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This paper draws on data from a three-year longitudblal study of secondary school 
classrooms to examine pedagogical issues b~ using tectmology resources in 
mathematics teachhlg--hl particular, graphics calculators and overhead projection 
panels that allow screen output to be viewed by the whole class. We theorise four 
roles for technology in relation to such teachh~g and learning interactions--master, 
servant, partner, and extension of self--and illustrate this taxonomy with 
observational data from five senior secondary mathematics classrooms. Our 
research shows how technology can facilitate collaborative inquiry during both 
small group interactions and whole class discussions when students use their 
calculators and the overhead projection panel to share their mathematical 
understanding. 

At the beginning of the last decade, it was predicted that technologies such as 
computers and graphics calculators would have a major impact on the teaching 
and learning of secondary school mathematics (Barrett & Goebel, 1990; Demana & 
Waits, 1990). Some of these predictions were concerned with opportunities for 
enhancing student learning--for example, by enabling connections to be made 
between algebraic, graphical, and numeric representations of mathematical 
concepts. It was also anticipated that technology would bring about changes in the 
roles of teachers and students, in that teachers would act as facilitators of student 
discussion and collaborative exploration with peers (Heid, Sheets, & Matras, 1990). 
The potential for technology to enrich mathematics teaching and learning is 
recognised by curriculum authorities and professional bodies (Australian 
Association of Mathematics Teachers, 1996; Australian Education Council, 1991; 
National Council of Teachers of Mathematics, 1989, 1991), and is evident in the 
increasing acceptance of graphics calculators for use in high stakes examinations 
(Jones & McCrae, 1996). 

Research in mathematics education over the last decade has begun to address 
the nature of these new technologies and their effects on learning and teaching. 
Although overall findings concerning the predicted benefits for students' learning 
have been somewhat inconclusive (Lesmeister, 1997; Maldonado, 1998; Penglase & 
Arnold, 1996), many studies have reported that the use of technology has a positive 
effect on students' attitudes towards mathematics, understanding of function and 
graphing concepts, and spatial visualisation skills (Portafoglio, 1998; Weber, 1999; 
see also Penglase & Arnold, 1996). However, it seems that less is known about how 
the availability of technology, especially graphics calculators and their peripheral 
devices, has affected teaching approaches (Penglase & Arnold, 1996). While some 
studies have found changes in classroom dynamics leading to a less teacher- 
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centred and more investigative environment (Simonsen & Dick, 1997), it appears 
that negotiation of such a pedagogical shift is mediated not only by  teachers' 
mastery of the technology itself, but also by their personal philosophies of 
mathematics and mathematics education (Simmt, 1997; Tharp, Fitzsimmons, & 
Ayers, 1997). 

The purpose of this paper  is to consider some pedagogical issues in using 
graphics calculator technology in mathematics teaching, arising from a three-year 
longitudinal study of secondary school classrooms. In particular, we examine 
interactions between teachers and students, amongst students themselves ,  and 
between humans and technology, in order to investigate the extent to which 
different participation patterns provide opportunities for students to engage 
constructively and critically with mathematical ideas. We begin by providing an 
overview of pedagogical approaches in technology augmented learning, and 
introduce the notion of emergence in relation to the role of technology in 
mathematics classrooms. This is followed by an outline of the theoretical 
perspective that has guided our classroom research, and results from the s tudy that 
illustrate four metaphors for relationships between teachers, students, and 
technology. Although the initial discussion refers to technology resources in 
general, the focus of the paper  is on teachers' and students '  use of a graphics 
calculator and the overhead projection unit (an LCD panel that allows the 
calculator screen to be projected for whole class viewing). 

Technology-Augmented Learning 
As technology has been increasingly imported into educational settings, so the 

variety of pedagogies associated with its use has increased. Olsen (1999) describes 
one of the most extensive examples of technology used to provide automated 
instruction, noting how politicians visiting Virginia Tech's Mathematics Emporium, 
a 58 000 square foot (5000 m 2) computer classroom, 

see a model of institutional productivity; a vision of the future in which machines 
handle many kinds of undergraduate teaching duties--and tmiversities pay fewer 
professors to lecture. On weekdays from 9 am to midnight dozens of tutors and 
helpers stroll along the hexagonal pods on which the computers are located. They 
are trying to spot the students who are stuck on a problem and need help. (p. 31) 

The  approach is openly driven by economic rationalism, and the educational 
assumptions behind the programme may be inferred from the comment that 
students must take dozens of quizzes each semester. The driving philosophy fs 
clearly within the transmissive model of teaching-learning. Ramsden (1997) has 
acknowledged the impact of such inherited traditions on the use of teclmology by 
referring to an instinct for teachers to begin by looking for electronic ways of doing 
familiar jobs previously done by textbooks and lectures. Similarly Thorpe (1997), in 
examining teaching behaviours and attitudes towards technology, found that 
computer technology was being used essentially to enhance preferred teaching 
methods-- that  is, the technology, although freely available, was utilised in a 
conservative way. 

However, Ramsden (1997) also introduces a more positive note, observing the 
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attraction of technology for educators who want to give their students more power 
and welcome technology as a liberating opportunity. Typical is the approach of 
Templer, Klug, and Gould (1998), who shared an explicit conviction that the 
computer should be used to allow the student to explore and investigate 
mathematical concepts. They saw being involved in a technology-based 
mathematics course as a dynamic experience in many senses--not least, in the way 
that mathematics itself can become a subject for experiment and conjecture. They 
also acknowledge the fundamental philosophical issue that underlies the eventual 
choice of a pedagogical approach and indeed all programs of change: Does 
technology represent an arena for exploration of mathematical ideas, or a channel 
for the transmission of knowledge? 

Emergent Properties 
Ramsden (1997) argues that while a technology cannot be used for a purpose 

that is patently unsuited to its design, emergent uses should be productively 
sought. These are uses that no one (including the designers) could have predicted, 
and the space of these is vast and unexplored. Shneiderman, Borkowski, Alavi, and 
Norman (1998) describe settings in which teachers have evolved personal styles in 
using an elaborately fitted out "electronic classroom": New patterns of interaction 
emerged which, while retaining characteristics of personal styles, have in common 
a more collaborative approach. Each of these entailed combining the technology 
resources and human interaction to develop methods that were not obviously the 
precinct of the hardware design. One emergent property noted was the role 
technology played in changing the communication structure by providing 
alternative and parallel channels for students to contribute to discussions and 
provide feedback, both privately (on individual computer screens) and publicly (on 
a class screen). This equaliser role was evidenced in the contributions of "quiet" 
students who would not participate in conventional classroom dialogue, but who 
eagerly shared comments through an electronic interface. 

Emergence in the sense described here is a product of the interaction between 
human and technological agencies. In consequence, it is not surprising that those 
who have been involved with some of the most innovative uses of technology 
(Shneiderman et al., 1998) are among the most definite in rejecting the teacher- 
replacement concept, the very antithesis of the concept of emergence: 

While technology can be wonderfully empowering for teachers and students, the 
relationship between human beings is still the heart of the educational process ... 
key function of a tmiversity or school setting is to encourage the tie between 
teachers and students: tect~nology can support and strengthen relationships, but 
never create or replace them. (p. 24) 

While the above discussion refers mainly to computer technology, the 
arguments concerning teaching and learning may be applied equally well to the 
use of more recent innovations such as graphics calculators and peripherals-- 
although the portability of calculators adds another dimension in that students 
may own and attain intellectual intimacy with these devices. To date, research on 
graphics calculators and pedagogical change in mathematics education has tended 
to investigate (a) the effects of different instructional strategies (both with and 
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without technology) and (b) teacher attitudes towards technology. That is, 
technology has been treated as a variable in the interpretation of results (Penglase 
& Arnold, 1996). This contrasts with our own research programme, whose 
theoretical orientation explicitly addresses technology usage as an integral 
component of the learning environment. The next section outlines the theoretical 
assumptions underpinning our research, which applies sociocultural models of 
learning to pedagogical practices in technology rich classrooms. 

A Socioctfltural Pexspecfive on Teaching and Learning with Technology 
Sociocultural perspectives on learning emphasise the socially and culturally 

situated nature of mathematical activity, and view learning as a collective process 
of enculturation into the practices of mathematical communities (Goos, Galbraith, 
& Renshaw, 1999). The classroom, as a community of mathematical practice, 
supports a culture of sense making where students learn by immersion in the 
practices of the discipline. Rather than relying on the teacher as an unquestioned 
external authority, students in such classrooms are expected to defend and critique 
ideas by proposing justifications, explanations, and alternatives. 

A central claim of sociocultural theory is that human action is mediated by 
cultural tools and is fundamentally transformed in the process (Wertsch, 1985). The 
rapid development of computer and graphics calculator technology provides 
numerous examples of how such tools transform mathematical tasks and their 
cognitive requirements (Goos, 1998). However, tools are not limited to physical 
artefacts, but also include "concepts, structures of reasoning, and the forms of 
discourse that constrain and enable interactions within communities (Resnick, 
Pontecorvo, & S/ilj6, 1997, p. 3). The emergent properties of technology in 
promoting new forms of classroom interaction highlight this tool-mediated aspect 
of learning. Within particular knowledge communities, then, tools are cultural 
resources that re-organise, rather than amplify, cognitive prt)cesses through their 
integration into human practices. From this perspective, learning is not simply the 
accumulation of mental structures, but a process of appropriating the cultural tools 
recognised by a community of practice. Participation in such classroom 
communities represents a challenge for learners to move past their established 
capabilities towards new forms of reasoning and action. 

The Research Study 
The research reported here forms part of a three-year (1998-2000) longitudinal 

study in which we investigated the role of technology in facilitating students' 
exploration of mathematical ideas and in mediating teacher-student and student- 
student interaction. Data collection involved five senior secondary mathematics 
classrooms drawn from three co-educational schools (two government and one 
independent) in a large Australian city. The students who participated in the study 
were in Years 11 and 12 and were taking either Mathematics B (an introductory 
calculus and statistics subject) alone or in combination with Mathematics C (an 
advanced subject usually chosen by students intending to pursue further study of 
mathematics at tertiary level). While the syllabuses for both subjects did not 
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mandate the use of graphics calculators and computers, teachers were encouraged 
to make use of technology wherever appropriate. 

At least one lesson every week was observed and videotaped, but  more 
frequent classroom visits were scheduled if the teacher planned a technology- 
intensive approach to a topic. Audiotaped interviews with individuals and groups 
of students were conducted at regular intervals to examine the extent to which 
technology was contributing to students' understanding of mathematics and how 
technology changing the teacher's role in the classroom. At. the beginning and end 
of each year, students also completed a questionnaire on their attitudes towards 
technology and its role in learning mathematics (see Geiger, 1998). For further 
details on the methodology, see Goos et al. (1999). 

Analysis of technology-focused interactions has been framed by four 
metaphors we have developed to form a taxonomy of sophistication with which 
teachers and students work with technology. We draw on classroom observation 
and videotape data from 1998 and 1999 to illustrate these metaphors with respect 
to both teacher and student roles. The teachers involved will be referred to as 
Steve, Chris, Jack, and Brian. 

Reshaping Teacher Roles 
In developing the potential of teckmology-enriched learning, the role of the 

teacher in making use of technology is clearly crucial. We theorise four roles for the 
interaction between teacher and technology. 

Technology as master. Here the teacher is subservient to the technology and is 
able to employ only such features as are permitted either by limited individual 
knowledge or force of circumstance. This is clearly the role promoted in large-scale 
transmissive programs, where course organisation imposes the relationship (Olsen, 
1999). However, it may also occur in classrooms where teachers have individual 
autonomy if, following a training program, pressure to use technology results in 
implementation dominated by whatever basic skill has been acquired without 
consideration of any impact beyond the present (Stuve, 1997). 

Technology as servant. Here the user may be knowledgeable with respect to the 
technology but uses it only in limited ways to support preferred teaching methods 
(Thorpe, 1997). The technology is not used in creative ways to change the nature of 
activities in which it is used. For example, just as a graphics calculator can be 
restricted to the purpose of producing fast reliable answers to routine exercises, an 
overhead projection panel may be limited to providing a medium for a teacher to 
demonstrate output to the class. 

Technology as partner. Here the teacher has developed an affinity with both the 
class and the teaching resources available. Technology is used creatively in an 
endeavour to increase the power that students collectively exercise over their 
learning, rather than the teacher exercising power over the students (Templet, 
Klug, & Gould, 1998). This occurs both in the use of mathematically-based 
technology (e.g., graphics calculators) for the purpose of elxhancing individual 
prowess and in the use of communications technology to enhance the quality of 
learning through sharing, testing, and reworking mathematical understandings. 
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For example, instead of functioning as a transmitter of teacher input, an overhead 
projection panel may be a used to engender otherwise non-existent participation 
(Shneiderman et al., 1998) or to act as a medium 'for the presentation and 
examination of alternative mathematical conjectures. A defining characteristic of 
this metaphor for technology is that "the locus of control never passes from user to 
machine" (Templer, Klug, & Gould, 1998). 

Technology as extension of self. This, the highest level of functioning, may 
presently be only rarely in evidence. Here powerful and creative use of both 
mathematical and communications technology forms as natural a part of a 
teacher's repertoire as do fundamental pedagogical and mathematical skills. 
Writing courseware to support and enhance an integrated teaching program would 
be an example of operating at this level. 

It can be noted that these modes of operating are not necessarily tied to the 
level of mathematics taught or to the sophistication of technology available. Simple 
mathematics and basic technologies are sufficient to provide a context for highly 
creative teaching and learning. 

Classroom Examples 
Use of the metaphors of master, servant, partner, and extension of self does not 

imply that teachers remain attached to a single mode of working with technology. 
In fact, some of our most interesting observations reveal variations on these 
themes--for example, where teachers may be i n  transition between different 
modes of operating or where the modes themselves are instantiated in unexpected 
ways. Below we outline some classroom examples of instructional use of graphics 
calculators and overhead projection panels to illustrate these variations. 

Master and servant. Jack admitted minimal expertise in using the graphics 
calculator, but countered his own lack of confidence by calling on a recognised 
student "expert" to demonstrate calculator procedures via the overhead projection 
panel. This student owed his expertise to having completed a "train the trainer" 
program offered by the calculator company. While the teacher lacked personal 
autonomy in the use of technology (suggesting that technology had the role of 
master), he nevertheless retained control of the lesson agenda through the medium 
of the student presenter--often to the extent of providing the mathematical 
commentary and explanations accompanying the student's silent display (thus 
suggesting that technology was being used as a servant). Even when the student 
instructed the class on calculator keystrokes, the teacher's voice could still be heard 
in the student's articulation of carefully controlled, step-by-step procedures 
consistent with the teacher's preferred methods. Ultimate authority rested with the 
teacher, who remained reluctant to allow students to use technology to explore 
mathematical territory that was unfamiliar or outside the immediate lesson topic. 
Nevertheless, this teacher's actions could be interpreted as movement towards 
greater student participation, albeit through working with technology in the 
servant mode. 

Intelligent servant. Brian tended to use the calculator and OHP panel as 
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conventional instructional devices. For example, he used the panel  like an 
electronic blackboard for demonst ra t ing  calculator operations, which students then 
checked against  their own working. However,  emergent  uses of the technology in 
conjunction with other material  resources were apparent.  One simple example 
involved projecting the calculator d isplay  onto a whi teboard that s imul taneously  
acted as a screen and a wri t ing surface, thus enabling the teacher to interact with, 
highlight,  and modify aspects of the calculator's output  by  writ ing on the screen 
image projected onto the whiteboard.  

An even more creative approach  integrated technology with concrete aids, 
thus enhancing even further the graphics calculator's capacity for l inking mult iple  
representations of a concept. For example,  in a Year 11 lesson on matrix 
transformations, students were suppl ied  with the worksheet  in Figure 1. The 
teacher physical ly  demonstrated the results of several matrix transformations using 
t ransparent  grid paper,  plastic cutout polygons, and the overhead projector. The 
students then investigated further  by  placing their own polygons on grid paper  
and  recording the coordinates of the vertices before and after t ransformat ion--wi th  
graphics calculators taking care of the matrix calculations. While the technology 
was still used to support  the teacher 's  preferred approach involving hands-on  
activities, the calculators and projection panel  were exploited in novel ways  that 
retained effective features of more  conventional instruction. 

Place a plastic polygon 
on the grid so that each vertex 
lies on an integer 
co-ordinate position. This 

~ ~  D (4 3) shape can be manipulated to 
any number of integer 
positions. 

Consider each vertex as a 
vector; e.g., A (2, 4) can be 

B (1 1) C (4, !1) thought of as a = 
4 " 

From the list of 2 x 2 matrices below choose one. Apply this matrix to the vertex 
vectors and re-position your polygon to the new co-ordinates. Try and identify what 
each matrix transformation does geometrically. Follow up by trying to identify from the 
arithmetic elements of the matrices why your polygons were transformed in the way 
they were. 

A=  B =  0 C= 0 D= -1 

E =  F =  2 G =  a =  2 2 

2 2 2 2 

Figure 1. Matrix transformation task (student worksheet). 
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Creative partnerships. Vignettes from two additional project classrooms illustrate 
how technology can have a liberating effect on both teachers and students. Chris, 
the teacher in the first classroom, had basic but growing competence with graphics 
calculators and was willing to try out calculator operations only partly understood. 
One of our visits to his Year 11 classroom prompted him to use the overhead 
projection panel for the first time in a lesson situation. Students were set the task of 
investigating various transformations of the functions y = x 2, y = l / x ,  and y = ] x ]. 
Instead of using the projection panel to control the students '  activities by  requiring 
them to reproduce teacher-demonstrated transformations, the teacher shifted the 
locus of control to the students by assigning different functions to small groups and 
inviting them to use the OHP to present their findings to the whole class. 
Consequently, the LCD panel acted as a communication medium that enabled 
students to explain and defend their own conjectures. 

In our view, the liberating potential of the overhead projection panel 
represents one of the most significant emergent properties of technology in 
mathematics classrooms, as control is shared between the machine and its student 
users. Of course, such presentations may parallel the teacher's actions if students 
simply display their solutions. However, we have observed instances of knowledge 
production and repair where partial solutions were shared and completed with 
whole class input; in other cases, previously unnoticed errors in the student- 
presenter's work were identified and corrected by peers. Such was the case in 
Steve's classroom. Steve was already an expert and innovative user of technology 
and fosters similar expertise in his s tudents--not  through detailed instructions on 
keystrokes, but by providing tasks that require students to use the calculator 
intelligently. 

A brief vignette involving programming illustrates this point. The students 
(Year 12, Mathematics C) were asked to program their calculators to find the angle 

M 
/ - -  / - -  

between two three dimensional vectors r 1 - - [ b /  and r 2 = / e l ,  given by the 

kc] \ J ]  

f°rmulat)=c°s-l('ra-r2"] ~,1 I] 1) ( ad+be+cf ] __rl__ra__=cos-I . The teacher 
~/a ~ b 2 c 2 e 2 _ +  +  /d2+ +f2 

provided only minimal instruction in basic programming techniques, expecting 
students to consult more knowledgeable peers for assistance. Volunteers then 
demonstrated their programs via the overhead projection panel. The students 
noted that there was a wide variation in the programs they had produced, as 
shown in Figure 2. 

This public inspection of student work also revealed programming errors that 
were subsequently corrected by other members of the class. For example, the class 
disputed the answer obtained by executing the program shown in the first screen 
of Figure 3. Following the instructions of fellow students, the presenter scrolled 
down through the program and replaced the plus sign with a multiplication sign 
between the two bracketed terms in the denominator (Figure 3, second screen). The 
output of this amended program was again challenged by his audience, one of 
whom located the offending element of the program where multiplication instead 
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I I I  

PROGRAM: RNG 
: Pr-or,~Pt R, B, C,  D,  .E:,F 
• .-.osq ( ( R * D + B * E + C  
~"F),",I" ( (R  z +B-" +C-" ) 
( D Z + E Z + F Z ) ) )  

PROGRAM:DODGE 
:OisP "FIRST VEC 
TOR"I 
:Prompt X 
:PPo~Pt Y 
:PPo~Pt Z 
: X ÷ R  
: V ÷ B  

F'ROGRAM: VEC:TOR 
: C i t-Hor.~e '~... : O u t P u t ' : :  5.- ".." • " V E C  
TOR MRCH I N E "  ) 
: Out.PLJt ( 3,4, "3D 
OR 2 D " )  
: I n P u t  M 
: If M = 3 : G o t . o  R 

Ill 

Figure 2. First lines of three student programs for computing 
the angle between two vectors. 

of addition signs had been entered in the second term of the denominator. The 
presenter made this correction (Figure 3, third screen) and executed the program 
once more. The appearance of the correct answer was greeted with cheers and 
applause from his classmates. 

I 

PROGRAM: VECT 
: I i_~F- " INPUT 
:VECTOR 2" 
: Input F 
• c.c.s-1 ( ( R~'D+B~E+C 
• F).'..~£(RZ+BZ+C:z ) 
+.~ (D Z.E Z.F z ) )+G 
: C I t-HoMe 

I 

PROGRRM:VECT 
:OisP "INPUT 
:VECTOR 2 "  
:InPut F 
:oosq((R*O+B*E+C 
mF)/($(Aa+Bz+C i) 
.£(OZsEZ~FZ))÷G 
:CIPHoMe 

I I 

= ~ ---  i - -  | I P ROL~E HM. VECT 
: IisF- "INPLIT 
: VECTOR ..".." 
-" I n F ' u t  F 
: c.,:,s. -1 ( (R*D+B:+ 'E+C 
• F ..',. " ( . f  ,:'. R z +B '" +C ,-" ', 
• -f ( D i +E z +F z ::, ;:, ÷G 
: C i r.Hor.~e 

II 

Figure 3. Correcting errors in a student program. 

The day after the lesson, individual students were interviewed to discover how 
they thought programming could help them with mathematics. All acknowledged 
that a program could save time with calculations, but  they also commented that 
writing programs required thorough understanding of the underlying 
mathematical concepts. When asked whether programming could further one's 
understanding, one student referred to the benefits of extending his own repertoire 
by comparing programs written by different people for the same task--an 
opportunity afforded by the public sharing of knowledge in the previous day's 
lesson. 

Reshaping Student Roles 
The above examples are representative of the qualitatively different models of 

teaching that have been recorded in the research project classrooms. Similarly, the 
metaphors of master, servant, partner, and extension of self can be used to analyse 
students'  interaction with technology. 
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Technology as master. Here the student is subservient to the technology--a 
relationship that can be induced by either technological or mathematical 
dependence. If the complexity of usage is formidable, student activity will be 
confined to those limited operations over which they have technical competence. 
Alternatively, if necessary mathematical understanding is absent, the student is 
reduced to blind consumption of whatever output is generated, irrespective of its 
accuracy or worth. 

Technology as servant. In this role, technology is used as a reliable timesaving 
replacement for mental or pen-and-paper computations. The tasks of the 
mathematics classroom remain the same, but now they are facilitated by a fast 
mechanical aid. Unlike the previous category, the user is in control and instructs 
the technology as an obedient but dumb assistant. Trust in the reliability of the 
servant means that the output is regarded as authoritative, although the discerning 
user will continue to monitor reasonableness of outcome against the possibility of 
keying errors. 

Technology as partner. Here a rapport has developed between the user and the 
technological device--which may even be addressed in human terms. A graphics 
calculator, for example, becomes a friend to go exploring with rather than merely a 
producer of results. The user is still in control, but there is appreciation of the fact 
that calculator-generated outcomes cannot be blindly accepted but need to be 
judged against mathematical criteria. Explorations, for example in graphical work, 
lead to situations where the output needs to be checked against the known 
properties of related graphical forms. It is possible for the calculator to be 
misleading, and a feature of its use in this mode is the way in which the respective 
authorities of mathematics and technology are balanced. 

Technology as extension of self. This highest level of functioning involves users 
incorporating technological expertise as an integral part of their mathematical 
repertoire. Here, powerful use of calculators and computers forms an extension of 
the user's mathematical prowess. Rather than existing as a third party, a calculator 
may be used to share and support mathematical argumentation on behalf of the 
individual--as when students share and compare graphical output as part of their 
own contribution to a solution process. The technology becomes as much a part of 
the user's catalogue of resources as tabulated information and mathematical know- 
how inside the head. 

As with the corresponding teacher roles, there is no necessary connection 
between these successively higher forms of technological functioning and the level 
of mathematics involved or the grade level. 

Classroom Examples 
In classroom communities of mathematical practice, interactions between 

students and technology may have characteristics of the servant, partner, and 
extension-of-self roles. The servant role, where technology is treated as a reliable 
means of obtaining results necessary to progress a line of development, is often 
appropriate. Note that understanding remains paramount even in this role. For 
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example, one student maintained that technology "'makes you understand, because 
you have to understand the maths before you can do it on the calculator". 
Technology as a partner is important during individual or group exploratory work, 
and in widening the options in problem-solving situations. Technology as an 
extension of self enters at the highest levels of mathematical activity, where the 
emphasis is on forms of argumentation and other characteristics of the discipline of 
mathematics. We illustrate the latter two roles for technology with vig-nettes from 
Steve's classroom. 

Interacting with technology. A series of Year 11 lessons on matrices given by 
Steve was observed and videotaped in order to analyse students'  use of technology 
in learning this new subject matter. Matrix algebra was not taught as a series of 
algorithms, but instead was developed by presenting students with life-related 
problems from which matrix representations and manipulations arose naturally. 
For example, students were introduced to the Leontief Input-Output Model of an 
economy as a real-life application of matrices and used as a context for developing 
understanding of the inverse of a matrix. Figure 4 shows one such problem on 
which the students worked with the aid of their graphics calculators. 

An economy with the four sectors manufacturing, 
hydroelectric power has the following technology matrix: 

0.15 0.18 0.3 0.1] 
0.22 0.12 0.37 0 

T= 0.09 0.3 0.11 0 
0.27 0.05 0.07 0.1 

petroleum, transportation, and 

Find the production matrix if all the entries in the demand matrix are 200. 

Solution 
Let D = demand matrix (consumer demand), T = technology matrix (linking input and 
output), and P = production matrix (how much is produced). 
Hence TP = internal consumption matrix (how much output is consumed by system). 
Production must satisfy both consumer demand D and the system's internal needs TP. 

D = P - T P  
= ( I - T ) P  

(I_T)-JD=(I_T)-~(I_T)p 
( I -T) - 'D=IP 
( I -  T)-' D= P 

200 ] 

200) 

P=(I-T)- 'D= 

579.25] 
572.31~ 
476.21 ] 
464.83) 

Figure 4. Leontief matrix problem and solution. 
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The fo l lowing lesson excerpt  i l lustrates h o w  three s tudents ,  Ner ida ,  He len ,  a n d  
Edward ,  in teracted wi th  each other  a n d  wi th  their  calcula tors  as they t ack led  the 
Leonfief  problem.  

Nerida: Yeah, it's the identity of ... the inverse of the I take away T is supposed to 
be a four by four, and the four by four times the one column one ... the 
answer's got to be four rows, one column. 

Helen: I got four columns, one row! (holds up her calculator for Nerida to see) 
Look, I know I got that. Is that right? 

Nerida: (inspects Helen's calculator screen) I haven't  done it like that. 
Helen: What did you get, Edward? 
Edward: (still pressing buttons) Ah, just give me a minute. 

Ner ida  fa l tered for a m o m e n t  in descr ibing the inverse  of the iden t i ty  mat r ix ,  b u t  
recovered  to reason  out  that  the  answer  mus t  be a matr ix  w i t h  four  r o w s  a n d  one  
column.  

Nerida: (to herself) Row, column. (balances calculator on her head as she thinks) 
Helen: (to Nerida, looking at her calculator screen) How did you get that? (no 

reply, issues general plea to whole class) Has anyone done it? 
Nerida: Yeah, in about two seconds. (to herself) Give it a name. What was the 

other one called? Three by one is 200, 200, 200 (entering elements of 
demand matrix) Okay! 

Edward: (to Nerida) All righty, what have you got? 
Nerida: Hang on, I got it! (verbalises keystrokes) D times "Kan" (label for her 

matrix) (groans and lowers head to desk) 
Helen: What happened? 
Nerida: (reading dejectedly from calculator screen) "Dimension problem"! 
Helen: Did you go 200 down that way or across? 
Nerida: Down. 
Helen: I've got to check that. 

In this exchange,  Ne r ida  in te rac ted  wi th  the calcula tor  a lmos t  as w i th  a h u m a n  
par tner ,  verba l i s ing  the m e n u  choices and  keyst rokes  and  r e s p o n d i n g  w i t h  despa i r  
w h e n  the calcula tor  r e tu rned  a n  error  message.  

Helen: Edward ... (he is not listening, talking to another student) Edward! 
(Helen taps his arm) What did you get? 

Edward: (turns back to Helen) This! (indicating calculator screen) I wrote all that 
(indicating pen and paper notes) to get that! 

Helen: (inspects Edward's screen carefully, compares with her own) Oh my 
God, oh my God! I got it right! 

Edward: (grinning at Helen's excitement) Happy now? 
Helen: (jumping up and down) Yes, very happy! 
Edward: Good! 

Note  the in tense  emot iona l  r e sponse  engende red  by  He len ' s  i n v o l v e m e n t  w i t h  the 
task and  the t e c h n o l o g y - - a p p a r e n t  in her  surpr ise  and  de l igh t  as she "got  it r ight!"  

Helen ' s  a t t en t ion  then  t u r n e d  to her  f r iend Ner ida ,  w h o  was  still unab l e  to 
recognise her  error  in key ing  on ly  three entries for the d e m a n d  matr ix  in s t ead  of 
four.  

Nerida: (still trying to identify the source of her error) Maybe my inverse is 
wrong. 
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Edward: (to Nerida, wanting to help) So what did you get? What did you get? 
Helen: (to Nerida) What did you get for your inverse? 
Nerida: (dejected) It tells me there's a dimension error, and I don't know why. 
Edward: Did you get that? (passing his calculator to Nerida so she can look at his 

working) 
Helen: (also showing her calculator working to Nerida) It should be that. 
Nerida: (comparing her working with the other two screens) That's what I had! 
Helen: So then you ... 
Nerida: (puzzled, comparing screens with Edward) Is that what you have? It's 

exactly the same as mine! 
Helen: Yeah, and you times that by 200, 200, 200 down (referring to demand 

matrix) 
Nerida: (sudden insight) Oh hang on ... That should bed:our ... Oh God! 
Helen: What did you do? 
Nerida: I didn't do four 200s! 
Helen: Oh you big dork! (Nerida and Helen laugh) You've only got three 200s! 

(referring to number of entries in demand matrix--there should be four 
rows, not three) 

Nerida: (chastened) God I'm a moron! (talking to her calculator as she presses 
buttons) Second, quit. Now ... (re-does the calculation. Asks Helen) Did 
you get that? 

Helen: (inspects Nerida's screen) Yeah! (Nerida jumps up from her seat in 
delight) 

Edward: (to Nerida) Look at mine. 
Nerida: (goes over to Edward) Did you get this? (Edward holds both calculators 

up side by side, compares his screen with Nerida's. Nerida pulls his hair 
when he deliberately hesitates in replying.) 

Edward: (with cheeky grin) Yes! 
Nerida: Thank you! 

In this lesson, the intended role for technology is that  of a servant; for example, 
in the context of learning about matrices, one s tudent  commented  that technology 
can "speed up the process of messy calculations and help you concentrate on the 
whole problem".  However ,  the segment pr imari ly  illustrates how technology can 
become a surrogate partner as students verbalise their th inking in the process of 
locating and  correcting an error. Even the most  faithful t ranscript  cannot  do justice 
to the students" actions, gestures, tone of voice, and facial expressions in situations 
such as this. They clustered around their calculators, ho ld ing  them up side by side 
to compare the work ing  on the screens, sometimes passing them back and  forth to 
emphasise points  as they spoke. Nerida even imagined her calculator spoke to her: 
"It tells me there 's  a dimension error". Not only did the calculator ou tput  provide  a 
st imulus for peer  discussion, but  the students also invested the technology with 
h u m a n  qua l i t i es - -an  interesting counterpoint  to the claim of Shneiderman et al. 
(1998) that educat ional  use of technology can strengthen h u m a n  relat ionships but 
never  replace them. 

Extending the mathematical self. A final example demonstrates  the level of 
sophistication wi th  which students can integrate a var iety of technological 
resources into the construction of a mathematical  argument.  The task, which  came 
from a unit  of work  des i~ led  to introduce students to i teration as one of the central 
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ideas in chaos theory, required them to use iterative methods to find the 
approximate roots of the equation x 3 - 8x - 8 = 0 (see Goos, 1998, for a fuller 
description of this task). The equation is expressed in the form x = F(x), and a first 
approximation to the solution is obtained by estimating the point of intersection of 
the curves y = x and y = F(x). The solution is conveniently done using a two-column 
spreadsheet, with one column containing the input x-values and the second column 
containing the outputs F(x)--with each F(x)-value becoming the input for the 
subsequent iteration. Figure 5 shows the calculation when F(x) = x3/8 - 1. Cell B4 
contains the formula =(1/8)*((A4)^3)-1and cell A5 contains =B4, both these 
formula then being copied down into the other cells in these columns. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

A B C D E 
as x=x^3/8-1 x/~3-8x-8=0 rearranged 

X 

-1.5 
-1.421875 

F(x) 
-1.421875 
-1.35933065 
-1.31396797 -1.35933065 

-1.31396797 -1.28357265 
-1.28357265 -1.26434517 
-1.26434517 -1.25264282 
-1.25264282 -1.24569243 
-1.24569243 -1.24162534 
-1.24162535 -1.23926640 

Figure 5. Spreadsheet method for solving equation by iteration. 

Depending on the way in which the original equation is rearranged and the 
initial value chosen, the iteration may converge on a solution or generate 
increasingly large outputs and hence no solution. After some trial and error, 
Steve's students were systematic in testing initial values and persistent in searching 
for rearrangements that would yield all three roots (-2, -1.236, and 3.236). Table 2 
shows some of the formulae and initial values which they investigated. Note that 
the spreadsheet program they were using, Claris Works 2.0, could not evaluate the 
cube root of negative, numbers. The students found a way around this problem 
using the absolute value function. 

Goos (1998) found that students attempting this task quickly discovered that 
they could create an alternative, graphical, representation of the problem using 
graphing software. Plotting the graphs of y = x and y = F(x) enabled students to 
make a realistic first approximation to the roots of the equation. However, the 
students participating in the present study chose to use their calculators to 
reproduce the graphs initially plotted on the computer, as this enabled them to 
view the spreadsheet (computer screen) and graph (calculator screen) 
simultaneously. 
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Table 2 
Some Formulae and Initial Values Investigated in Finding the Roots of x 3 - 8x - 8 = 0 

Formula (algebraic and spreadsheet forms) 

h~tial value X3/8  - 1 (8X + 8) 1/3 -18X + 8 I 1/3 

(1/8)*((A2)A3)-1 (8"A2+8)^(1/3) - ABS(8*A2+8)A(1/3) 

x < -2 no solution not defined -2 

-2 < x < -1.236 -1.236 not defined -2 

-1.236 < x < -1 -1.236 not defined -2 

-1 < x < 3.236 -1.236 3.236 not valid 
x > 3.236 no solution 3.236 not valid 

This is a challenging task, and students rarely find all three roots without some 
prompts from the teacher. When one group of students in Steve's class did so, the 
teacher made a spur of the moment decision to ask them to present their solution to 
the whole class via the laptop computer and data projector. With no time for 
rehearsal, the students shared the tasks of operating the computer keyboard, data 
projector remote control (which permits scrolling and zooming independently of 
the computer) and laser pen, while coordinating their explanatioas (supplemented 
with calculator output) and answering questions from their peers. Mathematical 
and communications technologies were smoothly incorporated into their unfolding 
argument, and were used to link different representations of the equation-solving 
task and to clarify and elaborate on points raised by fellow students and the 
teacher. 

Conclusion 
In their review of research on the use of graphics calculators in mathematics 

education, Penglase and Arnold (1996, p. 85) concluded that "approaches to 
teaching and learning which emphasise problem solving and exploration, and 
within which students actively construct and negotiate meaning for the 
mathematics they encounter, find in this new technology a natural and 
mathematically powerful partner". While the findings presented here suggest that 
this is the case in some of the classrooms participating in our research program, the 
relationship between technology usage and teaching/learning environments is not 
one of simple cause and effect. The metaphors of master, servant, partner, and 
extension of self are intended to capture some of the diversity of teacher and student 
interactions in technology-rich classrooms. 

It seems natural for teachers to use new technologies such as graphics 
calculators and overhead projection panels in ways that are consistent with 
preferred teaching methods. However, teaching with technology need not--and 
perhaps should not--simply be a matter of grafting this to61 onto existing 
pedagogical practices. For example, likening the graphics calculator to a portable 
computer, or the overhead projection panel to an electronic blackboard, obscures 
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important qualitative differences between old and new technologies and may limit 
the scope of what teachers and students are able to achieve in the classroom. 

In contrast, research that seeks out emergent (i.e., unplanned, unanticipated) 
uses of technology reveals that the calculator and projection panel are not passive 
or neutral objects, since these technologies are actively re-shaping human 
interactions and interactions between humans and the technology itself. For 
example, even though the graphics calculator is designed as a personal 
mathematical tool it can facilitate social interaction and sharing of knowledge. This 
personalisation of technology is evident in the way that the graphics calculator is 
incorporated almost as a human partner into face-to-face discussions between 
students. A more public form of interaction occurs when students are invited to 
present their calculator work to the whole class via an overhead projection panel. 
When control of the discussion is handed over to students, the panel is no longer 
simply a presentation device--instead, it becomes a discourse tool that mediates 
interaction between students at a whole class level. This is a class-wide form of 
collaborative inquiry that is facilitated by the public display and interrogation of 
mathematical ideas. 

Introducing new mathematical and communication technologies into 
classrooms can change the ways that knowledge is produced. Implicit in these 
changes are a number of challenges for teachers, the most obvious of which 
involves becoming familiar with the technology itself. While this aim will remain a 
significant professional development focus (as Penglase & Arnold, 1996, point out), 
more attention needs to be directed to the inherent mathematical and pedagogical 
challenges in technology-enhanced classrooms if the goal of a problem-solving and 
investigative learning environment is to be realised. For example, placing graphics 
calculators in the hands of students gives them the power and freedom to explore 
mathematical territory that may be unfamiliar to the teacher; and for many 
teachers, this challenge to their mathematical expertise and authority is something 
to be avoided rather than embraced. Perhaps the most significant challenge for 
teachers lies in orchestrating collaborative inquiry to share control of the 
technology with students. The research reported in this paper has begun to 
consider such emergent uses of technology in re-shaping social interaction patterns 
in mathematics classrooms. 
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