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Security of continuous-variable quantum cryptography with Gaussian postselection
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We extend the security analysis of continuous variable quantum-key-distribution protocols using a family of
post selection schemes to account for arbitrary eavesdropping attacks. We show that the postselection protocol
is equivalent to a virtual entanglement-based protocol including a distillation stage. We introduce a particular
‘Gaussian’ post selection and demonstrate that the security can be calculated using only experimentally
accessible quantities. Finally, we explicitly evaluate the performance for the case of a noisy Gaussian channel
in the limit of unbounded key length and find improvements over all pre-existing continuous variable protocols
in realistic regimes.
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Quantum key distribution (QKD) is the process of gen-
erating a common random key between two parties using a
quantum communications protocol. The power of this method
is that the security of the key distribution, and the subsequent
communication via a one time pad, is established while making
no assumptions about the technological capabilities of an
eavesdropper. This procedure also has the distinction of being
the most developed quantum information technology [1].

There are two main flavors of QKD, discrete variable (DV)
and continuous variable (CV), which are realized by encoding
and then detecting single photons [2] and the quadrature
variables of the optical field [3], respectively. The latter kind,
which we consider here, has the advantage of higher raw
bit rates due to the high efficiency and high bandwidth of
homodyne detection and ease of integration with the existing
communications infrastructure. CV protocols that employ
postselection [4]—a classical filtering of the measurement
results—enjoy additional advantages in terms of versatility
and reconciliation efficiency. Asymptotic (in the sense of string
length) unconditional security for protocols that do not employ
postselection is achieved by first noting the equivalence of
an experimentally implemented prepare and measure (P&M)
scheme to an entanglement-based (EB) version [5], originally
proposed in the DV context [6]. This is followed by the
result that, for collective attacks, security may be bounded
from below by assuming that the entangled state at the end
of the protocol is Gaussian [7,8] and, finally, a proof that
collective attacks are asymptotically optimal [9]. However,
for protocols using post-selection (PS) this analysis cannot be
straightforwardly applied as an equivalent entanglement based
picture has yet to be constructed, with security only shown
under the assumption of a Gaussian eavesdropping attack [10].

Here we fill this gap and hence demonstrate unconditional
security for postselected CVQKD following the proof method
used in [8]. In particular, we construct an EB scheme in
which the postselection is replaced by equivalent heralded state
transformations. We show we are able to straightforwardly
construct the necessary parameters of this EB scheme from ex-
perimental data providing a realistically obtainable bound for
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the case of collective attacks and hence asymptotically uncon-
ditional security. This extension only holds automatically if the
postprocessing is independent under permutations of Alice and
Bob’s subsystems. This is the case for the protocol considered
here, as the postselection decision for an individual measure-
ment depends only upon that measured value and an ensemble
average, with the order of measurements being immaterial.

Security of CVQKD. In general one equates each protocol
in which the sender (Alice) prepares an ensemble of quantum
states based upon a classical random probability distribution
and sends it through the domain of the eavesdropper (Eve) to
the recipient (Bob), to an entanglement based scheme in which
Alice prepares an entangled state one half of which is kept and
used for a projective measurement and the other transmitted
to Bob again through Eve’s domain. The proper choice of
the initial entangled state and the projective measurement by
Alice allows us to rigorously express any prepare and measure
schemes [5].

Bob performs a quadrature measurement upon his received
states and then Alice and Bob engage in a reconciliation
procedure to correct the errors in their shared classical string.
The secret key rate for the entire protocol is then given by [1]

K = βI (a : b) − I (E : X), X ∈ {a,b} (1)

where I (a : b) is the Shannon mutual information between
classical strings belonging to Alice and Bob at the end of the
protocol, β is the efficiency of their reconciliation procedure,
and I (E : X) is the quantum mutual information between
either Eve and Bob, if considering reverse reconciliation pro-
tocols, or Eve and Alice, if considering direct reconciliation.

Eve’s mutual information is given by the purification of the
entangled state before and after Alice or Bob’s measurement.
For example, the direct reconciliation expression is [7,8]

I (E : a) = S(ρE) − S(ρE |a) = S(ρAB) − S(ρB |a) (2)

with the von Neumann entropy given by S(ρ) = −tr(ρ log ρ),
and for the second equality we have used the fact that the
overall tripartite state |ABE〉 is pure. This quantity is not
easy to calculate in general but it has been shown that we
may bound Eq. (1) from below by analyzing a Gaussian [7,8],
symmetric [11] state with the same first and second moments.
For Gaussian states, the von Neumann entropy is obtained
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straightforwardly and thus the security of the entire protocol
can be characterizsed entirely by the covariance matrix of the
entangled state shared by Alice and Bob.

Equivalent postselection scheme. While reverse reconcil-
iation can be shown to be secure for arbitrary losses in the
absence of noise, for any nonzero amount of excess noise
the secure distance is inevitably finite. One could attempt
to address this by increasing the input signal modulation,
however, any imperfection in the reconciliation process
(β < 1) means that optimizing the modulation can also only
lead to a finite improvement. On the other hand, direct
reconciliation is significantly more tolerant to excess noise but
only successful when the channel loss is below 50% or 3 dB.

All of these detrimental effects can be improved using
postselection [4], a technique in which values in the space
of Bob’s possible quadrature measurement results and Alice’s
quadrature encoding are probabilistically reweighted and only
these new distributions are kept to form the key. Intuitively one
would expect this strategy to yield an advantage, as the eaves-
dropper is effectively shut out of Alice and Bob’s postmeasure-
ment collaboration. This improved performance comes at the
price of not being able to directly apply Eq. (2), as this would
not allow for Eve’s knowledge of Alice and Bob’s postselec-
tion. This can be accounted for as long as one can keeps track
of the way postselection by one party influences the state of the
other in the equivalent EB scheme which we now demonstrate.

In general, one postselects by applying a weighting
function to achieve a new probability distribution in the

chosen measurement basis, p(x)
PS−→ w(x)p(x) = p′(x). The

normalization of p′(x) gives the amount of data retained while
transitioning from the initial to the postselected ensemble.
Alternatively, one could apply an appropriate transformation
consisting of a unitary acting on the mode in question
together with an auxiliary mode(s) which is(are) subsequently
traced out. A useful postselection will correspond in the EB
scheme to achieving some amount of distillation of the virtual
entanglement, inevitably along with some additional noise.
This setting is represented in Fig. 1. The probabilistic nature
of the postselection corresponds to Bob’s first operation being
a nondeterministic but heralded distillation operation (UD)
followed by appropriate deterministic unitary interactions cor-
responding to the noise addition and Bob’s final measurement.

FIG. 1. (Color online) Equivalent entanglement-based version of
a postselected protocol. Alice distributes one arm of an entangled state
through Eve’s domain to Bob and makes a projective measurement UA

(giving classic output a) corresponding to an ensemble of states sent
in a prepare-and-measure scheme. Bob passes his arm first through
a device that probabilistically distills entanglement, UD , and then
makes a potentially noisy measurement, UB , giving classical output
bPS. The heralding signal of UD (h) is given to Eve but the remaining
ancillae are kept within the stations of Alice and Bob.

In this picture Eve’s additional knowledge gained when
Alice and Bob apply a postselection is reflected by the state
ρAB in Eq. (2) being identified with the state conditioned on
successful heralding of Bob’s first operation, i.e., given the
result of UD but not UB . After all ancillae are traced over, the
outputs of UA and UB give classical strings a and bPS which
exactly match the experimental results for the postselected
ensemble. Note that, as usual, we consider the secure station
scenario where the ancillae remaining within the laboratories
of Alice and Bob are not attributed to the eavesdropper.

The worst-case scenario would correspond to the final state
being Gaussian [7,8] so if one is able to uniquely identify
a Gaussian collection of unitaries and ancillae that result in
the same measurement statistics, then the key rate of that
state will provide a lower bound for the postselected protocol.
Furthermore, this necessitates that the distillation operation
itself produces a Gaussian output, which leads us to conclude
that the distillation appearing in the EB scheme used for
bounding the key rate should be the noiseless linear amplifier
of [12] and [13]. Denoting s a successful run of the distillation,
we can think of the whole postselection as UPS = UDUB and

the resultant state as ρPS = (Us
PS)†ρABUs

PS
tr[(Us

PS)†ρABUs
PS] . One may then write

Eve’s information on the postselected ensemble for direct
reconciliation as

IPS(E : a) = S(ρPS) − S(ρPS|a) � S
(
ρG

PS

) − S
(
ρG

PS

∣∣a)
, (3)

where ρG
PS is a Gaussian state with the same covariance matrix.

If the postselection is perfectly Gaussian, then there will
be an exact equivalence between the EB scheme and the
protocol as carried out and these bounds should be tight.
If the postselection is non-Gaussian, the two schemes will
only be effectively equivalent to the extent of having the
same covariance matrix and the same (loose) lower bound
for the key rate. This method is thus applicable to highly
non-Gaussian postselection, however, demonstrating that the
covariance matrix of the equivalent Gaussian setup can be
obtained from measured data is nontrivial and may be more or
less experimentally demanding, depending upon the particular
form of the postselection.

Gaussian postselection. We consider a particular P&M
scheme [Fig. 2(a)], in which Alice draws values (xA,pA) from
a bivariate Gaussian of 0 mean and variance VA and uses
these numbers to displace the vacuum to create an ensemble
of coherent states of the form |xA + ipA〉, which she sends
to Bob through a quantum channel. Bob uses homodyne
detection on his received states, randomly switching between
amplitude and phase quadratures given by x̂ = â + â† and
p̂ = i(â† − â), where we have normalized the shot-noise
limit to unity. Bob then filters his results with the goal of
selecting an ensemble which is a Gaussian distribution with
a certain target variance VPS. For the most common case of a
Gaussian channel Bob’s input distribution is another Gaussian
of variance VB and the appropriate weighting function would
look like w(x) = √

VB/VPS exp(−x2(1/VPS − 1/VB )). In the
relevant case VPS > VB this function is convex, so in order to
obtain a proper probability distribution we choose some end
points ±�, renormalize the function to the value at this point,
and set all values outside this range to unity. For a Gaussian

020303-2



RAPID COMMUNICATIONS

SECURITY OF CONTINUOUS-VARIABLE QUANTUM . . . PHYSICAL REVIEW A 87, 020303(R) (2013)

FIG. 2. (Color online) Prepare-and-measure (P&M) and effective
entanglement-based versions of a protocol using Gaussian post-
selection. (a) P&M scheme: Alice uses two classical Gaussian
strings (xA,pA) to prepare and transmit an ensemble of coherent
states to Bob, who homodyne detects and then applies a Gaussian
weighting function. (b) Effective EB scheme: Alice distributes one
arm of an EPR pair and makes a heterodyne measurement, obtaining
measurement results equivalent to (xA,pA). Bob first passes his arm
through an NLA, classically amplifies via a vacuum-seeded two-mode
squeezer (TMS), then mixes his mode with one arm of another
entangled pair (EPRB ) on a beamsplitter. He finally homodyne detects
and obtains exactly the measurement results from the P&M scheme.
The heralding signal of the NLA is given to Eve but the unmeasured
ancillae are kept within Bob’s station.

input state the exact filter function is

W (x) = N

[
1 +

(
w(x)

w(�)
− 1

)
[�(x + �) − �(x − �)]

]
,

(4)

where �(x) is the Heaviside step function and the fraction of
data kept is the renormalization N . When � is 0 this operation
is the identity. As � → ∞ it results in a Gaussian distribution
of variance VPS and in between it gives a slightly non-Gaussian
state with variance VB < V < VPS. Finally, Alice and Bob
publicly announce a subset of their data to characterize the
covariance matrix on both the initial and the postselected
ensemble and, if secure, engage in reconciliation and privacy
amplification to distill a completely secure key. Notice that
although the weight function is smooth instead of hard edged,
it is determined entirely by Bob and the only information he
sends to Alice is a “keep or reject” signal.

The equivalent entanglement-based scheme [Fig. 2(b)]
involves Alice preparing a two-mode squeezed vacuum or
EPR state, one mode of which she keeps and measures, the
other being transmitted to Bob. Alice’s makes a heterodyne
detection, whereas Bob’s measurement, depending upon the
target variance, decomposes into a combination of a noiseless
amplification/distillation followed by classical amplification
and, finally, some additional noise. The necessary Gaussian
entanglement distillation is achieved via the noiseless linear
amplifier (NLA) [12,13], with the classical amplifier and
additional noise corresponding to a two-mode squeezer with
vacuum ancilla and a beamsplitter with an EPR pair ancilla,
respectively. If we can uniquely characterize Gaussian oper-
ations that perform the necessary transformations from the
transmitted to the postselected ensemble at the level of the
covariance matrix, then we can apply the above proof and
determine the security.

To illustrate this method we evaluate the performance
for the noisy Gaussian channel, completely parametrized by
transmission T and excess noise ξ [14]. One can calculate
the action of an NLA on an EPR state sent through a general
Gaussian channel [15,16], with the result being an effective
protocol for which stronger entanglement was distributed
through a channel with less loss but greater excess noise,
leading to an overall advantage. Inverting the expression
between the gain of the NLA and the effective entanglement
generated gives the relationship

g = 1 + 2
(
V PS

A − VA

)
T

(
VA

(
2 + V PS

A − ξ
) + V PS

A ξ
) , (5)

where V PS
A is the effective variance that uniquely identifies the

gain of the NLA based only upon Alice’s modulation variance
before (VA) and after (V PS

A ) postselection of the measured
channel parameters.

Bob and Alice’s other operations are just beamsplitters and
two-mode squeezing, their effect on the covariance matrix
being given by the appropriate symplectic transformations
[17]. Given Alice and Bob’s measurement of the covariance
matrix before and after the postselection, straightforward
algebra allows us to characterize all parameters in Fig. 2 and
thus unconditionally bound Eve’s information via Eq. (3). The
crucial trade-off in this scheme is between a large postselection

FIG. 3. (Color online) Improvement in secret key rates due to
Gaussian postselection. (a) Direct reconciliation with postselection
(solid lines) and without postselection (dashed lines) as a function
of loss for ξ = {0.1,0.2,0.3} with decreasing key rate. (b) Reverse
reconciliation with postselection (solid lines) and without postselec-
tion (dashed lines) as a function of loss for ξ = {0.02,0.03,0.05} with
decreasing key rate. For all plots β = 0.9 and the modulation variance
is numerically optimized [15].
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to improve the effective channel and the proportion of
measurement results that are discarded.

We plot the actual key rate (that is, the key multiplied by
N to account for symbols thrown away in the postselection)
as a function of the distance of a coherent-state homodyne
protocol (Fig. 3) for both direct and reverse reconciliation,
along with the case without postselection for comparison. In
all plots the reconciliation efficiency is taken to be a constant
value of β = 0.9 and for each point Alice’s modulation
variance is independently optimised for each protocol along
with the parameters (�, VPS) for the postselected scheme.
For these realistic experimental parameters the postselection
protocol allows for secure key generation over long distances
(in combination with RR) and for greater excess noise (in
combination with DR) than any previous coherent-state proto-
col. Finally, the presence of an NLA in the effective Gaussian
circuit leads one to compare these results with those in [16].
We find that almost all of the improvements shown there
are recovered by our classical postprocessing scheme. This
leads one to conclude that an NLA placed just before Bob’s
detectors will not lead to a benefit for QKD over and above that
of postselection.

Conclusion. In conclusion, we have shown how the security
of postselection-based CVQKD can be analyzed for arbitrary
collective attacks and asymptotically extendable to all attacks
if invariant under subsytem permutation. This was achieved
by identifying an entanglement-based scheme that correctly
reflects the postselected ensemble that is used in the final key
generation. Results for a particular Gaussian form of postse-
lection show improvements in performance over all previous
coherent-state protocols for certain relevant combinations of
loss and noise. Avenues for further work include the inves-
tigation of other postselection filters, with a view to proving
which is optimal, the incorporation of finite-size effects, and
the combination of postselection with other protocols.

Note added. Recently, we were made aware of an indepen-
dent work showing the equivalence between Gaussian PS and
NLA for heterodyne measurements [18].
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