different̀ . Such transitions are only likely when the duration
of the collision is comparable with the Bohr period for transi-
tions between these nearly degenerate states whose splitting is
brought about by the quasistatic ion field. This condition is often
termed the Massey criterion. If the collision duration is either
much greater (the adiabatic approximation) or much smaller
(the sudden approximation) than the Bohr period the probabil-
ity of a transition occurring is very low. In the present context
the collision duration is given bȳb/v, wherēb can be estimated
from the cross-section data in Table 3 and at unit optical depth
in the sun a typical collision speed is about 14000 m s−1. The
appropriate Bohr periods for Hα, Hβ and Hγ can be estimated
from linear Stark shift parameters for hydrogen (for example
see Condon & Shortley 1935) and an estimate of the quasistatic
ion field at unit optical depth in the sun. A comparison of the
collision durations and Bohr periods show that the Bohr period
is about 400 times greater for Hα, 100 times greater for Hβ, and
50 times greater for Hγ, than the collision duration at unit op-
tical depth in the solar photosphere. These results indicate that
above unit optical depth in the sun, the sudden approximation
is valid and that for these lines̀-changing collisions can be ne-
glected. Due to the increasing Stark effect`-changing collisions
may become important for the higher Balmer lines. Due to the
lower quasistatic ion field in metal deficient stars`-changing
collisions will be even more unlikely.

5. Results

In the absence of ions and electrons, profiles, for a given temper-
ature and hydrogen atom perturber density, have been computed
for Hα, Hβ and Hγ using overlapping line theory. Not only are
such profiles valuable in examining the contributions made by
the component lines to each profile but these profiles represent
a limiting real situation in the spectra of cool stars as the metal-
licity is reduced to zero. In Fig. 2 the profiles obtained from
overlapping line theory are plotted along with profiles for the
three component lines which contribute to the overlapping line
profile. These three components, each weighted by the appro-
priate dipole matrix element, sum to give the profile.

It was pointed out by Lortet & Roueff (1969) that the p–d
component of the Balmer lines is by far the strongest. This is

Fig. 2.Hydrogen broadened profiles for Hα (top), Hβ (middle) and Hγ
(bottom) at 8000 K and1018 perturbers per cubic cm. Shown are the
complete profile from Eq. (1) (full), the p–d component (dashed), the
s–p component (dotted) and the p–s component (dot-dash). The full
vertical line is the line bisector of the full line profile. All profiles are
area normalised. Note the different scales, and that due to the different
central wavelengths of the lines the above widths should not be directly
compared with each other.

clearly seen in Fig. 2, where the total profile and p–d compo-
nent profile are very similar. In Fig. 2 we see that each com-
ponent (all Lorentzian and therefore symmetric) has a different
predicted pressure induced line shift. This leads to a very small



P.S. Barklem et al.: Self-broadening in Balmer line wing formation in stellar atmospheres 1097

predicted asymmetry in the total predicted line profile. However,
we should comment that we expect that the shift calculations
of our method are less reliable than those for widths, as shifts
are perhaps more dependent on strong collisions and hence the
short range interaction potential (Anstee & O’Mara 1991).

One also sees a marked difference in the relative width of
the p–s component of Hγ compared to the other two lines. This
component is relatively narrow, whereas in the other lines it is
the broadest component. We expect the broadening of this com-
ponent to be seriously overestimated in both Hβ and Hγ due to
neglect of exchange effects. Fortunately however, this compo-
nent has almost negligible effect on the overall line profile.

5.1. Temperature dependence

Previous theories of resonance broadening predict a line width
which is independent of temperature. This is a result of the in-
teraction decreasing with increasing separation likeR−3 which
leads to a cross-section which is inversely proportional to the
collision speed. For the 2p state (resonance interactions only)
we obtain essentially the same result but for more excited p
states we observe a temperature dependence which increases
with increasing excitation. This temperature dependence be-
comes quite significant for the 5p state. This difference is a
result of increasing departure in our calculations from anR−3

dependence of the interaction on the interatomic separation indi-
cating that the multipole expansion used in previous calculations
is only strictly valid for the 2p state.

When one introduces the dispersive-inductive interactions
the self-broadening is found to be no longer temperature inde-
pendent even for the low lying states. This result is of astrophys-
ical importance as we will discuss later.

5.2. Comparison with Ali & Griem

Fig. 3 compares line widths from our treatment of self-
broadening with those of Ali & Griem (1966, corrected), which
include only the resonance broadening of the lower 2p state, for
Hα and Hβ as a function of temperature. We find that our results
are in quite good agreement with the Ali & Griem (1966) the-
ory when we only consider the resonance interactions as they
did. However, we find that the effect of the dispersive–inductive
interaction of other states involved in the transition is quite sub-
stantial, particularly that resulting from the d state of the upper
level in Balmer lines. The dispersive contribution relative to the
resonance contribution for Hβ is greater than for Hα and this
is reflected in the stronger temperature dependence of the line
width.

Fig. 4 shows the ratio, as a function of temperature, of the
line widths resulting from our treatment of resonance broad-
ening of the 2p, 3p, 4p, and 5p states with those of Ali &
Griem (1966). The difference can be attributed to a failure of
the multipole expansion of the electrostatic interaction between
the two atoms which is used by Ali & Griem (1966). Lortet
& Roueff (1969, Fig. 3) show calculations that suggest that the
multipole expansion should breakdown for all p states but the 2p

Fig. 3.Comparison of the line width (HWHM) per perturber with tem-
perature computed in this work for the dominating 2p–3d component
of Hα (lower full) and 2p–4d component of Hβ (upper full) with that
of the resonance broadening theory of Ali & Griem (dashed) for the 2p
state, and our calculation of the resonance broadening (dot-dash) for
this state.

Fig. 4.Comparison showing the ratio of our results for resonance broad-
ening and the Ali & Griem (1966) theory. The full, dashed, dot-dash
and dot-dot-dot-dash lines correspond to the 2p, 3p, 4p and 5p levels
respectively.

state. Our calculations suggest that the break down is seen for
these states but is not severe until the 5p state for the collision
speeds of interest here.

5.3. Approximation by p–d component in Balmer lines

Using overlapping line theory, grids of profiles which result
from self-broadening alone have been computed for a range of
temperatures and hydrogen atom number densities from which
one can interpolate the appropriate profile for a given set of
physical conditions. However, we have already seen that these
complete profiles obtained from overlapping line theory are
very closely approximated by the p–d component of the rel-
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evant Balmer line. When applied to synthetic Balmer lines in
the solar spectrum for Hγ the maximum difference is less than
0.2 percent of the continuum flux, less for Hβ, and even less for
Hα. Errors resulting from employing the p–d approximation
in the interpretation of real stellar spectra will lie in the noise
associated with the observational data.

A possible objection to the p–d approximation is that it has
been developed in the limit of a zero quasi-static ion field. The
quasi-static ion field destroys spherical symmetry leading to`
no longer being a good quantum number so that it is no longer
strictly possible to talk about a p–d transition. This will cer-
tainly be the case in hot stars where the ions are protons pro-
duced by the almost complete ionisation of hydrogen leading to
a strong quasi-static ion field. However, our interest is in cool
stars where the ions are produced by thermal ionisation of met-
als. The quasistatic ion field is proportional toN

2/3
i whereNi

is the ion number density which in cool stars is smaller than that
in hot stars, where the ions are largely protons, by four orders of
magnitude for a star with solar composition and by perhaps six
orders of magnitude for cool stars of low metallicity. Therefore
in this work we are working in the limit of very weak quasistatic
ion fields. Under these circumstances the p and d states are only
very weakly mixed by the weak quasistatic ion field with states
of other` with the samen. Thus in the limit of very weak qua-
sistatic ion fields̀ is an almost good quantum number and the
p–d approximation is acceptable.

The p–d approximation neglects the line shift and asym-
metry predicted using overlapping line theory. However, when
overlapping line theory and the p–d approximation are used in
the synthesis of Balmer lines in the solar spectrum the shifts
and asymmetries predicted by overlapping line theory are not
detectable due to the effects of Stark broadening and the profiles
are in good agreement with those predicted using the p–d ap-
proximation. Due to the reduced ion/electron density, synthetic
spectra for very cool stars (T< 4500 K) show some evidence
of shift and asymmetry when overlapping line theory is used.
However, the synthesis of the spectrum of very cool stars is
complicated by impact broadening due to molecular hydrogen
which is not included in our calculations.

Although the p–d approximation does not significantly re-
duce computing time it does permit self-broadening data to be
presented in a way which is much more efficient than the publi-
cation of grids of line profiles. The data relevant to the applica-
tion of the p–d approximation to the first three Balmer lines are
presented in Table 3. Data in the form of grids can be obtained
from the authors. In spite of the advantages of the p–d approxi-
mation grids have been used in all calculations in this paper and
in Paper I.

6. Comparison of broadening mechanisms

We now compare the relative strengths of broadening mecha-
nisms in the wings of lower Balmer lines through a model so-
lar atmosphere. As the profiles are not necessarily of the same
shape, the best way to do this is to compare the depth of the
normalised profile at some suitable detuning from line centre.

We plot the profile depth of each broadening mechanism
profile at 5Å detuning through the Holweger & M̈uller (1974)
model solar atmosphere in Fig. 5. When one considers that the
wings of the lines are formed in the region aroundlog τ

5000Å =
0, we clearly see that the new theory makes a significant differ-
ence when compared with Ali & Griem’s theory. In this region,
rather than being weaker than the Stark broadening contribution,
the contribution of self-broadening is now often comparable.

In cool metal poor stars, the electrons and ions are out-
numbered by hydrogen atoms by an even greater number than in
stars around solar metallicity. Thus self-broadening in hydrogen
lines becomes even more important. Fig. 5 also shows similar
plots to those shown for the solar model, for a MARCS model
(Asplund et al. 1997) with solar temperature (T = 5770 K)
and surface gravity (log g = 4.44) but [Fe/H]= −2.0. Here we
see clearly that the new theory has a significant effect on the
contribution to broadening in the line forming region. At great
depth the Stark broadening always dominates due to the higher
ion/electron density while self-broadening (using our theory)
dominates above an optical depth of 0.1 for solar composition
and above an optical depth of 1 in the metal deficient case.

7. Synthetic stellar spectra

The computation of synthetic stellar spectra requires the convo-
lution of all broadenings. We convolve our self-broadened pro-
files with appropriate Stark profiles from Stehlé (1994) which
are provided preconvolved with the Doppler profiles. The pro-
files are then further convolved with profiles for radiative and
helium collision broadening. In these calculations we approx-
imate the convolution in the far wings by adding the profiles
(Stark, self-broadening, radiative and helium broadening) to-
gether, following the Kurucz (1993) codes.

This procedure can be justified, for cool stars, in terms of the
p–d approximation which we know to be valid in the weak quasi-
static ion field limit which we know to exist in such stars. In the
p–d approximation in the absence of ions the line is well repre-
sented by the p–d component alone which will have a Lorentz
profile due to impact broadening by electrons and hydrogen
atoms. In the presence of a given weak quasi-static ion field this
profile will be Stark shifted by an amount dictated by the first
order Stark shift of the p–d component. The final profile can
then be found by integrating this profile over the Holtsmark dis-
tribution of quasi-static ion fields which in the weak field limit
will be well approximated by a Lorentzian with a width which is
the sum of the electron impact width and self-broadening width
somewhat enhanced by the smearing effect of the quasi-static
ion field. Using this as a guide an alternative procedure is to
calculate the profile in the absence of self-broadening using,
for example, the profiles of Stehlé (1994). In the weak quasi-
static ion field limit these profiles should be well approximated
by a Lorentzian (for example Stehlé 1996) with the full impact
width containing all line components (but dominated by the p–d
component) somewhat enhanced by the smearing effect of the
weak quasi-static ion field. As the profile is Lorentzian in the
wings the absorption will be proportional to this enhanced im-
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Fig. 5.The broadening mechanisms through the model solar atmosphere of Holweger & Müller (1974) (left) and a MARCS (Asplund et al. 1997)
model atmosphere of a metal poor [Fe/H]= −2.0 star of solar temperature and gravity (right) for Hα (top), Hβ (middle) and Hγ (bottom). The
lines plot the depth of the line profile for our self–broadening theory (full), the Ali & Griem (1966) resonance broadening theory (dot-dash) and
for the Stehĺe (1994) Stark broadening theory (dash), at 5Å detuning from the line centre. Note that the Stark profiles are folded with Doppler
profiles, however, Doppler profiles make negligible contribution at this detuning for these temperatures.

pact width. The profile of the line in the absence of ions and
electrons produced by self-broadening will also be Lorentzian
with a depth in the wings proportional to the self-broadening
impact width which again contains the effect of all components
but dominated by the p–d component. Thus all three sources
of broadening can be represented by a Lorentzian with a width
which is simply the sum of the widths of the two profiles or
equivalently in the line wings by simply adding the profiles.
The effect of radiative broadening and broadening by helium
collisions can be included in the same way.

Test calculations show this procedure for the convolution
to be an excellent approximation for the cases considered here.
For example in the solar synthetic profile, no difference can be
seen between the profile computed in this way and that com-
puted with a complete numerical convolution. The approxima-
tion gradually becomes worse in cool stars, and starts to break
down in models of effective temperatures around 4000 K, as the

lines are no longer strong enough for this approximation to be
valid.

We use the spectral synthesis code of Piskunov (1992) for
the radiative transfer, which assumes LTE. Radiative broaden-
ing and collisional broadening by helium are included in all
calculations, though are found to be negligible in most condi-
tions.

7.1. The impact of the self-broadening calculations
on line profiles

The most interesting question, is how much difference the the-
ory makes to predicted stellar line profiles when compared to
the Ali & Griem (1966) theory, and thus the commonly used
Kurucz (1993)/Peterson (1969) codes.

Fig. 6 shows computed line profiles for MARCS mod-
els (Asplund et al. 1997) for a range of effective temperatures at
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Table 4. Percentage increases in equivalent width using our self-
broadening theory compared with Ali & Griem (1966) for the synthetic
lower Balmer line profiles computed for MARCS models of various
effective temperature, with solar gravity and metallicity.

Teff Hα Hβ Hγ
(K)

5000 12.7 15.6 17.6
6000 10.3 7.7 7.6
7000 4.6 2.5 2.3

solar gravity and metallicity, using both our theory and the Ali
& Griem (1966) resonance broadening theory. Table 4 shows
the increase in the equivalent width brought about by our self-
broadening theory. Although Fig. 3 indicates the effect of the
new theory on the self-broadening is larger in Hβ than Hα this
is not seen in the synthetic stellar spectra in Fig. 6 due to the
fact that the Stark broadening profile widths are increased by an
even greater amount, as shown in Fig. 5.

The decline in the difference between the two theories with
increasing temperature is due to the increase in the Stark broad-
ening resulting from ionisation of hydrogen as temperature in-
creases. For stars earlier than F type the self-broadening will be-
come irrelevant as it will be completely overwhelmed by Stark
broadening.

7.2. Predicted impact on effective temperature determinations

In Paper I we made preliminary estimates of the effect that
the new calculations would have on the determination of effec-
tive temperatures. Here we present an extended analysis includ-
ing Hγ calculations and covering higher effective temperatures.
Also included are new estimates for [Fe/H]= −1.0. The low
metallicity calculations have also been redone on a finer model
grid.

We computed a grid of MARCS models (As-
plund et al. 1997) over a range of temperatures, with
solar gravity, for metallicities of [Fe/H]= 0.0,−1.0 and−2.0.
We used the grid to estimate the difference inTeff determined
from our theory and the Ali & Griem (1966) theory. For each
model we computed synthetic profiles as described above
using both our theory and the Ali & Griem (1966) theory.
For each profile resulting from our theory we then found
the best matching profile (in the line wings) using the Ali &
Griem (1966) theory, and recorded the temperature difference
between the models used to generate the two profiles. The
results, plotted in Fig. 7, indicate that the new line broadening
calculations lead to a significant lowering of the derived
effective temperature.

We see that the new results for Hγ are extremely similar
to those for Hβ. This is explained by Fig. 5 where we see the
relative contribution of Stark and self-broadening through the
atmospheres are relatively similar in these two lines.

As pointed out in Paper I, the peak temperature “error” and
the difference in location of the peak for Hα from the other
two lines is of interest. Synthetic profiles obtained using our

Fig. 6. Synthetic flux profiles for Hα (top), Hβ (middle) and Hγ (bot-
tom) for MARCS models ofTeff = 5000, 6000 and 7000 K (top to bot-
tom) for solar gravity and metallicity. The full lines use our line broad-
ening theory and dashed lines use Ali & Griem’s resonance broadening
theory for the hydrogen broadening.

theory are always stronger than those obtained using Ali &
Griem (1966) theory. In Ali & Griem (1966) theory the H-
atom broadening is resonance broadening only and is therefore
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Fig. 7. The predicted difference in effective temperature determina-
tions from our new calculations, and calculations using the resonance
broadening theory of Ali & Griem (1966) for Hα, Hβ and Hγ. Plots
are shown for solar metallicity (top), 1/10 solar metallicity (middle)
and 1/100 solar metallicity (bottom), in both cases for solar surface
gravity. The “reference temperature” is that which would be found us-
ing our broadening theory. The plot then predicts how much higher the
effective temperature derived using the Ali & Griem (1966) theory is
expected to be.

temperature independent while in our theory the dispersive-
inductive contribution leads to an increase with temperature.
At low Teff , H-atom broadening makes its greatest contribution
and asTeff is raised the temperature “error” increases because of
the growth in the H-atom broadening in our theory. Eventually
Stark broadening begins to dominate accounting for the peak
followed by a decline as Stark broadening becomes more and
more dominant asTeff increases. As Stark broadening in Hβ and
Hγ is greater than in Hα the peak occurs at a lowerTeff . The
higher peak temperature “error” for metal poor stars reflects the
higher temperature required to increase the ion/electron den-
sity sufficiently. This can be tested observationally. In agree-
ment with this result Gardiner et al. (1999, Fig. 9), with mixing
length parameterα = 1.25 and using the Ali & Griem (1966)
theory, found thatTeff obtained from Hα is larger than for Hβ
at Teff around 6000–7000K while the situation is reversed for
stars with a lowerTeff although admittedly there is only a small
sample of stars in this domain. It is perhaps significant to note
that Castelli et al. (1997) find, using Ali & Griem (1966) the-
ory and the solar KOVER model, thatTeff has to be raised by
100–150K (consistent with the peak of 110K for Hα in Fig. 7)
in order to fit the observed solar profiles.

8. Comparison with solar observations

The comparison with observed solar spectra requires the use of a
photospheric model. In this work we use one-dimensional plane-
parallel models which are freely available. Namely these are
the semi-empirical solar model of Holweger & Müller (1974)
hereafter HOLMUL, a MARCS theoretical solar model (As-
plund et al. 1997), and two Kurucz theoretical solar models (Ku-
rucz 1993; Castelli et al. 1997). The two types of Kurucz models
used, that with and that without convective overshooting, are
hereafter KOVER and KNOVER models respectively. For both
MARCS and Kurucz models we use the default mixing length
parametersα, namely1.25 for Kurucz and1.5 for MARCS. We
retain the default structure parametersy, namely1/2 for Kurucz
and3/(4π2) for MARCS.

It is expected that MARCS and KNOVER models are quite
similar as they are both based on essentially the same physics
and “standard” mixing length convection theory although with
different parameters. For the solar models used here, the com-
puted Balmer line profiles of MARCS and KNOVER were in
excellent agreement. Hence below we will only discuss the
KNOVER model. However we caution that this agreement may
not extend to other stellar parameters. In the KOVER models
Kurucz has introduced “approximate overshooting” to the con-
vection treatment. The approximate overshooting assumes “the
centre of a bubble stops at the top of the convection zone so that
there is convective flux one bubble radius above the convection
zone. That flux is found by computing the convective flux in
the normal way and then smoothing it over a bubble diameter”
(Kurucz 1992).

The purpose of this comparison is to test the broadening
theory, not the models or convection treatments. The validity
of the theory is tested by comparison of Balmer line results
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Fig. 8.Comparisons of synthetic flux profiles with observations (NSO/Kitt Peak FTS data) for the sun for Hα (top), Hβ (middle) and Hγ (bottom).
All models lines use the HOLMUL model. The full line uses our self-broadening theory while the dashed line uses the Ali & Griem (1966)
theory.

with those of other model predictions such as limb-darkening
curves. This situation is clearly not ideal due to uncertainties in
the models and the particular sensitivity of Balmer lines to deep
layers and convection treatment. However, lack of laboratory
data makes this our best option at present. 3D convective models
will be investigated in future.

8.1. Profile comparisons

Limb-darkening curves are a powerful test of solar mod-
els. On this basis alone HOLMUL is the preferred model
as it reproduces limb-darkening curves better than either
KOVER, KNOVER or MARCS (Blackwell et al. 1995;
Castelli et al. 1997). However Castelli et al. (1997) found that

in spite of KNOVER being unable to reproduce limb-darkening
curves as well as KOVER it produces a better fit to hydrogen
line profiles when Ali & Griem (1966) theory is used.

As HOLMUL is the preferred model on the basis of limb-
darkening data and its ability to reproduce the behaviour of a
large sample of strong metallic lines, computed synthetic pro-
files for HOLMUL using both our self-broadening theory and
Ali & Griem (1966) theory are compared with the observed solar
flux spectrum of Kurucz et al. (1984, NSO/Kitt peak FTS data)
in Fig. 8. We do not adjust the Hβ continuum here as in Paper I.
It is seen that for all three lines our broadening theory reduces
the discrepancy with observation but the remaining discrepancy
is still significant. As line blending is significant, particularly in
Hβ and Hγ profiles, computations were performed which in-
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Fig. 9. Comparison of synthetic flux profiles with observations (double line – NSO/Kitt Peak FTS data) for the sun for Hβ both with (full line)
and without (dashed line) blending lines from VALD, both employing the HOLMUL model and our self-broadening theory. Macroturbulence
of 1.6 km s−1 and rotational velocity ofv sin i = 1.8 km s−1 are used.

cluded all available lines from VALD, the Vienna Atomic Line
Database (Kupka et al. 1999) for all three Balmer lines. The
predicted residual fluxes with and without blending were found
to be in good agreement in the windows between the blend-
ing lines, as shown for Hβ in Fig. 9. However the inclusion of
blending lines does not change the conclusion that the synthetic
profiles are too weak to match the observations. As there are
many blending lines without data or unidentified, particularly
for Hβ and Hγ, there is some element of uncertainty in this
conclusion.

In Fig. 10 predicted Balmer line profiles using our theory for
HOLMUL, KOVER and KNOVER solar models are compared
with the observed spectrum. KNOVER predicts profiles for all
lines that are generally too strong. If blending lines are included
the discrepancy is even greater so KNOVER is now a model
which fits neither the limb-darkening nor the Balmer line pro-
files and is therefore strongly ruled out by our line-broadening
theory. For Hβ and Hγ the synthetic profiles obtained using
the KOVER and HOLMUL models are in good agreement with
each other but are insufficiently strong to match the observed
profiles. In the outer parts of these profiles the discrepancy may
be due the failure of the impact approximation (see Table 3) an
inadequate temperature structure or both. In the far wings of
Hα the synthetic profiles obtained using the KOVER and HOL-
MUL models are again too weak. Within 5̊A of line centre
the profile predicted by the KOVER model is too strong which
weakly favours the HOLMUL model. The observed core of the
line, within 0.7Å of line centre, the observed profile is much
stronger than any of the synthetic profiles. This part of the line
is formed in the low chromosphere which is not included in our
synthetic modelling.

In summary our self-broadening theory is superior to the Ali
& Griem (1966) theory because it reduces the discrepancy be-
tween the observed and computed Balmer line profiles when the
preferred HOLMUL model is used and leads to the KNOVER
model being discarded thus resolving the dilemma posed by a
model which provides the best match to the Balmer line pro-
files but fails to match limb-darkening curves when the Ali &
Griem (1966) theory is used. In spite of these successes sig-
nificant discrepancies remain between theory and observation.

However the behaviour of the KNOVER model suggests that it
may be possible to construct a model with a temperature struc-
ture somewhere between the HOLMUL and KNOVER models
which provides the best simultaneous match to the limb darken-
ing curves and the Hα profile where the validity of the impact
approximation is not an issue. The impact approximation is an
important issue for Hβ and Hγ. Fitting of the profiles of these
lines should be confined to the detunings indicated in Table 3
and even then with some caution as these detunings correspond
to the extreme limit of validity of the impact approximation.

9. Concluding remarks

We have presented a theory of self-broadening of hydrogen
lines, which includes both resonance and dispersive–inductive
interactions. The theory was used to synthesise Balmer lines in
cool stars and shown to make a considerable difference com-
pared to the commonly used Ali & Griem (1966) theory which
does not include the dispersive-inductive interactions.

The new theory perhaps explains behaviour observed by
Gardiner et al. (1999) and Castelli et al. (1997) when using
Balmer lines and Ali & Griem (1966) theory to obtain effec-
tive temperatures for stars including the sun. It is superior to
Ali & Griem (1966) theory when applied to Balmer lines in the
solar spectrum as it reduces the discrepancy between observed
and computed profiles when the HOLMUL model is used and
leads to the KNOVER model being classed as unacceptable both
for its failure to adequately model the observed limb darkening
and Balmer line profiles. However significant discrepancies be-
tween theory and observation for the Balmer lines still exist for
the KOVER and HOLMUL models which could be due to our
theory or the photospheric models.

Work is in progress on the determination of the effective
temperatures of a sample of dwarf stars using our theory and
observed Balmer lines for the stars in the sample. Preliminary
results indicate a stronger correlation between the effective tem-
peratures obtained from the Balmer lines and the effective tem-
perature obtained by other methods such as the infrared flux
method when our theory is used compared with that found when
Ali & Griem (1966) theory is used.
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Fig. 10. Comparisons of synthetic flux profiles with observations (NSO/Kitt Peak FTS data) for the sun for Hβ (top), Hγ (middle) and Hγ
(bottom). Full and dashed lines use the KOVER and KNOVER models respectively, and the dot–dashed lines use the HOLMUL model.

We plan to extend the theory to Paschen lines. We expect that
in these lines dispersive-inductive interactions will dominate
resonance interactions but not Stark broadening. Many of the
approximations made in developing the theory are only valid in
cool stars with weak quasistatic ion fields. For stars of earlier
spectral type it may be necessary to develop a Unified Theory to
correctly include self-broadening. The true limit of validity of
the impact approximation in Hα and Hβ needs to be established.
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Stehĺe C., Jacquemot S., 1993, A&A 271, 348
Stephens T.L., Dalgarno A., 1974, Mol. Phys. 28, 1049
Uns̈old A., 1927, Z. Phys. 43, 563
Uns̈old A., 1955, Physik der Stern Atmosphären. Zweite Auflage,
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