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ABSTRACT

The effect of ontogenetic increases in total length on burst
swimming performance was investigated in tadpoles of the
striped marsh frog (Limnodynastes peronii) over the total-length
range of 1.5–4 cm and Gosner developmental stages 25–38.
The burst swimming performance of tadpoles at 107 and 247C
was determined by videotaping startle responses with a high-
speed video camera at 200 Hz and analysing the sequences
frame by frame. Maximum swimming velocity ( ) and ac-Umax

celeration ( ) increased with total length (L) at a rate thatA max

was proportionally greater than the increase in total length (i.e.,
positive allometry; exponents 11) and was described by the
allometric equations and at1.34 1.11U = 0.061L A = 1.15Lmax max

107C and and at 247C. Stride1.34 1.11U = 0.114L A = 1.54Lmax max

length increased with a total-length exponent of approximately
1 but was unaffected by temperature. Tail-beat frequency was
not affected by total length and increased from Hz7.8 5 0.2
at 107C to Hz at 247C. Developmental stage did not21.7 5 0.7
significantly influence the relationship between total length and

or . Furthermore, temperature and the associatedU Amax max

changes in water viscosity did not affect the relationship be-
tween total length and burst swimming performance. At their

, Reynolds numbers ranged from approximately 1,500 inUmax

the smaller tadpoles up to 50,000 for the larger animals at 247C.
We suggest the positive allometry of in larval L. peroniiUmax

was due in part to the increases in tail width (TW) with total
length ( L1.66), possibly reflecting the increasing im-TW = 21.36

*To whom correspondence should be addressed; e-mail: rwilson@

zoology.uq.edu.au.

Physiological and Biochemical Zoology 73(2):142–152. 2000. q 2000 by The
University of Chicago. All rights reserved. 1522-2152/2000/7302-98140$03.00

portance of burst swimming performance to survival during
larval development.

Introduction

Fish and larval anurans use fast-start swimming behaviours to
escape predators (Watkins 1996; Domenici and Blake 1997).
Improved fast-start performance has been correlated with im-
proved prey capture success in fish (Beddow et al. 1995) and
an increased ability to evade predators in both fish and larval
anurans (Swain 1992; Watkins 1996). Not surprisingly, fast-
start performance (or burst swimming) is often used in phys-
iological studies as an ecologically relevant measure of per-
formance and a practical method of collecting information on
fitness (Huey and Stevenson 1979). Body size has a significant
influence on swimming performance (Bainbridge 1958; Wardle
1975; Webb 1977) and escape success from predators (Bailey
and Batty 1984; Swain 1992). Knowledge of the relationship
between body size and swimming performance can reveal in-
formation about changes in vulnerability to predation during
growth and development.

In adult fish, length-specific swimming velocity decreases
with increasing body size (Archer and Johnston 1989; Gibson
and Johnston 1995; Drucker and Jensen 1996). This negative
allometry (with respect to total length) appears to be in part
a function of the intrinsic contractile properties of muscle fibres
(James and Johnston 1998; James et al. 1998). In contrast to
adults, the length-specific swimming velocity of larval fishes
appears to increase with increasing body size (Hunter 1972;
Gibson and Johnston 1995; Hale 1996). This positive allometry
is probably a consequence of developmental changes that cor-
relate with increases in body length. Moreover, because of their
small size, fish larvae experience low Reynolds numbers (Re)
at routine swimming speeds. As a consequence, fish larvae often
operate in the viscous hydrodynamic regime and their swim-
ming performance is significantly influenced by the viscosity
of water (Fuiman and Batty 1997). Because swimming speeds
of different-sized larvae will be differentially influenced by water
viscosity, the viscous hydrodynamic regime may also be an
important factor determining the scaling relationships of swim-
ming performance in larval fishes. Moreover, increases in vis-
cosity that are associated with decreases in temperature may
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also exacerbate these effects of the viscous hydrodynamic re-
gime on swimming of different-sized larvae (Fuiman and Batty
1997), thus possibly affecting the scaling relationships of swim-
ming performance.

Burst swimming in some anuran larvae is used not only to
escape predators (Watkins 1996) but also to rapidly traverse
from the bottom of the pond to the surface (to ventilate the
lungs) and back again, a behaviour known as “bobbing” (Was-
sersug and Seibert 1975; Wassersug 1992; Wong and Booth
1994). Anuran larvae usually swim in the Re range of
1,000–3,000 (Wassersug and Hoff 1985; Dudley et al. 1991) and
are governed by inertial rather than the viscous hydrodynamic
regime. Unlike the many studies detailing the effect of body
size on locomotor performance in fish, there have been rela-
tively few studies on larval anurans. In an unpublished study,
Hoff (1987) reported that length-specific swimming velocities
of anuran larvae generally decreased with increasing body
length; however, scaling relationships differed between species,
with the length-specific swimming velocity of at least one spe-
cies of anuran larvae (Xenopus laevis) showing no influence of
total length. Most locomotor studies of anuran tadpoles have
concentrated more on the influence of ontogenetic changes in
body shape and the consequences of their globose body shape
rather than body-size effects on swimming performance (Was-
sersug and Sperry 1977; Huey 1980; Wassersug and Hoff 1985;
Wassersug 1989; Brown and Taylor 1995; Liu et al. 1996, 1997).

In this study, we examined the relationship between total
body length and burst swimming performance in tadpoles of
the striped marsh frog (Limnodynastes peronii) between Gosner
(1960) developmental stages 25 and 38. Like larval fishes, in-
creases in body size of anuran tadpoles are usually correlated
with developmental change. However, during the intermediate
stages of tadpole development (Gosner [1960] stages 25–40),
only minor changes occur in body shape or drag coefficients,
with most developmental changes associated with the differ-
entiation of the hindlimbs. Gosner (1960) stage 25 occurs when
the operculum has completed development and a spiracle
forms, whereas Gosner (1960) stage 40 is based on a later stage
of hindlimb differentiation and occurs before the eruption of
the forelimbs. We predict that the effect of total length on
swimming performance of L. peronii tadpoles in these inter-
mediate stages of development should be dependent on body
size alone and not on developmental stage. We also examined
the influence of temperature (and thus correlated changes in
water viscosity) on the scaling of swimming performance in L.
peronii tadpoles. We predict that there should be no difference
in the slope of the scaling relationship of swimming perform-
ance between tadpoles tested at 107 and 247C because the rel-
ative importance of water viscosity to tadpole swimming per-
formance should be minimal as they operate in the inertial
hydrodynamic regime.

Material and Methods

Tadpoles of the striped marsh frog (Limnodynastes peronii,
stages 24–38, Gosner [1960]) were collected from several ponds
in Brisbane, Queensland, during March 1996. Tadpoles were
transported to the University of Queensland and maintained
in aquaria at a density of five animals per litre and at a constant
temperature of 247C for 6 wk. Tadpoles were maintained in
high densities to ensure that rapid development did not occur
at 247C and that some tadpoles remained at earlier develop-
mental stages and at small body sizes. It is well documented
that amphibian larvae kept at high densities with conspecifics
have slower growth and developmental rates (Newman 1987;
Tejedo and Reques 1994; Venz 1996). Tadpoles were fed boiled
lettuce.

Measurement of Burst Swimming Performance

After the 6-wk period in the laboratory, 40 tadpoles over the
total-length range of 1.5–4.5 cm and between Gosner (1960)
developmental stages 25 and 38 were selected for measurement
of their burst swimming performance. Performance was de-
termined for 10 burst swimming sequences for each individual.
The fastest sequence was taken as a measure of maximum
performance. Sequences were analysed frame by frame to de-
termine the maximum velocity ( ), acceleration ( ), andU Amax max

the time taken to reach maximum velocity (T- ). C-startUmax

duration ( ) was calculated as the time from when movementCdur

was initially detected until the end of the first quarter-tail-beat
(straightened position). Tail-beat frequency ( ) was calculatedTBF

from the time taken to complete the first full tail-beat after the
C-start manoeuvre. The distance moved during this first full
tail-beat was recorded to calculate stride length ( ) and theSL

average velocity over this stride ( ). The burst swimmingUas

performance of all larvae was first examined at 247C and then,
after a recovery period of 24 h, at 107C. The aquaria were cooled
from 247 to 107C at a rate of 47C h21.

Burst swimming sequences were videotaped in a glass arena
-cm-deep, water jacketed by a bath that was tem-30 # 30 # 5

perature controlled (50.57C). A sharp silhouette of the larvae
was obtained by providing overhead illumination with an 800-
W light and a background of Scotchlite reflective tape on the
bottom of the filming arena. Tadpoles were videotaped by re-
cording the image from a mirror suspended at an angle of 457

above the filming arena using an NAC-B/W high-speed video
camera recording at 200 Hz (NAC, Tokyo, Japan). Burst swim-
ming sequences were induced by a mild electric stimulus. A
Panasonic AG-6300 video recorder was used to replay the re-
corded burst swimming sequences into the MOTION ANAL-
YSIS VP-110 computer system, which analysed the sequences
frame by frame with the Expertvision Software package (Mo-
tion Analysis, California). Only the initial 400 ms of the burst
swimming responses were analysed and the raw distance data
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between each frame were smoothed by using a Butterworth
smoothing function set at 30 Hz for the 107C trials and 80 Hz
for the 247C trials (see Walker 1998). The smoothed raw data
were then differentiated to get velocity and then differentiated
again to get acceleration data. and were calculatedU Amax max

by using a moving average of the data over three successive
frames (i.e., over 10 ms).

Re that each individual tadpole experienced at their andUmax

were calculated at both test temperatures of 107 and 247C.Uas

Re were calculated from the equation /n, where l is theRe = lU
characteristic length of the object usually (the body length of
the animal), U is the swimming speed of the animals, and n
is the kinematic viscosity of the fluid. Kinematic viscosity of
water at 107 and 247C was taken from standard tables published
in Touloukian et al. (1975).

After videotaping the burst swimming sequences, morpho-
logical measurements were taken from each individual. Total
length (tip of snout to end of tail), head-body length (tip of
snout to vent length), and tail length ( ) were measured withTL

Mitutoyo calipers (50.1 mm), and thickness of the muscle at
the base of the tail ( ) was measured with an ocular microm-TW

eter (Stemi 1000, Zeiss). The mass of each larvae was measured
with an A200S Sartorius analytic balance (50.01 g), and stages
were recorded by using the Gosner (1960) staging table.

To determine whether swimming performance was influ-
enced by developmental stage during the early to midstages of
tadpole development, length-standardised swimming perfor-
mance of the tadpoles was compared between three develop-
mental stages: 25–27, 28–30, and 31–38. The swimming per-
formance of each individual tadpole was standardised to a body
length of 2.5 cm by using the following equation:

expstandardised value = actual value# (2.5/L) ,

where L is total length (cm) and exp is the total-length exponent
calculated in the present study (1.34 for and 1.11 forUmax

).A max

Statistical Analysis

Allometric scaling relationships were expressed in the form
, where a is the intercept at unity, L is the total lengthbY = aL

of the tadpoles, and b is the slope of the regression line. The
equations were calculated by using log-transformed data by
using least square regression techniques. The scaling relation-
ships between different temperatures were compared by using
MANCOVAs (Sokal and Rohlf 1981). If the slopes of the re-
gression lines for each kinematic parameter were not signifi-
cantly different between 107 and 247C, then a common slope
was quoted for the allometric equations at both temperatures.
Multiple linear regressions were used to quantify the relation-
ship between and and the combined effects of totalU Amax max

length and temperature. Equations took the form

log U = a 1 log L 1 c # temperature.max

The T- , , and at the different experimental tem-U C Tmax dur BF

peratures were compared by using Student’s t-tests or Mann-
Whitney U-tests. Size-standardised and (calculatedU Amax max

from derived equations) were compared between developmen-
tal groups by using one-way ANOVAs. All results are presented
as errors. Statistical significance was taken at the level

—
X 5 SE

of .P ! 0.05

Results

Burst swimming responses of larval Limnodynastes peronii were
characterised by a C-start and several tail-beats resulting in a
rapid acceleration to a maximum velocity. The C-start ma-
noeuvre involved extreme caudal flexibility and allowed the
tadpoles to effectively rotate their heads through 1807 with very
little translation.

Burst Swimming Performance

The effect of total length on several parameters of burst swim-
ming performance were determined for larval L. peronii at 107

and 247C (Table 1). was positively correlated with totalUmax

length and was described by the allometric equations U =max

L1.34 ( , , ) at 107C and20.061 n = 40 r = 0.77 P ! 0.001 U =max

L1.34 ( , , ) at 247C (Fig. 1A). Be-20.114 n = 40 r = 0.82 P ! 0.001
cause the total-length exponents for the allometric equations
were 11, the of the tadpoles increased at a rate that wasUmax

proportionally greater than the increase in total length. Length-
specific was also positively correlated with total length atUmax

107C ( , , ) and 247C ( , ,2 2n = 40 r = 0.17 P ! 0.05 n = 40 r = 0.28
). Temperature did not significantly affect the relation-P ! 0.01

ship between total length and (MANCOVA, );U P 1 0.05max

however, there was a significant stepwise change in withUmax

test temperature ( ; Fig. 1A). The Q10 for over theP ! 0.01 Umax

test temperature range of 107–247C, as calculated for each in-
dividual tadpole, was . An equation incorporating1.65 5 0.03
the effect of experimental temperature and total length on

was calculated by using a multiple linear regression:Umax

( , ,2log (U ) = 239.4 1 101.7 log (L) 1 1.75T n = 40 r = 0.82max

).P ! 0.001
As with , the of the L. peronii tadpoles was highlyU Amax max

correlated with total length (Table 1) and was described by the
allometric equation L1.11 ( , ,2A = 1.15 n = 40 r = 0.43 P !max

) at 107C and L1.11 ( , ,20.001 A = 1.54 n = 39 r = 0.65 P !max

) at 247C (Fig. 1B). Temperature did not change the re-0.001
lationship between and total length (MANCOVA,A P 1max

), although increased significantly with an increase in0.05 A max

test temperature ( ; Fig. 1B), with an average Q10 ofP ! 0.05
over the temperature range of 107–247C. The effect2.64 5 0.11

of test temperature and total length on is described byA max
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Table 1: Relationship between total length and various kinematic parameters of burst swimming performance in tadpoles of
the striped marsh frog (Limnodynastes peronii) at 107 and 247C

Water Temperature 107C Water Temperature 247C

Units log a b r 2 P log a b r 2 P

Maximum velocity ( ) .. . . . . . . . . . . . . . . . . . .Umax m s21 .785.05 1.335.12 .77 !.001 1.065.05 1.405.11 .82 !.001
Maximum length-specific velocity .. . . . . . . . L s21 .785.05 .335.12 .17 !.05 1.065.05 .405.11 .28 !.01
Maximum acceleration ( ) .. . . . . . . . . . . . . .Amax m s22 2.775.09 1.085.21 .43 !.001 2.245.06 1.215.15 .65 !.001
Time to maximum velocity (T- ) .. . . . .Umax ms 2.095.07 .225.5 .02 ns 2.1 5.12 2.355.27 .02 ns
Stride length ( ) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .SL cm .675.03 1.355.08 .90 !.001 .735.04 1.055.1 .76 !.001
Tail-beat frequency ( ) .. . . . . . . . . . . . . . . . . . . .TBF Hz .935.05 2.125.10 .04 ns 1.425.05 2.2 5.12 .07 ns
Average stride velocity ( ) .. . . . . . . . . . . . . . . .Uas m s21 21.445.06 1.315.74 .75 !.001 2.915.07 .955.16 .50 !.001
C-start duration ( ) .. . . . . . . . . . . . . . . . . . . . . . .Cdur ms 2.1 5.04 2.025.1 .001 ns 1.535.06 .305.13 .13 !.05

Note. Equations are in the form , where a is the intercept at , L is the total length of the tadpoles, and b is the slope of the regressionbY = aL unity 5 SEM

. Significance was taken at the level of .line 5 SEM P ! 0.05

( , , P !2log (A ) = 21.21 1 1.14 log (L) 1 0.04T n = 39 r = 0.88max

0.001).
T- was not affected by total length at both 107C (U n =max

, , ) and 247C ( , , ;2 240 r = 0.02 P 1 0.05 n = 40 r = 0.02 P 1 0.05
Table 1). However, T- at 247C ( ms) was sig-U 99.4 5 8.3max

nificantly lower than at 107C ( ms, ).157 5 6.5 P ! 0.001 Cdur

was also unaffected by changes in total length at 107C (n =
, , ); however, it was significantly correlated237 r = 0.001 P 1 0.05

with total length at 247C ( , , ) and was2n = 38 r = 0.13 P ! 0.05
described by the equation L0.30 (Table 1).C = 33.9dur

Stride length was positively correlated with total length at
107C ( , , ) and 247C ( ,2 2n = 37 r = 0.90 P ! 0.001 n = 38 r =

, ) but was not influenced by test temperature (Fig.0.76 P ! 0.001
2A; Table 1). was not significantly affected by total lengthTBF

at either 107C or 247C (Table 1); however, significantlyTBF

increased from Hz at 107C to Hz at 247C7.8 5 0.2 21.7 5 0.7
( ; Fig. 2B). Average stride velocity was highly corre-P ! 0.001
lated with total length and was described by the equations

L1.17 at 107C ( , , ) and2U = 0.044 n = 37 r = 0.75 P ! 0.001as

L1.17 at 247C ( , , ; Fig. 2C; Ta-2U = 0.12 n = 37 r = 0.50 P ! 0.001as

ble 1). Temperature did not affect the relationship between total
length and .Uas

Re were calculated for individual tadpoles at their andUmax

at both 107 and 247C (Fig. 3A, 3B). At their , smallerU Uas max

tadpoles experienced Re of !2,000 at 107C and approximately
5,000 at 247C, while tadpoles 14 cm experienced Re in excess
of 10,000 at 107C and 20,000 at 247C. At , Re ranged fromUas

!1,000 to 15,000 at 107C and from approximately 1,500 to
110,000 at 247C.

Effect of Developmental Stage on Burst Swimming Performance

Length-standardised swimming performance was compared be-
tween L. peronii tadpoles from three Gosner (1960) develop-
mental groups: 25–27, 28–30, and 31–38. When standardised

for total length, there were no significant differences in Umax

and between the different developmental groups at 107A max

and 247C (Table 2). Burst swimming performance in larval L.
peronii was dependent on total length and not on development
stage.

Morphological Correlates

The relationship between total length and head-body length,
tail length, and width of the tail base ( ) was determined forTW

the tadpoles used in the burst swimming study. Both tail length
( , , ) and head-body length ( ,2n = 40 r = 0.94 P ! 0.001 n = 40

, ) significantly increased with total length.2r = 0.94 P ! 0.001
However, the increase in with total length was significantlyTL

greater than the increase in head-body length (MANCOVA,
; Fig. 4A). In addition, increased with total lengthP ! 0.05 TW

at a rate that was proportionally greater than the increase in
total length and was represented by the equation T = 21.36W

L1.66 ( , , ; Fig. 4B).2n = 40 r = 0.89 P ! 0.001

Discussion

Burst swimming performance in tadpoles of Limnodynastes per-
onii between Gosner (1960) developmental stages 25 and 38
was strongly dependent on total length. Length-specific Umax

and significantly increased with total length over the sizeA max

range of 1.5–4.5 cm. Allometric scaling relationships of burst
swimming performance in larval anurans have only been de-
scribed in detail in one other study. Hoff (1987) examined the
scaling relationships of burst swimming in five species of larval
anurans. Scaling relationships varied between species, and for
all species pooled, scaled with a length exponent of 0.64,Umax

a value considerably lower than that observed in larval L. per-
onii. of Bufo americanus scaled with a length exponent ofUmax

0.69 and Rana sylvatica and Rana catesbeiana with length ex-
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Figure 1. Relationship between total length and (A) maximum swimming velocity ( ) and (B) acceleration ( ) in tadpoles of the stripedU Amax max

marsh frog (Limnodynastes peronii) at 107 and 247C. Each line represents a first-order polynomial fitted to a set of log-log data by using least
squares regression.

ponents of 0.44 and 0.43, respectively. However, the ofUmax

larval Xenopus laevis scaled with a total-length exponent of 1.0.
Hoff (1987) suggested this relatively high total-length exponent
of in X. laevis was due to massive increases in axial muscleUmax

mass with total length. Similarly, tail width in L. peronii in-
creased with total length at a rate that was proportionally greater
than the increase in total length (L1.66).

Several other studies have also reported an increase in swim-
ming velocity with increases in total length in premetamorphic
tadpoles (Wassersug and Sperry 1977; Huey 1980; Wassersug
and Hoff 1985; Brown and Taylor 1995; Parichy and Kaplan
1995). Huey (1980) found average swimming velocity in tad-
poles of Bufo boreas positively correlated with tail length be-
tween stages 31 and 41. Parichy and Kaplan (1995) also found
that in the fire-bellied toad, Bombina orientalis, longer tails
increased sprint speed. However, for both studies it is not clear
whether length-specific swimming velocity increased with in-

creasing total length. In contrast, Watkins (1997) reported that
in the Pacific tree frog, Hyla regilla, was independent ofUmax

body size, with linear regressions of maximum speed on total
length and tail length being nonsignificant. However, Watkins
(1997) used a small size range of tadpoles and a simplified
measure of sprint velocity that may have masked the effects of
total length on maximum velocity.

Liu et al. (1997) found that both the shape of tadpoles and
their kinematics during swimming created a “dead water” zone
between the head-body and tail that minimised the effects of
hindlimb development on tadpole swimming performance. Be-
cause the primary developmental changes between Gosner
(1960) stages 25 and 38 are the eruption and differentiation of
the hindlimbs, we predicted that developmental stage would
not affect the swimming performance of larval L. peronii during
these stages. Consistent with this prediction, the increase in
swimming velocities with increasing total length in larval L.
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Figure 2. Relationship between total length and (A) stride length during the first full tail-beat after the C-start manoeuvre, (B) tail-beat frequency,
and (C) average velocity calculated over the stride length in tadpoles of the striped marsh frog (Limnodynastes peronii) at 107 and 247C. Each
line represents a first-order polynomial fitted to a set of log-log data by using least squares regression.
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Figure 3. Relationship between total length and the calculated Reynolds number that tadpoles of the striped marsh frog (Limnodynastes peronii)
are operating at when swimming at their (A) maximum swimming velocity ( ) and (B) average velocity during the first full stride ( )U Umax as

after the C-start manoeuvre at 107 and 247C. Each line represents a first-order polynomial fitted to a set of log-log data by using least squares
regression.

peronii was independent of developmental stage between Gos-
ner (1960) stages 25 and 38. Comparison of length-standardised

and (by using the derived allometric equations) inU Amax max

larval L. peronii showed no differences between stages 25–27,
28–30, and 31–38. However, during the latter stages of anuran
larval development, when both the forelimbs and hindlimbs
increase in size, swimming velocity is significantly influenced
by developmental changes, especially as a consequence of meta-
morphosis (Huey 1980; Dudley et al. 1991). Huey (1980) found
that metamorphosis resulted in a rapid reduction in maximum
burst speeds in B. boreas. Also, Brown and Taylor (1995) noted
a significant decrease in swimming velocity at stage 43 in the
wood frog, R. sylvatica.

Fuiman and Batty (1997) showed that ecologically relevant
changes in water viscosity that were independent of temperature
significantly affected the swimming performance of larval At-
lantic herring (Clupea harengus) at Re of up to 300. Moreover,
in a recent study of swimming performance in adult goldfish

(Carassius auratus) and guppies (Poecilia reticulata), Johnson
et al. (1998) found that artificial increases in water viscosity at
207C resulted in significant decreases in at Re of up toUmax

3,500. Previously, it was considered that fish larvae would be
unaffected by the viscous hydrodynamic regime at Re greater
than 200 (Weihs 1980; Webb and Weihs 1986). Decreases in
water temperature are associated with increases in the kinematic
viscosity of water, which can in turn influence the scaling re-
lationships of swimming performance in small aquatic organ-
isms. We predicted that the scaling of swimming performance
in larval L. peronii would be unaffected by changes in tem-
perature because tadpoles are governed by inertial rather than
the viscous hydrodynamic regime (Wassersug and Hoff 1985;
Dudley et al. 1991). In larval L. peronii, temperature did not
significantly influence the relationship between swimming per-
formance and total length (allometric exponent). At their

, larval L. peronii between 1.5 and 4.5 cm experienced ReUmax

between 1,500 and 50,000 and were unlikely to be influenced
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Table 2: Effect of developmental stage (Gosner 1960) on length-standardised maximum
velocity ( ) and maximum acceleration ( ) in the striped marsh frog,U Amax max

Limnodynastes peronii

Water Temperature 107C Water Temperature 247C

Gosner (1960)
Developmental Stage (m s21)Umax (m s22)Amax (m s21)Umax (m s22)Amax

25–27 ... . . . . . . . . . . . . . . . .225.43 (12) .475.15 (12) .415.15 (13) 1.815.14 (13)
28–30 ... . . . . . . . . . . . . . . . .215.39 (15) .495.15 (15) .435.19 (15) 1.645.15 (15)
31–38 ... . . . . . . . . . . . . . . . .205.07 (13) .475.17 (13) .415.24 (12) 1.805.15 (12)

Note. Results are (N). There was no significant difference in or with developmental stage.
—
X 5 SEM U Amax max

Total length of each individual tadpole was standardised to 2.5 cm by using the allometric scaling exponents

determined in this study (1.34 for and 1.11 for ).U Amax max

by changes in the viscosity of the water because of temperature.
However, at their , larval L. peronii were swimming at Re asUas

low as 500 at 107C. Although there were no significant changes
in the scaling relationships of with temperature, when aUas

curvilinear regression was fitted to the versus total lengthUas

data for tadpoles at 107C, the correlation coefficient increased
by 0.15. It is possible that at 107C, of the smaller tadpolesUas

may have been affected by the viscous hydrodynamic regime,
which in turn may have influenced the relationship between
total length and .Uas

There is a limited data set on the scaling of in fish. TheUmax

generality appears to be that length-specific swimming velocity
decreases with increasing total length (Archer and Johnston
1989; Videler and Wardle 1991; Gibson and Johnston 1995;
James and Johnston 1998). In juvenile turbot, Scophthalmus
maximus, scaled to L0.74 in fish 0.88–8.0 cm at 187C (Gib-Umax

son and Johnston 1995), whereas in the Antarctic fish Noto-
thenia coriiceps, scaled to L0.66 (Archer and Johnston 1989).Umax

In a recent study, James and Johnston (1998) also found that
length-specific during escape responses in the short-Umax

horned sculpin, Myoxocephalus scorpius, decreased proportion-
ally to total length (L0.47). These decreases in length-specific
swimming velocity with increasing total length have been at-
tributed to the contractile properties of the muscles powering
burst swimming (Wardle 1980; James et al. 1998). In studies
on fish muscle, maximum unloaded contraction velocity be-
comes slower and activation and relaxation times for isometric
twitch and tetanic contractions become longer with increasing
total length (Altringham and Johnston 1990; Anderson and
Johnston 1992; James et al. 1998). Similar results have been
reported for amphibian and mammalian muscle contractile
properties, and it appears that as animal size increases, muscles
become slower (Rome et al. 1990; Seow and Ford 1991; Marsh
1994; Altringham et al. 1996). Positive allometry of tail width
(presumably correlated with axial muscle mass) in larval L.
peronii would help to offset the negative allometry of the in-
trinsic contractile velocities of muscle and may contribute to

the observed scaling relationships of burst swimming
performance.

In contrast to the scaling of in adult fish, length-specificUmax

swimming velocity appears to increase with increasing total
length in larval fish. Length-specific of both larval chinookUmax

salmon (Oncorhynchus tshawytscha; Hale 1996) and larval win-
ter flounder (Pleuronectes americanus; Williams and Brown
1992) increases with total length. Moreover, when the scaling
data from Gibson and Johnston (1995) on the swimming per-
formance of S. maximus are examined, it appears that the
smaller size range of fish scale with a length exponent 11,
whereas the larger size range scale with an exponent !1. This
positive allometry is probably, in part, a consequence of de-
velopmental changes that correlate with increases in body
length, including changes in body shape and the development
and functioning of the musculoskeletal and nervous system.
Moreover, because larval fish often swim within the viscous
hydrodynamic regime, small changes in body length signifi-
cantly influence the effect of water viscosity on swimming per-
formance, which may in turn bias the scaling relationship of
swimming performance toward positive allometry. Re can
change by several orders of magnitude during the development
and growth of fish larvae (Batty and Blaxter 1992; Müller and
Videler 1996).

Unlike larval fish, the increase in length-specific withUmax

total length in larval L. peronii is not due to the effects of
developmental stage or the effects of viscous forces and may
be ecologically related. Larval L. peronii have an increased re-
liance on aerial respiration throughout development. The fre-
quency of air breaths in larval L. peronii increases between
Gosner (1960) development stages 25 and 35, resulting in an
increase in surfacing behaviour and open-water activity (Wong
and Booth 1994). Thus, as L. peronii tadpoles become larger
and their dependence on aerial respiration increases, bouts of
surfacing behaviour become more frequent. This increase in
activity in the open water may increase their vulnerability to
open-water predators throughout larval development and also
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Figure 4. Relationship between total length and (A) head-body length, tail length (both linear regressions), and (B) tail width at the base in
tadpoles of the striped marsh frog (Limnodynastes peronii). Regression line for tail width data represents a first-order polynomial fitted to a
set of log-log data by using least squares regression.

may increase the importance of burst swimming performance
to survival.
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