
Faster Base64 Encoding and Decoding using AVX2 Instructions

WOJCIECH MUŁA,
DANIEL LEMIRE, Université du Québec (TELUQ)

Web developers use base64 formats to include images, fonts, sounds and other resources directly inside
HTML, JavaScript, JSON and XML files. We estimate that billions of base64 messages are decoded every day.
We are motivated to improve the efficiency of base64 encoding and decoding. Compared to state-of-the-art
implementations, we multiply the speeds of both the encoding (≈ 10×) and the decoding (≈ 7×). We achieve
these good results by using the single-instruction-multiple-data (SIMD) instructions available on recent Intel
processors (AVX2). Our accelerated software abides by the specification and reports errors when encountering
characters outside of the base64 set. It is available online as free software under a liberal license.

CCS Concepts: •Theory of computation→ Vector / streaming algorithms;

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Binary-to-text encoding, Vectorization, Data URI, Web Performance

1. INTRODUCTION
We use base64 formats to represent arbitrary binary data as text. Base64 is part of the
MIME email protocol [Linn 1993; Freed and Borenstein 1996], used to encode binary
attachments. Base64 is included in the standard libraries of popular programming
languages such as Java, C#, Swift, PHP, Python, Rust, JavaScript and Go. Major
database systems such as Oracle and MySQL include base64 functions.

On the Web, we often combine binary resources (images, videos, sounds) with text-
only documents (XML, JavaScript, HTML). Before a Web page can be displayed, it is
often necessary to retrieve not only the HTML document but also all of the separate
binary resources it needs. The round-trips needed to retrieve all of the resources
are often a performance bottleneck [Everts 2013]. Consequently, major websites—
such as Google, Bing, and Baidu—deliver small images within HTML pages using
the data URI scheme [Masinter 1998]. A data URI takes the form “data:<content
type>:;base64,<base64 data>”. For example, consider the img element

where the text “R0lGODl. . . ” is a base64 representation of the binary data of a GIF image.
Data URIs are supported by all major browsers [Johansen et al. 2013]. We estimate
that billions of pages containing base64 data are loaded every day.

Base64 formats encode arbitrary bytes into a stream of characters chosen from a list
of 64 ASCII characters. Three arbitrary bytes can be thus encoded using four ASCII
characters. Though base64 encoding increases the number of bytes by 33%, this is alle-
viated by the commonly used text compression included in the HTTP protocol [Fielding
et al. 1999]. The size difference, after compression, can be much smaller than 33% and
might even be negligible [Calhoun 2011].

Base64 has many applications on the Web beyond embedding resources within HTML
pages as an optimization:

— The recently introduced Web Storage specification allows Web developers to store text
data (including base64-encoded resources) persistently within the browser [Hickson

This work is supported by Natural Sciences and Engineering Research Council of Canada, grant 261437.
Author’s addresses: D. Lemire, Université du Québec (TELUQ), 5800, Saint-Denis street, Montreal (Quebec)
H2S 3L5, Canada.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by R-libre

https://core.ac.uk/display/150449188?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2016]. With Web Storage, developers can ensure that base64-encoded images and
fonts are cached in the browser.

— Similarly, base64 embeds binary data within XML and JSON files generated by web
services, as these text-only formats do not otherwise allow binary content. A Web page
can retrieve XML and JSON documents and decode the corresponding dynamically-
generated binary resources on the fly. Correspondingly, several database systems
frequently code and decode base64 strings even though they store binary data as
binary:
— MongoDB normally receives and sends binary data as base64-encoded strings [Mon-

goDB 2017].
— Elasticsearch accepts binary values as base64-encoded strings [Elastic 2017].
— SQL Server users can add the BINARY BASE64 qualifier when issuing FOR XML

queries, so that the generated XML encodes binary objects using base64 [Microsoft
2017].

— Amazon SimpleDB automatically encodes data sequences that are not valid in XML
using base64 [Amazon 2015].

— Amazon DynamoDB supports binary attributes, but they are normally exchanged
in a base64-encoded form within JSON documents [Amazon 2017]. Crane and Lin
report that decoding binary attributes from base64 is slow [Crane and Lin 2017].

Base64 can also be used for security and privacy purposes. Credentials are often stored
and transmitted using base64, e.g., in the HTTP Basic authentication method. There
are also more advanced applications:

— Many systems allow users to communicate text more freely than binary data. Using
this principle, Tierney et al. use base64 to allow users to share encrypted pictures
on social networks [Tierney et al. 2013], even when such networks do not natively
support this feature.

— Moreover, even when multiple HTTP queries to retrieve resources are efficient, they
make it easier for adversaries to track users. Indeed, TCP/IP packet headers cannot
be encrypted and they reveal the size of the data, as well as the destination and source
addresses. Thus even encrypted Web access may not guarantee anonymity. Tang and
Lin show that we can use base64 to better obfuscate Web queries [Tang and Lin 2015].

Encoding and decoding base64 data is fast. We do not expect base64 decoding to be
commonly a bottleneck in Web browsers. Yet it can still be much slower to decode data
than to copy it: e.g., memcpy may use as little as 0.03 cycles per byte while a fast base64
decoder might use 1.8 cycles per byte on the same test (and be 60× slower), see Table VI.
Because base64 is ubiquitous and used on a massive scale within servers and database
systems, there is industry interest in making it run faster [Char 2014].

Most commodity processors (Intel, AMD, ARM, POWER) benefit from single-
instruction-multiple-data (SIMD) instructions. Unlike regular (scalar) instructions,
these SIMD instructions operate on several words at once (or “vectors”). For example,
recent x64 processors benefit from AVX2 instructions, operating on 256-bit vectors.
Though compilers can automatically use these instructions, it may be necessary to
design algorithms with SIMD instructions in mind for best speed. Unlike regular (or
“scalar”) instructions operating on single words, SIMD instructions operate on several
words at once. We refer to these groups of words as vectors. These vectors are imple-
mented as wide registers within the processors. For example, recent x64 processors
benefit from AVX2 instructions, operating on 256-bit vectors. We treat such vectors as
arrays of 32 bytes, arrays of sixteen 16-bit integers or arrays of eight 32-bit integers.

2

2. BASE64
Base64 code is made streams of 6-bit words represented as ASCII characters. Blocks of
four 6-bit words correspond bijectively to blocks of three 8-bit words (bytes).

— During the encoding of an arbitrary binary stream, each block of three input bytes (or
3× 8 = 24 bits) is unpacked to four 6-bit words (3× 6 = 24 bits). Each of the four 6-bit
words corresponds to an ASCII character. See Algorithm 1. If the length of the input
is not divisible by three bytes, then the encoder may use the special padding character
(’=’). There is one padding character per leftover byte (one or two). The length of a valid
base64 string is normally divisible by four. In some applications, it may be acceptable
to omit the padding characters (’=’) if the size of the binary data is otherwise known.

— Most base64 decoders translate blocks of four ASCII letters into blocks of four 6-bit
integer values (in [0, 63)). Each of these blocks is then packed into three bytes. See
Algorithm 2. When the base64 stream ends with one or two padding characters (’=’),
two or one final bytes are decoded.

ALGORITHM 1: Base64 encoding
Require: A stream s of n bytes, indexed as s0, s1, . . . , sn−1 ∈ [0, 256)
Require: A function B mapping values in [0, 64) to ASCII characters (e.g., see Table I)
1: p← empty buffer of ASCII characters
2: for i in 0, 3, . . . , n− (n mod 3)− 3 do
3: append B(si ÷ 4) to p
4: append B(((si × 16) mod 64) + (si+1 ÷ 16)) to p
5: append B(((si+1 × 4) mod 64) + (si+2 ÷ 64)) to p
6: append B((si+2 mod 64)) to p
7: end for
8: i← n− n mod 3
9: if i < n then
10: append B(si ÷ 4) to p
11: if i = n− 1 then
12: append B(((si × 16) mod 64)) to p
13: append padding character ’=’ to p
14: else if i = n− 2 then
15: append B(((si × 16) mod 64) + (si+1 ÷ 16)) to p
16: append B(((si+1 × 4) mod 64)) to p
17: end if
18: append padding character ’=’ to p
19: end if
20: return p

Base64 standards define a lookup table to translate between 6-bit values (in [0, 63))
and ASCII characters. We consider the standard [Josefsson 2006] where the following
characters are used: A . . . Z, a . . . z, 0 . . . 9, + and /, as in Table I. Unless otherwise
specified, the decoder should report an error when characters outside of this set are
encountered.

Sometimes, we want to encode binary data within an URL where the ’+’ and ’/’
characters have special meaning. Thus we may choose an instance of base64 called
base64url [Josefsson 2006]. The sole difference is that value 62 is represented by ’-’
instead of ’+’ and the value 63 is represented by ’ ’ instead of ’/’. Thus base64url avoids
using the characters ’+’ and ’/’, and a base64url text can be safely included in an
URL. The JSON Web Signature proposal relies on base64url [Jones et al. 2015]. Our

3

ALGORITHM 2: Base64 decoding
Require: A stream c of n ASCII characters, indexed as C0, C1, . . . , cn−1, n must be divisible by 4
Require: A function A mapping ASCII characters to values in [0, 64) (e.g., see Table I), using

the conventional that the padding character ’=’ has value 0, and returning a negative integer
if an unsupported ASCII character is found

1: p← empty buffer of bytes used to store values in [0, 256)
2: for i in 0, 4, . . . , n− 4 do
3: a← A(Ci)
4: b← A(Ci+1)
5: c← A(Ci+2)
6: d← A(Ci+3)
7: if any of a, b, c, d is negative then
8: report an error as unexpected character was encountered (based on Table I)
9: end if
10: append byte value (a× 4) + (b÷ 16) to p
11: if Ci+2 is the padding character (’=’) then
12: return p
13: end if
14: append byte value (b× 16) mod 256 + (c÷ 4) to p
15: if Ci+3 is the padding character (’=’) then
16: return p
17: end if
18: append byte value (c× 64) mod 256 + d to p
19: end for
20: return p

Table I: Base64 mapping between 6-bit values and ASCII characters. For each ASCII
character, we also provide the code point or byte value as an hexadecimal number. The
’=’ character pads the end of the stream if the number of bytes is not divisible by 3.

value ASCII char value ASCII char value ASCII char value ASCII char

0 0x41 A 16 0x51 Q 32 0x67 g 48 0x77 w
1 0x42 B 17 0x52 R 33 0x68 h 49 0x78 x
2 0x43 C 18 0x53 S 34 0x69 i 50 0x79 y
3 0x44 D 19 0x54 T 35 0x6a j 51 0x7a z
4 0x45 E 20 0x55 U 36 0x6b k 52 0x30 0
5 0x46 F 21 0x56 V 37 0x6c l 53 0x31 1
6 0x47 G 22 0x57 W 38 0x6d m 54 0x32 2
7 0x48 H 23 0x58 X 39 0x6e n 55 0x33 3
8 0x49 I 24 0x59 Y 40 0x6f o 56 0x34 4
9 0x4a J 25 0x5a Z 41 0x70 p 57 0x35 5

10 0x4b K 26 0x61 a 42 0x71 q 58 0x36 6
11 0x4c L 27 0x62 b 43 0x72 r 59 0x37 7
12 0x4d M 28 0x63 c 44 0x73 s 60 0x38 8
13 0x4e N 29 0x64 d 45 0x74 t 61 0x39 9
14 0x4f O 30 0x65 e 46 0x75 u 62 0x2b +
15 0x50 P 31 0x66 f 47 0x76 v 63 0x2f /

4

work would be equally applicable to base64url, as the difference between base64 and
base64url has little impact on encoding and decoding algorithms.

2.1. Character Encodings
Base64 was designed with the ASCII character encoding in mind [Josefsson 2006]. In a
document using the ASCII encoding, only seven of the eight bits of each byte is used.
By convention, each ASCII character has a corresponding byte value (also called code
point) in [0, 128).

There are several supersets to the ASCII character encoding (e.g., UTF-8 or ISO 8859-
1): they interpret strings of byte values in [0, 128) as ASCII strings. Only byte values
with the most significant bits set are interpreted differently (e.g., as accented characters
such as ’é’). In other words, if we need to include an ASCII string within a string that
uses a superset of the ASCII character encoding, we only need to copy the byte values.
Thus base64 is practical with all ASCII supersets.

Most Web pages are served using the Unicode format UTF-8 [Davis 2012] which
supports up to 1 114 112 possible characters. Some programming languages (e.g., Go and
Python) also default on UTF-8. XML documents use UTF-8 by default. Conveniently,
UTF-8 is an ASCII superset. In UTF-8, only the ASCII characters can be represented
using a single byte. All non-ASCII characters in UTF-8 require from two to four bytes.

It might seem like base64 is suboptimal: there are many more than 64 distinct
characters. However, there are only 95 printable ASCII characters, and they include
the space and the quotes (" and ’), the ampersand (&) and the less-than sign (<). Thus
there are only about 90 characters that are represented as a single byte in UTF-8 that
would be generally usable in HTML and XML. If we restrict the size of our table to a
power of two, for simplicity and computational efficiency, then 64 characters is best.

2.2. Efficient Scalar Encoding
Throughout, we consider byte values as unsigned integers in [0, 256). Thus we can think
of encoding as mapping a stream of numbers in [0, 256) to ASCII characters.

In the main loop of the encoding Algorithm 1, we combine three-byte values
(si, si+1, si+2) arithmetically into four values in [0, 64), that is

— si ÷ 4,
— ((si × 16) mod 64) + (si+1 ÷ 16),
— ((si+1 × 4) mod 64) + (si+2 ÷ 64)
— and si+2 mod 64.

Then we pass these four values to the function B which looks up the corresponding
ASCII character. In practice, an encoder might implement the function B efficiently as
a lookup table, using a 64-byte array.

Thus, given three input bytes, we get four output characters:

— The first character is generated from the six most significant bits of the first byte
value.

— The second character is determined from the two least significant bits from the first
byte value and from the four most significant bits of the second byte value.

— The third character represents the four least significant bits of the second byte value
and the two most significant bits from the third byte value.

— The last character is determined by the six least significant bits from the third byte
value.

Thus if we write the byte values starting from the left, with the bits within each byte
written from the most significant to the least significant, we have that the first 6 bits

5

from the left determine the first character, the next 6 bits the second character and so
forth.

Example 2.1. Suppose that we need to encode the three byte values 71, 73, 70. We
construct four 6-bit values out of these four bytes:

— 71÷ 4 = 17,
— ((71× 16) mod 64) + (73÷ 16) = 52,
— ((73× 4) mod 64) + (70÷ 64) = 37
— and 70 mod 64 = 6.

We then look-up the resulting 6-bit values 17, 52, 37, 6 in Table I to get the ASCII
characters R, 0, l, G. The string R0lG is the base64-encoded version of the three input
bytes 71, 73, 70.

One of the fastest encoder [Galbreath 2016] (used by the Google Chrome browser)
optimizes the main loop of Algorithm 1 by using several 256-byte arrays. One 256-byte
array represents x → B(x ÷ 4), whereas another represents x → B(x mod 64). This
saves a few operations at the expense of a slightly increased memory usage:

— instead of computing si ÷ 4 and then looking up the resulting index in a table, one can
seek directly si in a larger table, saving the cost of the division by 4 (which can be
implemented as a shift);

— instead of computing si+2 mod 64 before looking up the result in a table, we can seek
si+2 directly in a larger table, saving the cost of the modulo reduction (which can be
implemented with a bitwise AND).

Using additional memory to save a few arithmetic and logical operations may improve
the performance.

2.3. Efficient Scalar Decoding
We assume that the input base64 data is encoded in ASCII or some ASCII superset
such as UTF-8 or ISO 8859-1. In such cases, any non-ASCII character should trigger
an error. If there are white-space characters (e.g., ’ ’, ’\n’ or ’\r’), then they must be
removed prior to decoding (see Appendix B).

Algorithm 2 illustrates a decoding procedure. The main loop of the algorithm consists
of two steps, we first map ASCII characters to 6-bit integer values:

— a← A(Ci),
— b← A(Ci+1),
— c← A(Ci+2),
— d← A(Ci+3).

And then we compute the three output byte values:

— (a× 4) + (b÷ 16),
— (b× 16) mod 256 + (c÷ 4),
— (c× 64) mod 256 + d.

The function A can be implemented as a table lookup.

Example 2.2. Let us consider the following base64 code
R0lGODlhAQABAIAAAP///wAAACwAAAAAAQABAAACAkQBADs=. It represents a small gif
image. To decode it, we may look up each character for the base64 code (except the
terminating ’=’) in Table I and map it to its corresponding value in [0, 64): 17, 52, 37, 6,
14, 3, 37, 33, 0, 16, 0, 1, 0, 8, 0, 0, 0, 15, 63, 63, 63, 48, 0, 0, 0, 2, 48, 0, 0, 0, 0, 0, 0, 16, 0,
1, 0, 0, 0, 2, 0, 36, 16, 1, 0, 3, 44. Then we take each block of 4 consecutive values a, b, c, d

6

and map them to (a) + (b÷ 16), (b× 16) mod 256+ (c÷ 4), (c× 64) mod 256+ d. We must
pay attention to the fact that we are missing one value in the last block because of the
terminating ’=’ which means that, in the processing of this last block, we must produce
only two values, instead of three. The result is the byte values: 71, 73, 70, 56, 57, 97, 1,
0, 1, 0, 128, 0, 0, 255, 255, 255, 0, 0, 0, 44, 0, 0, 0, 0, 1, 0, 1, 0, 0, 2, 2, 68, 1, 0, 59.

The fast decoder used by Google Chrome browser has a streamlined approach for all
but the four last input characters. Instead of a single function A, it uses four distinct
lookup tables (A1, A2, A3, A4) made of 256 32-bit values: a ← A1(Ci), b ← A2(Ci+1),
c← A3(Ci+2), d← A4(Ci+3). Normally, only three of four bytes of each of these 32-bit
values are used, with the remaining byte set to zero. However, whenever an illegal
character is encountered, the extra byte is used as a flag. We compute the bitwise OR
of the four 32-bit values (a, b, c, d): z = a ∨ b ∨ c ∨ d. We choose A1, A2, A3, A4 so that
three bytes of the 32-bit value z are the decoded bytes. In effect, this approach decodes
4 input ASCII characters using four lookup and three bitwise OR, not counting a test
for illegal characters. The details depend on whether the hardware has a big endian
or little endian architecture. This approach uses more memory, but it results in fewer
operations and potentially higher speed.

3. ADVANCED X64 INSTRUCTIONS AND INTRINSICS
Commodity x64 processors benefit from several advanced instructions. Recent compilers
can automatically make use of them without any intervention from the programmer.

However, our experience is that programmers who tune their code to make explicit
use of specific advanced instructions can often see significant performance benefits.
When programming in C and C++, many advanced instructions are available through
special functions called intrinsics (see Table II). Intrinsics enable programmers to
taylor their code to the microarchitecture of their processor without writing assembly
code. Intrinsics are supported by most C/C++ compilers on x64 platforms including
GNU GCC, the Intel C++ Compiler, Microsoft Visual Studio and LLVM’s compilers. We
find it convenient to express our algorithms using intrinsics:

— Intrinsics are portable across a wide range of compilers.
— They allow us to write all of our code in a single language (C).
— They leave technical details such as the assignment of registers to the compiler.

Many of the SIMD instructions and intrinsics are straightforward. For example,
the mm or si128 intrinsic (and its corresponding por instruction) takes two 128-bit
registers and outputs a new 128-bit register made of the bitwise OR of the inputs.

The first vector instructions on x64 processors used 128-bit vectors (starting with the
Pentium 4). Recent commodity x64 processors from Intel (Haswell, Broadwell, Skylake,
Kaby Lake) and AMD (Carrizo, Ryzen) have 256-bit vectors with the AVX and AVX2
instructions sets.1 However, these vectors should be regarded as pairs of 128-bit vectors
(each of them called a “lane”). Indeed, most AVX/AVX2 instructions cannot move data
from one 128-bit lane to another. One exception is the mm256 permutevar8x32 epi32
intrinsic which we may use to move or copy 32-bit words from any location in the
32-byte vector to any other.

The pshufb instruction shuffles the input bytes into a new vector containing the same
byte values. Given an input register v and a control mask m, as vectors of sixteen bytes,
it outputs a new vector (vm0 , vm1 , vm2 , vm3 , . . . , vm15) (assuming that 0 ≤ mi < 16 for i =
0, 1, . . . , 15).2 The AVX2 instruction set contains an upgraded version of this instruction

1Intel released its first AVX2 processor in 2013 using its Haswell microarchitecture.
2ARM Neon has similar instruction vtbl, AltiVec similarly defines vperm.

7

(vpshufb with the intrinsic mm256 shuffle epi8) that does the same shuffling operation
inside each of the two 16-byte lanes of a 32-byte register.

Though we may see the pshufb and vpshufb instructions as “shuffling” instructions
(moving the bytes around), another useful interpretation is that of a table lookup.
That is, with the function call mm256 shuffle epi8(a,b), we can effectively treat a
as a lookup table, and b as 4-bit indexes. Hence, we can use pshufb and vpshufb to
implement maps with the benefit that there are only two registers involved and no other
memory access. Moreover, these instructions are inexpensive: they have a throughput
of one instruction per cycle on recent Intel processors.

The vectors instructions we use, including vpshufb, have low latency (usually 1 CPU
cycle) and a high throughput [Fog 2016]. Depending on the compilation settings, espe-
cially optimization level and the selected CPU target, a compiler might emit different
sequences of instructions to express a given sequence of intrinsics. The intrinsics used
to initialize vectors—such as mm256 set1 epi16—can be implemented by the compiler
as a load instruction (vmovdqa). However, within a loop, vector initializations are often
optimized away when the compiler recognizes the resulting vector as a constant. The
vector might then be initialized once into a vector register that gets reused. The AVX2
instruction set has access to sixteen 32-byte (YMM) registers.

4. VECTORIZED BASE64
Encoding and decoding base64 data involves mapping blocks of three bytes to blocks of
four ASCII characters. We usually decode data by accessing each character, one by one.

For better speed, we may want to decode data using entire vector registers. Depending
on the largest available vector length, we may be able to decode base64 data in sets
of 16 (e.g., SSE, ARM Neon, Power AltiVec), 32 (e.g., AVX/AVX2) or even 64 (e.g.,
AVX-512) characters at once. Similarly, we may want to encode base64 data in blocks
corresponding to vector registers.

Recent x64 processors have 32-byte vector registers (AVX2/AVX). Thus, for better
speed on this popular platform, we may want to read blocks of 32 characters and
transform them into 24 decoded bytes in one step, and vice versa.

We can vectorize the encoding in the following manner:

(1) Load 24 new input bytes in a 32-byte register.
(2) Unpack the 24 bytes into thirty-two 6-bit values.
(3) Map each of the thirty-two 6-bit values, into its corresponding ASCII character (see

Table I).
(4) Store the resulting 32 bytes.

The decoding proceeds in reverse:

(1) Load 32 bytes, treating them as ASCII characters.
(2) Map each of the 32 ASCII characters to its corresponding 6-bit value.
(3) Pack the thirty-two 6-bit values into 24 bytes (within a 32-byte register).
(4) Store the 24 new bytes.

This approach assumes that the original data encoded in base64 is divisible by
24 bytes. However, we can process the remaining data using one of the scalar algorithms
from § 2.

To our knowledge, the first attempt to vectorize base64 encoding and decoding is due
to Klomp [Klomp 2014a]. It used more instructions than the streamlined approach we
present, and it lacked a performance evaluation.

ASCII Characters and 6-bit Values. An important step in coding and decoding base64
data is to map 6-bit values (in [0, 64)) to ASCII characters. Scalar code (see § 2) often

8

Table II: Intel intrinsics and instructions on x64 processors.

intrinsic bits instruction description

mm set1 epi8 128 — create a vector containing 16 identical bytes
mm or si128 128 por bitwise OR
mm256 or si256 256 vpor bitwise OR
mm and si128 128 pand bitwise AND
mm256 and si256 256 vpand bitwise AND
mm cmpeq epi8 128 pcmpeqb compare 16 pairs of bytes, outputting 0xFF on equal-

ity and 0x00 otherwise
mm256 cmpeq epi8 256 vpcmpgtb compare 32 pairs of bytes, outputting 0xFF on equal-

ity and 0x00 otherwise
mm movemask epi8 128 pmovmskb construct a 16-bit integer from the most significant

bits of 16 bytes
mm256 shuffle epi8 256 vpshufb shuffle two lanes of 16 bytes
mm popcnt u64 64 popcnt return the number of 1s in a 64-bit word (population

count)
mm loadu si128 128 movdqu load 16 bytes from memory into a vector register
mm256 loadu si256 256 vmovdqu load 32 bytes from memory into a vector register
mm256 set epi8 256 – load 32 specified bytes into a vector register
mm256 setr epi8 256 – load 32 specified bytes into a vector register (listed

in reverse order)
mm256 set1 epi8 256 – create a vector register with the same 8-bit word

repeated 32 times
mm256 set1 epi32 256 – create a vector register with the same 32-bit word

repeated four times
mm256 maskload epi32 256 vpmaskmovd load 32 bytes from memory into a vector register,

omitting values some values according to the pro-
vided mask

mm storeu si128 128 movdqu write a 16-byte vector register to memory
mm256 storeu si256 256 vmovdqu write a 32-byte vector register to memory
mm256 mulhi epu16 256 vpmulhuw multiply 16-bit integers, keeping the high 16 bits of

the result
mm256 mullo epi16 256 vpmullw multiply 16-bit integers, keeping the low 16 bits of

the result
mm256 subs epu8 256 vpsubusb subtract 8-bit unsigned integers
mm256 add epi8 256 vpaddb add 8-bit integers
mm256 srli epi32 256 vpsrld shift 32-bit words right by x bits
mm256 testz si256 256 vptest AND the two inputs and return 1 if the result is

zero
mm256 subs epu8 256 vpsubusb Subtract 8-bit unsigned integers, setting zero when

the result would be negative
mm256 maddubs epi16 256 vpmaddubsw Vertically multiply pairs of 8-bit integers, producing

intermediate 16-bit integers. Horizontally add adja-
cent pairs of intermediate signed 16-bit integers.

mm256 madd epi16 256 vpmaddwd Multiply pairs of 16-bit integers, producing inter-
mediate signed 32-bit integers. Horizontally add
adjacent pairs of intermediate 32-bit integers.

mm256 permutevar8x32 epi32 256 vpermd Shuffle 32-bit integers in across lanes.

9

Table III: Offsets used in translation between 6-bit integers in [0, 64) and ASCII values:
e.g., to convert integers in [0, 25] to ASCII code, we must add 65.

6-bit value ASCII range offset (6-bit to ASCII)

0 . . . 25 A . . . Z 65
26 . . . 51 a . . . z 71
52 . . . 61 0 . . . 9 −4

62 + −19
63 / −16

represents and computes these maps using pre-calculated tables. We could proceed in a
similar manner for vectorized code. Given a vector register of 32 bytes, for example, we
might have to look up 32 values. For better speed in a vectorized setting, we use the fact
that the base64 standard uses ASCII codes spanning five continuous ranges of values
corresponding to the upper-case characters (’A’ to ’Z’), the lower-case characters (’a’ to
’z’), the ten digits (’0’ to ’9’) and the characters ’+’ and ’/’. See Table III. This observation
allows us to replace table lookups with some arithmetic and logical operations, and a
few vpshufb instructions. Because vector instructions can operate on large blocks of
bytes, arithmetic and logical instructions are amortized and relatively inexpensive.

4.1. Vectorized Encoding
There are two steps in the vectorized encoding:

(1) Unpacking the 24 bytes into thirty-two 6-bit values.
(2) Translating each of the thirty-two 6-bit values, into its corresponding ASCII charac-

ter.

4.1.1. Unpacking Procedure. During the encoding, we load 24 bytes into a 32-byte AVX2
register. Toward the end of the stream, if there are fewer than 32 bytes left, we can use
a masked load (with the mm256 maskload epi32 intrinsic) to avoid exceeding memory
bounds.

Unpacking 6-bit values into separate bytes is done in two steps.

— We move each of the eight 3-byte chunks of four 6-bit values into separate 32-bit
words.

— Within each 32-bit word, we move the 6-bit values into separate bytes.

We use the byte-shuffling instruction vpshufb to move 3-byte chunks into
separate 32-bit words. Unfortunately the instruction separates shuffling within
halves (lanes) of the register which may cause difficulties (see § 3). Indeed,
suppose that we were to load the eight 3-byte chunks in a 32-byte vector as
[|----|----|HHHG|GGFF|FEEE|DDDC|CCBB|BAAA] where A...H denotes bytes from dif-
ferent chunks and the dashes denote unused bytes. We would then need have two
16-byte lanes containing different numbers of 3-byte chunks, with one 3-byte chunk
(FFF) overlapping two lanes: [|FEEE|DDDC|CCBB|BAAA] and [|----|----|HHHG|GGFF|].
To avoid this problem, we load the 24-byte data with an offset 4 bytes, thanks to that a
register contains four 3-byte chunks in each lane, as shown on Fig. 1; the first 4 bytes
as well as the last 4 bytes (out of 32 bytes) are to be discarded. The code with intrinsics
is given in Fig. 3.

There are two main steps.

— As previously stated, we reshuffle each of the 16-byte lanes with the vpshufb so that
3-byte chunks go into separate 32-bit words. But we want the bytes to fall in a specific

10

A0 A1 A2 B0 B1 B2 C0 C1 C2 D0 D1 D2 E0 E1 E2 F0 F1 F2 G0 G1 G2 H0 H1 H2

A1 A0 A2 A1 B1 B0 B2 B1 C1 C0 C2 C1 D1 D0 D2 D1 E1 E0 E2 E1 F1 F0 F2 F1 G1 G0 G2 G1 H1 H0 H2 H1

lower 128-bit lane of AVX2 register higher 128-bit lane

shuffle eight 3-byte words using vpshufb

0 15 16 31

Fig. 1: Encoding: loading and shuffling 24 input bytes within a 32-byte register within
two 16-byte lanes

c1 c0 d5 d4 d3 d2 d1 d0 b3 b2 b1 b0 c5 c4 c3 c2 a5 a4 a3 a2 a1 a0 b5 b4

byte 2 byte 1 byte 0

b3 b2 b1 b0 c5 c4 c3 c2 c1 c0 d5 d4 d3 d2 d1 d0 a5 a4 a3 a2 a1 a0 b5 b4 b3 b2 b1 b0 c5 c4 c3 c2

field c field d field a field b

byte 1 byte 2 byte 0 byte 1

24-bit chunk

shuffled word

Fig. 2: Encoding: from a packed 24-bit chunk, we generate a shuffled 32-bit word by
repeating byte 1.

order. See Fig. 2. This choice enables us to finish the bit shuffling using inexpensive
arithmetic and logical operations. This byte-shuffling code is illustrated in Fig. 3.

— It remains to unpack the four 6-bit values a, b, c, d (see Fig. 4). Treating the four
bytes as a 32-bit integer, we can isolate the 6-bit values c and a with a bitwise mask
(leaving all other values zero). We then need to shift these bits right by 10 and
6 respectively. Because AVX2 lacks a 16-bit variable shift instruction, we use the
vpmulhuw instruction (mm256 mulhi epu16) that multiplies pairs of 16-bit numbers
while storing the most significant 16 bits of the result. Likewise, we isolate b and d and
shift them left by 4 and 8 respectively. To achieve this shift, we use the multiplication
instruction vpmullo (mm256 mullo epi16), which multiplies pairs of 16-bit numbers
while storing the least significant 16 bits of the product.
Finally, we merge partial results using a bitwise OR.

4.1.2. ASCII Translation. Once we have all 6-bit values in separate bytes, we need to
convert them into ASCII characters. At a high-level, what we need to do is to take
the 6-bit value and add the corresponding “offset” value from Table III. There are
five distinct offset values. For example, if our 6-bit value lies in the interval [0, 25], we
want to add 65 to it. Yet we want to avoid a potentially expensive lookup.

Instead of using a table lookup, we use a vectorized approach, see Fig. 5. The main
ingredient is the vpshufb instruction (mm256 permute epi8), which does a parallel
lookup in a destination register using the lower four bits of bytes from a source register.
Unlike a conventional table lookup, there is little chance of expensive cache misses since
the instruction can take two register values. To make use of the vpshufb instruction, we

11

__m256i enc_reshuffle(__m256i input) {
__m256i in = _mm256_shuffle_epi8(input , _mm256_set_epi8(

10, 11, 9, 10, 7, 8, 6, 7, 4, 5, 3, 4, 1, 2, 0, 1,
14, 15, 13, 14, 11, 12, 10, 11, 8, 9, 7, 8, 5, 6, 4, 5

));
__m256i t0 = _mm256_and_si256(in , _mm256_set1_epi32 (0 x0fc0fc00));
__m256i t1 = _mm256_mulhi_epu16(t0 , _mm256_set1_epi32 (0 x04000040));
__m256i t2 = _mm256_and_si256(in , _mm256_set1_epi32 (0 x003f03f0));
__m256i t3 = _mm256_mullo_epi16(t2 , _mm256_set1_epi32 (0 x01000010));
return _mm256_or_si256(t1, t3);

}

Fig. 3: Encoding: mapping 24 input bytes into thirty-two 6-bit values stored in distinct
bytes

b3 b2 b1 b0 c5 c4 c3 c2 c1 c0 d5 d4 d3 d2 d1 d0 a5 a4 a3 a2 a1 a0 b5 b4 b3 b2 b1 b0 c5 c4 c3 c2

input 32-bit word

0 0 0 0 c5 c4 c3 c2 c1 c0 0 0 0 0 0 0 a5 a4 a3 a2 a1 a0 0 0 0 0 0 0 0 0 0 0

step 1a: mask fields c and a (vpand)

0 0 0 0 0 0 0 0 0 0 c5 c4 c3 c2 c1 c0 0 0 0 0 0 0 0 0 0 0 a5 a4 a3 a2 a1 a0

step 1b: shift right c by 6 and a by 10 bits (vpmulhuw)

0 0 0 0 0 0 0 0 0 0 d5 d4 d3 d2 d1 d0 0 0 0 0 0 0 b5 b4 b3 b2 b1 b0 0 0 0 0

step 2a: mask fields d and b (vpand)

0 0 d5 d4 d3 d2 d1 d0 0 0 0 0 0 0 0 0 0 0 b5 b4 b3 b2 b1 b0 0 0 0 0 0 0 0 0

step 2b: shift left d by 8 bits, and b by 4 bits (vpmullw)

0
31

0
30

d5

29

d4

28

d3

27

d2

26

d1

25

d0

24

0
23

0
22

c5

21

c4

20

c3

19

c2

18

c1

17

c0

16

0
15

0
14

b5

13

b4

12

b3

11

b2

10

b1

9

b0

8

0
7

0
6

a5

5

a4

4

a3

3

a2

2

a1

1

a0

0

step 3: merge results from step 1b and 2b (vpor)

Fig. 4: Encoding: arithmetic and logical operations to unpack four 6-bit values to
individual bytes from a shuffled input 32-bit word

12

Table IV: Input reduction for encoding

6-bit value reduced offset

0 . . . 25 13 65
26 . . . 51 0 71
52 . . . 61 1 . . . 10 −4

62 11 −19
63 12 −16

__m256i toascii(__m256i input) {
__m256i result = _mm256_subs_epu8(input , b51);
__m256i less = _mm256_cmpgt_epi8(b26 , input);
result = _mm256_or_si256(result , _mm256_and_si256(less , b13));
__m256i offsets = _mm256_setr_epi8(

65, -4, -4, -4, -4, -4, -4, -4,
-4, -4, -4, -19,-16, 71, 0, 0,
65, -4, -4, -4, -4, -4, -4, -4,
-4, -4, -4, -19,-16, 71, 0, 0

);
result = _mm256_shuffle_epi8(offsets , result);
return _mm256_add_epi8(result , input);

}

Fig. 5: Encoding: function translating byte values in [0, 64) to ASCII characters according
to the base64 standard. We use the convention that bx is mm256 set1 epi8(x).

first have to reduce our 6-bit values to 4-bit values. It suffices to map the 6-bit values to
their reduced value in Table IV. For example, we want all values in [0, 25] to be mapped
to 13, all values in [26, 51] to be mapped to 0, and so forth.

For our purposes, we use a saturated subtraction (mm256 subs epu8) of unsigned
values: it yields 0 whenever the result would be less than zero; it might be expressed as
max(x− y, 0). The hardware implementation is as fast as a regular subtraction.

By using saturated subtract with value 51, we reduce input values from ranges [0, 25]
and [26, 51] into a single value 0. The values in [52, 63] are mapped to [1, 12]. Then a
comparison identifies input values that are less than 26, and adjusts reduced input by
assigning code 13 to the range [0, 25]. Finally, an invocation of vpshufb translates the
reduced input into offset values.

4.2. Vectorized Decoding
Our vectorized decoding algorithm is analogous to our encoding algorithm. We decom-
pose decoding in two steps:

(1) Map each of the 32 ASCII characters to its corresponding 6-bit value.
(2) Pack the thirty-two 6-bit values into 24 bytes (within a 32-byte register).

Mapping requires both translation from ASCII characters to 6-bit values and verifica-
tion that all input characters are valid. Treating the ASCII characters as a sequence of
byte values, both steps can be efficiently achieved by analyzing the lower and higher nib-
bles (4-bit halves) of each ASCII character.3 Our approach involves only three lookups
in AVX2 vectors—each implemented with a single vpshufb—and a few inexpensive

3The lower nibble of a byte is made of the least significant 4 bits whereas the higher nibble is made of the
most significant 4 bits.

13

vector instructions: a shift, a comparison, a bitwise AND, two additions and a test. To
make the input character validation inexpensive, we use a bitset-based approach.4

Packing is performed on a vector of 6-bit values passed from the previous step (if no
errors were found). This step requires just four instructions. First, we shuffle individual
bits within 32-bit words using two instructions, forming 24-bit words. Then we change
order of individual bytes within the lanes of an AVX2 register with a call to vpshufb.
And we finally pack words within lanes into a continuous 24-byte array, which is written
to memory.

4.2.1. ASCII Translation. Input bytes are classified to one of five ranges to select the
appropriate offset. As per the base64 specification, we have to report errors, defined
as a character outside Table I. Invalid input characters yield an offset of zero, which
indicates errors. Once we have a vector of offsets, a single subtraction of that vector and
an input vector yields decoded data.

Decoding ASCII characters to 6-bit values would be easier if we did not need to check
for invalid characters. Indeed, if we shift ASCII byte values right by 4 bits, we get

— 2 for characters + and /.
— 3 for characters in 0 . . . 9;
— either 4 or 5 for characters in A . . . Z (4 for A . . . O and 5 for P . . . Z);
— either 6 or 7 for characters in a . . . z (6 for a . . . o and 7 for p . . . z);

Thus we can almost derive the offset from the most significant 4 bits. To be able to
seek the right offset, we have to distinguish between the characters ’+’ and ’/’. For this
purpose, we can check whether the ASCII character is equal to ’/’ (byte value 0x2F).
Table V gives the desired offset given the most significant 4 bits and least significant
4 bits of an ASCII value.

ALGORITHM 3: Base64 decoding for a single ASCII character. The operation AND represents
the bitwise logical AND.
Require: an ASCII characters x, with byte value (code point) ord(x)
1: lut lo← {21, 17, 17, 17, 17, 17, 17, 17, 17, 17, 19, 26, 27, 27, 27, 26} (constant)
2: lut hi← {16, 16, 1, 2, 4, 8, 4, 8, 16, 16, 16, 16, 16, 16, 16, 16} (constant)
3: roll← {0, 16, 19, 4,−65,−65,−71,−71, 0, 0, 0, 0, 0, 0, 0, 0} (constant)
4: h← dord(x)/16e
5: c← −1 if x is ’/’ and 0 otherwise
6: if (lut loord(x) mod 16 AND lut hih) is non-zero then
7: we have an invalid character
8: end if
9: return ord(x) + rollh+c

Because we need to ensure that only valid ASCII characters are encountered, our
algorithm is slightly longer. We give the simplified version that processes a single
character in Algorithm 3 and an example of C source code in Fig. 6. The main difficulty
in Algorithm 3—and in our vectorized C code—is to check that the character is part of
the expected base64 characters. To solve this problem efficiently, we observe that the
byte value of an allowed base64 character as per Table I must be such that:

— Its high nibble must be 2, 3, 4, 5, 6 or 7.

4A bitset is a standard technique to represent any set made of n possible elements using a word of n bits. If
the ith element is present in the set, we set the ith bit to 1, otherwise we set it to 0.

14

Table V: Mapping between lower/higher nibble of input bytes and offsets: each column
corresponds to a valid most significant 4-bit value (nibble) for a base64 ASCII value
whereas each row corresponds to a least significant 4-bit. The table provides the
corresponding negated offset from Table III. Most signficant 4-bit values outside the
range [2, 7] do not correspond to valid base64 ASCII characters. For each column, we
provide the matching ASCII characters.

2 3 4 5 6 7 {0, 1} ∪ [8, 15]
bitsetASCII + and / 0 . . . 9 A . . . O P . . . Z a . . . o p . . . z none

bitset 0x01 0x02 0x04 0x08 0x04 0x08 0x10

0 – 4 – -65 – -71 – 0x15
1 – 4 -65 -65 -71 -71 – 0x11
2 – 4 -65 -65 -71 -71 – 0x11
3 – 4 -65 -65 -71 -71 – 0x11
4 – 4 -65 -65 -71 -71 – 0x11
5 – 4 -65 -65 -71 -71 – 0x11
6 – 4 -65 -65 -71 -71 – 0x11
7 – 4 -65 -65 -71 -71 – 0x11
8 – 4 -65 -65 -71 -71 – 0x11
9 – 4 -65 -65 -71 -71 – 0x11

10 – – -65 -65 -71 -71 – 0x13
11 19 – -65 – -71 – – 0x1A
12 – – -65 – -71 – – 0x1B
13 – – -65 – -71 – – 0x1B
14 – – -65 – -71 – – 0x1B
15 16 – -65 – -71 – – 0x1A

bool fromascii(__m256i str , __m256i * out) {
__m256i hi_nibbles = _mm256_srli_epi32(str , 4);
__m256i lo_nibbles = _mm256_and_si256(str , mask_2F);
__m256i lo = _mm256_shuffle_epi8(lut_lo , lo_nibbles);
__m256i eq_2F = _mm256_cmpeq_epi8(str , mask_2F);
hi_nibbles = _mm256_and_si256(hi_nibbles , mask_2F);
__m256i hi = _mm256_shuffle_epi8(lut_hi , hi_nibbles);
__m256i roll = _mm256_shuffle_epi8(lut_roll ,

_mm256_add_epi8(eq_2F , hi_nibbles));
if (! _mm256_testz_si256(lo, hi)) {

return false;
}
*out = _mm256_add_epi8(str , roll);
return true;

}

Fig. 6: Decoding: from ASCII characters to 6-bit values. The function returns false on
error. The vectors lut lo, lut hi, lut roll and mask 2F are provided in the main text.

— When its high nibble is 2, the low nibble must be 11 or 15. When its high nibble is 3,
the low nibble must be in [0, 9]. When the high nibble is 4 or 6, its low nibble must be
non-zero. When the high nibble is 5 or 7, the low nibble must be in [0, 10].

Moreover, these conditions are necessary and sufficient for a base64 character to be
valid. See Table V. To check quickly that a character is valid, we use a bitset approach
to compare the low and high nibble values. It is implemented in Algorithm 3 with the
arrays lut lo and lut hi, and a bitwise AND. We refer the reader to Appendix C for a
detailed description of the bitset approach and of our vectorized code.

15

0 0 d5 d4 d3 d2 d1 d0 0 0 c5 c4 c3 c2 c1 c0 0 0 b5 b4 b3 b2 b1 b0 0 0 a5 a4 a3 a2 a1 a0

four input indices

0 0 0 0 c5 c4 c3 c2 c1 c0 d5 d4 d3 d2 d1 d0 0 0 0 0 a5 a4 a3 a2 a1 a0 b5 b4 b3 b2 b1 b0

step 1: swap and merge adjacent 6-bit fields (vpmaddubsw)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

a5

23

a4

22

a3

21

a2

20

a1

19

a0

18

b5

17

b4

16

b3

15

b2

14

b1

13

b0

12

c5

11

c4

10

c3

9

c2

8

c1

7

c0

6

d5

5

d4

4

d3

3

d2

2

d1

1

d0

0

step 2: swap and merge 12-bit words into a 24-bit word (vpmaddbw)

Fig. 7: Decoding: arithmetic operations to pack four 6-bit values stored in separate
bytes to a continuous (packed) 24-bit subword of each 32-bit word

4.2.2. Packing Procedure. After translation, we have 32 values, that must be saved as a
24-byte array. We pack the 6-bit values using only four instructions.

(1) We use vpmaddubsw to pack the data within 16-bit words.
(2) We use vpmaddwd to pack the data within 32-bit words.
(3) Then we use vpshufb to pack within 128-bit lanes.
(4) Finally, we pack our 24 bytes within a 256-bit vector using vpermd.

We first review how the packing proceeds within 32-bit words (see Fig. 7).

— We initially have four 6-bit values stored in each of the four bytes, with zeros
elsewhere [00d5d4d3d2d1d0|00c5c4c3c2c1c0|00b5b4b3b2b1b0|00a5a4a3a2a1a0].

— We call the vpmaddubsw (mm256 maddubs epi16) instruction providing as inputs our
data as well as the vector made of the byte values 0x01, 0x40, 0x01, 0x40,
This instruction multiplies pairs of 8-bit integers from its two input vectors, pro-
ducing intermediate 16-bit integers, it then adds adjacent pairs of 16-bit integers
(the first two, the third and the fourth, . . .). In our case, we multiply alternatively
by 0x40 (a shift by 6 bits) and 0x01 (the identity). By inspection, the output is
[0000c5c4c3c2|c1c0d5d4d3d2d1d0|0000a5a4a3a2|a1a0b5b4b3b2b1b0].

— We then call the vpmaddwd (mm256 madd epi16) instruction. It is similar to the
vpmaddubsw instruction: it multiplies pairs of 16-bit integers from its two input
vectors, producing intermediate 32-bit integers, it then adds adjacent pairs of 32-
bit integers (the first two, the third and the fourth, . . .). We call it with the vector
made of the 16-bit values 0x0001, 0x1000, . . . so that we alternatively shift by 12
bits or compute the identity. By inspection, the result within each 32-bit word is
[00000000|a5a4a3a2a1a0b5b4|b3b2b1b0c5c4c3c2|c1c0d5d4d3d2d1d0].

We have effectively packed four 6-bit value to 3 bytes, within each 32-bit word, using
only two instructions.

Within each 128-bit lane, we can then shuffle the bytes to pack the data bytes at the
beginning of the lanes using vpshufb (mm256 shuffle epi8). We shall have three 32-bit
word filled with data within each lane. Though normally we cannot move data between
lanes, the vpermd (mm256 permutevar8x32 epi32) instruction is a useful exception. It
can shuffle 32-bit words across lanes, allowing us to get the final result. Fig. 8 gives a
summary overview of how the data is moved within an AVX2 register. We provide our C
implementation in Fig. 9.

16

h3 h2 h1 h0 g3 g2 g1 g0 f3 f2 f1 f0 e3 e2 e1 e0 d3 d2 d1 d0 c3 c2 c1 c0 b3 b2 b1 b0 a3 a2 a1 a0

AVX2 register: 32 input 6-bit values stored in separate bytes

0 H2 H1 H0 0 G2 G1 G0 0 F2 F1 F0 0 E2 E1 E0 0 D2 D1 D0 0 C2 C1 C0 0 B2 B1 B0 0 A2 A1 A0

step 1: pack 6-bit indices into 24-bit words

0 0 0 0 H2 H1 H0 G2 G1 G0 F2 F1 F0 E2 E1 E0 0 0 0 0 D2 D1 D0 C2 C1 C0 B2 B1 B0 A2 A1 A0

step 2: pack 24-bit words within 128-bit lanes (vpshufb)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

H2

23

H1

22

H0

21

G2

20

G1

19

G0

18

F2

17

F1

16

F0

15

E2

14

E1

13

E0

12

D2

11

D1

10

D0

9

C2

8

C1

7

C0

6

B2

5

B1

4

B0

3

A2

2

A1

1

A0

0

step 3: move 32-bit words across lanes (vpermd)

Fig. 8: Decoding: steps required to convert from 32 6-bit indices into a continuous
(packed) array of 24 bytes

__m256i dec_reshuffle(__m256i in) {
__m256i merge_ab_and_bc = _mm256_maddubs_epi16(in ,

_mm256_set1_epi32 (0 x01400140));
__m256i out = _mm256_madd_epi16(merge_ab_and_bc ,

_mm256_set1_epi32 (0 x00011000));
out = _mm256_shuffle_epi8(out , _mm256_setr_epi8(

2, 1, 0, 6, 5, 4, 10, 9, 8, 14, 13, 12, -1, -1, -1, -1,
2, 1, 0, 6, 5, 4, 10, 9, 8, 14, 13, 12, -1, -1, -1, -1

));
return _mm256_permutevar8x32_epi32(out , _mm256_setr_epi32 (0, 1,

2, 4, 5, 6, -1, -1));
}

Fig. 9: Decoding: packing the 6-bit values into full bytes

5. PERFORMANCE EVALUATION
We implemented our software in C. All tested code has error handling in the sense
that unexpected characters are detected. We use a Linux server with an Intel i7-6700
processor running at 3.4GHz. This Skylake processor has 32 kB of L1 data cache and
256 kB of L2 cache per core with 8MB of L3 cache. The machine has 32GB of RAM
(DDR4 2133, double-channel). There is no disk access during our tests. We disabled
Turbo Boost and set the processor to run at its highest clock speed. We used the
processor’s time stamp counter (rdtsc instruction [Paoloni 2010]) to estimate the
number of cycles. Our software is freely available (https://github.com/lemire/fastbase64)
and was compiled using the GNU GCC 5.3 compiler with the “-O3 -march=native” flags.

In addition to our own implementation, we also use the Linux base64 codec (from
the 4.10 release), the base64 codec from the QuickTime Streaming Server5, as well as
the base64 codec used within the Google Chrome browser (part of Chromium release
56.0.2924.87) [Galbreath 2016]. In a cross-browser comparison, Nägele found that the
Chrome browser has the best base64 performance [Nägele 2015]. All of the codecs
check for invalid characters. All codecs assume that the input is free from white-space

5https://opensource.apple.com/source/QuickTimeStreamingServer/QuickTimeStreamingServer-452/
CommonUtilitiesLib/base64.c

17

https://github.com/lemire/fastbase64
https://opensource.apple.com/source/QuickTimeStreamingServer/QuickTimeStreamingServer-452/CommonUtilitiesLib/base64.c
https://opensource.apple.com/source/QuickTimeStreamingServer/QuickTimeStreamingServer-452/CommonUtilitiesLib/base64.c

Table VI: Decoding performance in CPU cycles per input Base64 byte. We include the
number of cycles per byte required to memcpy the base64-encoded data.

Source bytes memcpy Linux QuickTime Chrome AVX2(Klomp) AVX2

lena [jpg] 141 020 0.09 20 3.1 1.8 0.43 0.21
peppers [jpg] 12 640 0.03 15.5 3.1 1.8 0.44 0.21
mandril [jpg] 329 632 0.11 20 3.1 2.1 0.43 0.21
Moby Dick [text] 1484 0.04 3.6 3.2 1.8 0.53 0.27
google logo [png] 2357 0.05 4.2 3.1 2.1 0.47 0.23
bing social icons [png] 1355 0.04 3.9 3.2 2.1 0.46 0.23

characters, except that the Linux codec decoder ignores line feed characters (\n) within
the base64 encoded stream as long as they occur between two blocks of four characters.
Klomp produced a library that supports SIMD-accelerated decoding [Klomp 2014b].
The AVX2 code from his library is similar to ours, but it includes more instructions and
it is slower (≈ 2×).

To test on realistic data, we included standard images from image processing (Lena,
peppers and mandril), a short quote from the novel Moby Dick (“Call me Ishmael
(. . .) the same feelings towards the ocean with me.”), a Google logo found to be base64
encoded in the Google search page and a set of icons found base64 encoded in the Bing
search page. To ensure reproducibility, all our test data and benchmarking software is
available along with our codecs.

Table VI presents our results in number of cycles per input byte, for single-threaded
execution. To make sure our results are reliable, we repeat each test 500 times and
check that the minimum and the average cycle counts are within 1% of each other. We
report the minimum cycle count divided by the number of bytes in the input. Our AVX2
decoder is nearly an order of magnitude faster than the fastest of the conventional
decoder (Chrome).

To appreciate the performance of the encoding and decoding given inputs having
various lengths, we generated random binary data and benchmarked the time required
to encode and decode it (see Fig. 10). For sufficiently large inputs, the AVX2 codec uses
about a quarter of a cycle per input byte during encoding and decoding. The fastest
alternative codec (from Google Chrome) uses about 2.7 cycles per input byte for encoding
and about 1.8 cycles per input byte for decoding. Thus the AVX2 codec is eleven times
faster at encoding and over seven times faster at decoding than the fastest alternative
under consideration in our tests for large inputs.

Our AVX2 codec falls back on scalar functions when there are fewer than 28 input
characters left to encode, or fewer than 45 bytes left to decode. As long as we process at
least ≈ 200 bytes, the AVX2 codec maintains a much higher speed because a sizeable
fraction of the data is decoded using SIMD instructions. It is only for short inputs (less
than 100 bytes) that the AVX2 codec loses its benefits, achieving a performance no
better than scalar functions.

We also analyzed the assembly code produced by our compiler.

— For encoding 24 input bytes into 32 output bytes (to ASCII), our code uses 11 vector
instructions (excluding one load and one store): two vpshufb, two vpand, one vpor,
one vpaddb, one vpmulhuw, one vpmullw, one vpsubusb, one vpsubb and one vpcmpgtb.
For long inputs, we use about 0.25 cycles per input bytes, or about 6 cycles per 24 input
bytes. Thus we execute about 11 vector instructions per 6 cycles, not counting a load
and a store, as well as a few scalar instructions.

— For decoding 32 input bytes (in ASCII) to 24 output bytes, we use 14 vector in-
structions (excluding one load and one store): four vpshufb, two vpand, one vpsrld,

18

��

����

��

����

��

����

��

����

��

����

��

���� ����� ����� �����

�
�
�
��
�
�
��
�
��
�
��
��
�
�
��
�
�
��

�����������

�����
���������������
�������������

������������
����

������

(a) Encoding

��

����

��

����

��

����

��

����

��

����

��

���� ����� ����� �����

�
�
�
��
�
�
��
�
��
�
��
��
�
�
��
�
�
��

�����������

�����
���������������
�������������

������������
����

������

(b) Decoding

Fig. 10: Performance comparison between base64 codecs using random inputs of various
lengths

19

one vpaddb, one vptest, one vpcmpeqb, one vpaddb, one vpmaddubsw, one vpmaddwd,
and one vpermd. For long inputs, we again use about 0.25 cycles per input bytes,
or about 8 cycles per 32 input bytes. Thus execute about 14 vector instructions in
8 cycles, not counting a load and a store and some scalar instructions.

Counting the necessary load and stores, we need 13 vector instructions to encode
24 input bytes, and we need 16 vector instructions to decode 32 input bytes. Processors
execute complex machine instructions using low-level instructions called µops, each of
the vector instructions we considered counts for a single µop [Fog 2016]. We require
about 0.5 µops per cycle to encode or decode, using our AVX2 codec. As a comparison,
we analyzed the assembly code produced by the fast decoder used by Google Chrome.
To decode a single block of four bytes, it requires about 20 µops or about 5 µops per
input byte. Thus we can largely explain our good results by the fact that we use fewer
instructions per input byte.

6. CONCLUSION
By designing algorithms for vector instructions, we reduced the number of instructions
necessary to encode or decode base64 data. Consequently, we showed that commonplace
vector instructions (AVX2) can boost encoding and decoding speeds by roughly an order
of magnitude. The end product spans a few dozens of lines of code and can be readily
integrated into existing systems, such as browsers, runtime libraries, and servers.

A vectorized base64 codec can be written for ARM processors supporting the NEON
instructions. We can preserve the fast algorithms, changing the instructions as needed
(vpshufb becomes vtbl and so forth). Klomp reports a 4× performance gain on an
iPhone [Klomp 2014b] with ARM NEON instructions. However, there is a variety of
ARM hardware and software configurations. E.g., Srinivasa et al. [Srinivasa et al. 2017]
found 20% performance differences between otherwise identical devices due to process
variation in the manufacture of ARM CPUs. We leave a review of base64 codecs on
ARM processors to future work.

Upcoming Intel processors will support some of the AVX-512 instruction sets along
with 512-bit vectors.6 Even wider registers should allow for ever better performance.
However, AVX-512 is a family of instruction sets, with the most powerful sets (e.g.,
AVX-512BW and AVX-512VL) enabling further optimizations. ARM processors are also
expected to receive support for wider vectors (e.g., 512-bit or 2048-bit vectors) through
the Scalable Vector Extensions [ARM 2017].

Having to design and support functions for several different vectorized instruc-
tion sets is cumbersome. We could ask whether we can achieve similar results with
higher-level C++ libraries such as the Generic SIMD Library [Wang et al. 2014] or
Boost.SIMD [Estérie et al. 2014]. Programming languages like Swift or Rust also have
generic SIMD packages that could be put to good use. For comparison, we expect that
calling our C implementation from other languages (e.g., Swift and Rust) would be
practical and computationally efficient.

For large inputs (e.g., 36MB), Kopp showed that a GPU implementation could encode
base64 data roughly twice as fast as a fast CPU implementation [Kopp 2013]. It could
be interesting to further explore the engineering of GPU codecs.

APPENDIX
A. ADVANCED ERROR CHECKING
We find it interesting that even if all encoded characters are part of our table of base64
characters, Algorithm 2 may still decode data that could not possibly have been encoded

6http://0x80.pl/articles/avx512-foundation-base64.html

20

http://0x80.pl/articles/avx512-foundation-base64.html

in base64 [Char 2014]. Indeed, we would need to add the following additional checks on
the last four ASCII characters (Cn−4, Cn−3, Cn−2, Cn−1) to ensure there was an original
binary input:

— The stream must end with zero, one or two padding characters (’=’).
— If there are two padding character, then (A(Cn−3)× 16) mod 256 = 0 where A is as in

Algorithm 2.
— If there is one padding character, then (A(Cn−2)× 64) mod 256 = 0.

However, these checks are only needed on the last four characters so that we can add
them to any existing decoder without measurably impacting the performance. The
base64 standard [Josefsson 2006] does not require these checks.

B. WHITE SPACE
The base64 specification [Josefsson 2006] requires decoders to reject encoded data with
unexpected characters:

Implementations MUST reject the encoded data if it contains characters
outside the base alphabet when interpreting base-encoded data unless the
specification referring to this document explicitly states otherwise.

For some applications, white-space characters may be present and should be removed
prior to processing.

We can assume that the input data is encoded in ASCII, UTF-8 or other ASCII
supersets (e.g., ISO 8859-1). There are three commonly used white-space characters
that we might want to remove:

— the space character (’ ’, byte value 0x0a or 32 in decimal),
— the line-feed character (’\n’, byte value 0x20 or 10 in decimal),
— the carriage-return character (’\r’, byte value 0x0D or 13 in decimal).

We can write a scalar function that removes the spaces (Fig. 11). Our function works
by copying the bytes in place while advancing the pointer by one byte only when the
character is not a white-space character. On our test platform (see § 5), we can remove
spaces in place from a small string (1 kB) containing a small fraction of randomly
inserted white-space characters (3%) at a rate of 1.6 cycles per byte using this function.
We can manually vectorize the removal of white-space characters for better speed (see
Fig. 12). In effect, it suffices to compare all input characters with each of the possible
white-space characters. We get a resulting mask (mask16) that indicates (with a 1-bit)
which characters are white space. From this white-space mask, we can lookup a shuffling
mask to reorder the input bytes so that white-space characters are omitted. We use the
mm popcnt u64 intrinsic (popcnt), which returns the number of 1-bit contained in a 64-

bit word. The illustrated code sequence removes _mm_popcnt_u64(mask16) white space
characters from the input vector, so that the first 16 - _mm_popcnt_u64(mask16) bytes
of the final vector (v) are free from white space. With this faster code, we get a processing
rate between 0.3 and 0.4 cycles per input byte. We make the source code of our white-
space removal software available online (https://github.com/lemire/despacer).

Instead of removing three specific characters (’ ’, ’\n’, \r’), we could remove all
characters with a byte value less than 33 to save a few instructions. However, there is
no SIMD instruction on x64 processors providing an unsigned comparison. A sequence
of at least two instructions are needed to achieve an unsigned comparison (e.g., a
vectorized unsigned maximum pmaxub followed by an equality check).

21

https://github.com/lemire/despacer

for(i = 0, p = 0; i < N; i++) {
uint8_t v = A[i];
A[p] = v;
p += table[v];

}

Fig. 11: C function to remove selected byte values from an array (A) of N bytes in place:
the table array is made of 256 Boolean values (0 and 1) where value 0 indicate that the
corresponding byte value is to be removed. The integer p represents the new size of the
array.

__m128i spaces = _mm_set1_epi8(’ ’);
__m128i newline = _mm_set1_epi8(’\n’);
__m128i carriage = _mm_set1_epi8(’\r’);

__m128i v = ... // v contains 16 input bytes
__m128i is_spaces = _mm_cmpeq_epi8(v, spaces);
__m128i is_newline = _mm_cmpeq_epi8(v, newline);
__m128i is_carriage = _mm_cmpeq_epi8(v, carriage);
__m128i anywhite = _mm_or_si128(

_mm_or_si128(xspaces , xnewline), xcarriage);

uint64_t mask16 = _mm_movemask_epi8(anywhite);
v = _mm_shuffle_epi8(v, table + mask16));

Fig. 12: Vectorized code using Intel intrinsics to remove selected byte values from an
array (A) of N bytes from a vector of 16 bytes: the table array is made of 65536 vectors
of 16 bytes.

C. COMPLETE DESCRIPTION OF THE VECTORIZED ASCII TRANSLATION
Given ASCII characters, we want to map all of them to a 6-bit value as per Table I, while
reporting unexpected characters as errors. For this purpose, we describe the vectorized
(using AVX2) version of Algorithm 3, as represented in C code by Fig. 6.

— We shift by 4 bits all of the ASCII byte values, getting values between 2 and 7 (with
the mm256 srli epi32 intrinsic), and store the result in hi nibbles.

— Defining mask 2F as the vector made of the byte value 0x2F (or ’/’), we compare the
input data to mask 2F (with the mm256 cmpeq epi8 intrinsic). The result is zero when
the character value differs from 0x2F, and otherwise, it is 0xFF (or -1 as a signed byte
integer). We store it in eq 2F.

— Later, we can add hi nibbles and eq 2F (with the mm256 add epi8 intrinsic) and then
seek the offset (with the mm256 shuffle epi8 intrinsic) from the vector lut roll
populated with the offset values
— 0, 16, 19, 4,−65,−65,−71,−71, 0, 0, 0, 0, 0, 0, 0, 0,
— 0, 16, 19, 4,−65,−65,−71,−71, 0, 0, 0, 0, 0, 0, 0, 0.
We store the result in roll which contains the decoded offsets. This is enough to
derive the offsets assuming that the ASCII character values were in range.

— To check that the ASCII character values are in range, we add a few steps. To be
valid, the 4 most significant bits of the value of an ASCII characters should be 2, 3, 4,
5, 6 or 7. Values in the set {0, 1, 8, 9, 10, 11, 12, 13, 14, 15} are always indicative of an
invalid character.
Otherwise, given the most significant 4 bits (nibble), only some least significant 4 bits
are allowed:

22

— When the most significant 4 bits represent the value 2, then we must have ei-
ther character ’+’ (byte value 0x2B) or character ’/’ (byte value 0x2F) so the least
significant 4 bits must represent either 11 or 15 as an unsigned integer.

— When the most significant 4 bits represent the value 3, then we must have charac-
ters 0 . . . 9, with a least significant 4 bits ranging in [0, 9].

— When the most significant 4 bits have the value 4 or 6, then least significant 4 bits
should be in [1, 15].

— When the most significant 4 bits have value 5 or 7, then the least significant 4 bits
should be in [0, 10].

See Table V. We can represent these sets efficiently using bitsets. We start by
mapping the most significant 4 bits to an 8-bit word with a single bit set: 2 becomes
0x01, 3 becomes 0x02, 4 and 6 become 0x04, 5 and 7 become 0x08, and all other
values become 0x10. We represent this map with the vector lut hi made of the
following 32 bytes (repeating twice the same 16-byte subvector) in a function call
such as mm256 shuffle epi8(lut hi, hi nibbles) where hi nibbles is a 32-byte
vector made of the most significant 4 bits:
— 0x10, 0x10, 0x01, 0x02, 0x04, 0x08, 0x04, 0x08,

0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10,
— 0x10, 0x10, 0x01, 0x02, 0x04, 0x08, 0x04, 0x08,

0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10.
Similarly, we map the least significant 4 bits to byte values made of the bitwise OR
of the byte values corresponding to unallowed most significant 4 bits.
— For example, the value zero is mapped to 0b10101 (or 0x15) which is an indication

that the most significant 4 bits are allowed to be 3, 5 and 7. That is we disallow
2 (0x01), 4 and 6 (0x04) as well as all values out of the range [2, 7] (0x10). And we
have that 0x15 = 0x10 OR 0x04 OR 0x01.

— The least significant 4-bit values in [1, 9] allow the most significant 4-bit values in
[3, 7]. So we disallow 2 (0x01) and values outside the range [2, 7] (0x10). Thus we
map them to 0x10 OR 0x01 which is 0x11.

— If the least significant 4-bit value is 10, then we disallow 2 and 3 (as well as values
outside [2, 7]), so that the bitset is 0x10 OR 0x02 OR 0x01 which is 0x13.

— If the least significant 4-bit value is 11 or 15, then we disallow 3, 5, 7 and values
outside [2, 7] so that the bitset is 0x02 OR 0x08 OR 0x10 which is 0x1A.

— If the least significant 4-bit value is 12, 13 or 14, then we disallow 2, 3, 5, 7 and
all values outside [2, 7] so that the bitset is 0x10 OR 0x02 OR 0x08 OR 0x01 which
is 0x1B.

We realize this map with the 32-byte vector lut lo (repeating twice the same 16-byte
subvector) and the function call mm256 shuffle epi8(lut lo, lo nibbles) where
lo nibbles is a 32-byte vector made of the least significant 4 bits:
— 0x15, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11,

0x11, 0x11, 0x13, 0x1A, 0x1B, 0x1B, 0x1B, 0x1A,
— 0x15, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11,

0x11, 0x11, 0x13, 0x1A, 0x1B, 0x1B, 0x1B, 0x1A.
To check whether a forbidden character has been detected, we need to call the
intrinsic mm256 testz si256 (vptest) which computes the bitwise AND between two
vectors and returns 1 (true) if the value is zero.

Example C.1. Let us consider the following 32 input bytes:
R0lGODlhAQABAIAAAP///wAAACwAAAAA. The ASCII characters correspond to the
following byte values:
0x52, 0x30, 0x6c, 0x47, 0x4f, 0x44, 0x6c, 0x68,
0x41, 0x51, 0x41, 0x42, 0x41, 0x49, 0x41, 0x41,

23

0x41, 0x50, 0x2f, 0x2f, 0x2f, 0x77, 0x41, 0x41,
0x41, 0x43, 0x77, 0x41, 0x41, 0x41, 0x41, 0x41.

(1) We can map this array of byte values to one made of the most significant 4 bits:
0x5, 0x3, 0x6, 0x4, 0x4, 0x4, 0x6, 0x6,
0x4, 0x5, 0x4, 0x4, 0x4, 0x4, 0x4, 0x4,
0x4, 0x5, 0x2, 0x2, 0x2, 0x7, 0x4, 0x4,
0x4, 0x4, 0x7, 0x4, 0x4, 0x4, 0x4, 0x4.
We can compare the original input bytes with 0x2F (or ’/’), creating a new array that
has value 0xFF wherever the input character is equal to ’/’:
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00.
We can add this value to the most significant 4 bits (modulo 256) to get
0x5, 0x3, 0x6, 0x4, 0x4, 0x4, 0x6, 0x6,
0x4, 0x5, 0x4, 0x4, 0x4, 0x4, 0x4, 0x4,
0x4, 0x5, 0x1, 0x1, 0x1, 0x7, 0x4, 0x4,
0x4, 0x4, 0x7, 0x4, 0x4, 0x4, 0x4, 0x4.
We can then seek these 4-bit values (treating them as indexes) in the table
0, 16, 19, 4,−65,−65,−71,−71, 0, 0, 0, 0, 0, 0, 0, 0 (e.g., index 0 gets value 0, index 1
gets value 16, . . .). We get the offsets
-65, 4, -71, -65, -65, -65, -71, -71,
-65, -65, -65, -65, -65, -65, -65, -65,
-65, -65, 16, 16, 16, -71, -65, -65,
-65, -65, -71, -65, -65, -65, -65, -65.
We can add these offsets to the input byte values to get the decoded 6-bit values:
17, 52, 37, 6, 14, 3, 37, 33,
0, 16, 0, 1, 0, 8, 0, 0,
0, 15, 63, 63, 63, 48, 0, 0,
0, 2, 48, 0, 0, 0, 0, 0.

We can compare the original input string (R0lGODlhAQABAIAAAP///wAAACwAAAAA)
with Table I and observe that it is, indeed, the expected array. That is, we have
successfully mapped the ASCII characters to 6-bit values in [0, 64).

(2) We also need to check that all of the original ASCII characters are allowed. This
requires two lookups.
(a) First, we take the array of the most significant 4-bit values, and, treating them

as 4-bit indexes, we look them up in the table
0x10, 0x10, 0x01, 0x02, 0x04, 0x08, 0x04, 0x08,
0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10.
E.g., index 0 and 1 become 0x10, index 2 becomes 0x01, and so forth. From
0x5, 0x3, 0x6, 0x4, 0x4, 0x4, 0x6, 0x6,
0x4, 0x5, 0x4, 0x4, 0x4, 0x4, 0x4, 0x4,
0x4, 0x5, 0x2, 0x2, 0x2, 0x7, 0x4, 0x4,
0x4, 0x4, 0x7, 0x4, 0x4, 0x4, 0x4, 0x4,
we get the array
0x8, 0x2, 0x4, 0x4, 0x4, 0x4, 0x4, 0x4,
0x4, 0x8, 0x4, 0x4, 0x4, 0x4, 0x4, 0x4,
0x4, 0x8, 0x1, 0x1, 0x1, 0x8, 0x4, 0x4,
0x4, 0x4, 0x8, 0x4, 0x4, 0x4, 0x4, 0x4.
All integers in this array have a single bit set (i.e., they are powers of two).

24

(b) From the original input byte values, we can extract an array made of the least
significant 4-bits:
0x2, 0x0, 0xC, 0x7, 0xF, 0x4, 0xC, 0x8,
0x1, 0x1, 0x1, 0x2, 0x1, 0x9, 0x1, 0x1,
0x1, 0x0, 0xF, 0xF, 0xF, 0x7, 0x1, 0x1,
0x1, 0x3, 0x7, 0x1, 0x1, 0x1, 0x1, 0x1.
Treating these 4-bit values as indexes, we must then look them up in the array
0x15, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11,
0x11, 0x11, 0x13, 0x1A, 0x1B, 0x1B, 0x1B, 0x1A
to get
0x11, 0x15, 0x1B, 0x11, 0x1A, 0x11, 0x1B, 0x11,
0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11,
0x11, 0x15, 0x1A, 0x1A, 0x1A, 0x11, 0x11, 0x11,
0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11.

It remains the take the bitwise AND of the two generated array, and we get the
zero vector, verifying that all input characters were allowed.

ACKNOWLEDGMENTS

The authors would like to thank M. Howard, A. Klomp, and N. Kurz for their software contributions.

References
Amazon 2015. Amazon SimpleDB. http://docs.aws.amazon.com/AmazonSimpleDB/latest/DeveloperGuide/

Welcome.html. (2015). last checked in July 2017.
Amazon 2017. Amazon DynamoDB. http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/

Introduction.html. (2017). last checked in July 2017.
ARM 2017. The Scalable Vector Extension (SVE), for ARMv8-A. Technical Report. ARM Holdings, Cambridge,

United Kingdom. https://static.docs.arm.com/ddi0584/a/DDI0584A a SVE supp armv8A.pdf [last checked
July 2017].

David Calhoun. 2011. When to Base64 Encode Images (and When Not To). (2011). http://davidbcalhoun.com/
2011/when-to-base64-encode-images-and-when-not-to/

Hanson Char. 2014. A Fast and Correct Base 64 Codec. (2014). https://aws.amazon.com/blogs/developer/
a-fast-and-correct-base-64-codec/

Matt Crane and Jimmy Lin. 2017. An Exploration of Serverless Architectures for Information Retrieval. In
Proceedings of the ACM SIGIR International Conference on Theory of Information Retrieval (ICTIR ’17).
ACM, New York, NY, USA, 241–244. DOI:http://dx.doi.org/10.1145/3121050.3121086

Mark Davis. 2012. Unicode over 60 percent of the web. (2012). https://googleblog.blogspot.ca/2012/02/
unicode-over-60-percent-of-web.html

Elastic 2017. Elasticsearch Reference — Binary datatype. https://www.elastic.co/guide/en/elasticsearch/
reference/current/binary.html. (2017). last checked in July 2017.

Pierre Estérie, Joel Falcou, Mathias Gaunard, and Jean-Thierry Lapresté. 2014. Boost.SIMD: Generic
Programming for Portable SIMDization. In Proceedings of the 2014 Workshop on Program-
ming Models for SIMD/Vector Processing (WPMVP ’14). ACM, New York, NY, USA, 1–8.
DOI:http://dx.doi.org/10.1145/2568058.2568063

Tammy Everts. 2013. Rules for Mobile Performance Optimization. Commun. ACM 56, 8 (Aug. 2013), 52–59.
DOI:http://dx.doi.org/10.1145/2492007.2492024

Roy T. Fielding, James Gettys, Jeffrey C. Mogul, Henrik Frystyk Nielsen, Larry Masinter, Paul J. Leach,
and Tim Berners-Lee. 1999. Hypertext Transfer Protocol – HTTP/1.1 . https://tools.ietf.org/html/rfc2616.
(1999). Internet Engineering Task Force, Request for Comments: 2616.

Agner Fog. 2016. Instruction tables: Lists of instruction latencies, throughputs and micro-operation break-
downs for Intel, AMD and VIA CPUs. Technical Report. Copenhagen University College of Engineering,
Copenhagen, Denmark. http://www.agner.org/optimize/instruction tables.pdf [last checked July 2017].

Ned Freed and Nathaniel S. Borenstein. 1996. Multipurpose Internet Mail Extensions (MIME) Part One:
Format of Internet Message Bodies. https://tools.ietf.org/html/rfc2045. (1996). Internet Engineering Task
Force, Request for Comments: 2045.

25

http://docs.aws.amazon.com/AmazonSimpleDB/latest/DeveloperGuide/Welcome.html
http://docs.aws.amazon.com/AmazonSimpleDB/latest/DeveloperGuide/Welcome.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Introduction.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Introduction.html
https://static.docs.arm.com/ddi0584/a/DDI0584A_a_SVE_supp_armv8A.pdf
http://davidbcalhoun.com/2011/when-to-base64-encode-images-and-when-not-to/
http://davidbcalhoun.com/2011/when-to-base64-encode-images-and-when-not-to/
https://aws.amazon.com/blogs/developer/a-fast-and-correct-base-64-codec/
https://aws.amazon.com/blogs/developer/a-fast-and-correct-base-64-codec/
http://dx.doi.org/10.1145/3121050.3121086
https://googleblog.blogspot.ca/2012/02/unicode-over-60-percent-of-web.html
https://googleblog.blogspot.ca/2012/02/unicode-over-60-percent-of-web.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/binary.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/binary.html
http://dx.doi.org/10.1145/2568058.2568063
http://dx.doi.org/10.1145/2492007.2492024
https://tools.ietf.org/html/rfc2616
http://www.agner.org/optimize/instruction_tables.pdf
https://tools.ietf.org/html/rfc2045

Nick Galbreath. 2016. Fast c-string transformations. https://github.com/client9/stringencoders. (2016). ini-
tially published in 2005, last checked in March 2017.

Ian Hickson. 2016. Web Storage. https://www.w3.org/TR/webstorage/. (2016). W3C.
Richard Duchatsch Johansen, Talita Cristina Pagani Britto, and Cesar Augusto Cusin. 2013. CSS Browser

Selector Plus: A JavaScript Library to Support Cross-browser Responsive Design. In Proceedings of the
22Nd International Conference on World Wide Web (WWW ’13 Companion). ACM, New York, NY, USA,
27–30. DOI:http://dx.doi.org/10.1145/2487788.2487797

Michael B. Jones, John Bradley, and Nat Sakimura. 2015. JSON Web Signature (JWS). https://tools.ietf.org/
html/rfc7515. (2015). Internet Engineering Task Force, Request for Comments: 7515.

Simon Josefsson. 2006. The Base16, Base32, and Base64 Data Encodings. https://tools.ietf.org/html/rfc4648.
(2006). Internet Engineering Task Force, Request for Comments: 4648.

Alfred Klomp. 2014a. Fast Base64 encoding/decoding with SSE vectorization. http://www.alfredklomp.com/
programming/sse-base64/. (2014). last checked in March 2017.

Alfred Klomp. 2014b. Fast Base64 stream encoder/decoder in C99, with SIMD acceleration. https://github.
com/aklomp/base64. (2014). last checked in March 2017.

Nick Kopp. 2013. Base64 Encoding on a GPU. https://www.codeproject.com/Articles/276993/
Base-Encoding-on-a-GPU. (2013).

John Linn. 1993. Privacy Enhancement for Internet Electronic Mail: Part I: Message Encryption and
Authentication Procedures. https://tools.ietf.org/html/rfc1421. (1993). Internet Engineering Task Force,
Request for Comments: 1421.

Larry Masinter. 1998. The “data” URL scheme. https://tools.ietf.org/html/rfc2397. (1998). Internet Engineering
Task Force, Request for Comments: 2397.

Microsoft 2017. XML Data (SQL Server) — Use the BINARY BASE64 Option. https://www.elastic.co/guide/
en/elasticsearch/reference/current/binary.html. (2017). last checked in July 2017.

MongoDB 2017. MongoDB Extended JSON. https://docs.mongodb.com/manual/reference/
mongodb-extended-json/. (2017). last checked in July 2017.

Thomas Nägele. 2015. Client-side performance profiling of JavaScript for web applications. Master’s thesis.
Radboud University Nijmegen, the Netherlands.

Gabriele Paoloni. 2010. How to Benchmark Code Execution Times on Intel IA-32 and IA-64 Instruction Set
Architectures. Intel Corporation, Santa Clara, CA.

Guru Prasad Srinivasa, Rizwana Begum, Scott Haseley, Mark Hempstead, and Geoffrey Challen. 2017.
Separated By Birth: Hidden Differences Between Seemingly-Identical Smartphone CPUs. In Proceedings
of the 18th International Workshop on Mobile Computing Systems and Applications (HotMobile ’17).
ACM, New York, NY, USA, 103–108. DOI:http://dx.doi.org/10.1145/3032970.3032982

Yi Tang and Manjia Lin. 2015. EQPO: Obscuring Encrypted Web Traffic with Equal-Sized Pseudo-Objects. In
International Conference on Information Security and Cryptology. Springer, New York, 227–245.

Matt Tierney, Ian Spiro, Christoph Bregler, and Lakshminarayanan Subramanian. 2013. Cryptagram: Photo
Privacy for Online Social Media. In Proceedings of the First ACM Conference on Online Social Networks
(COSN ’13). ACM, New York, NY, USA, 75–88. DOI:http://dx.doi.org/10.1145/2512938.2512939

Haichuan Wang, Peng Wu, Ilie Gabriel Tanase, Mauricio J. Serrano, and José E. Moreira. 2014. Simple,
Portable and Fast SIMD Intrinsic Programming: Generic SIMD Library. In Proceedings of the 2014
Workshop on Programming Models for SIMD/Vector Processing (WPMVP ’14). ACM, New York, NY, USA,
9–16. DOI:http://dx.doi.org/10.1145/2568058.2568059

26

https://github.com/client9/stringencoders
https://www.w3.org/TR/webstorage/
http://dx.doi.org/10.1145/2487788.2487797
https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/rfc4648
http://www.alfredklomp.com/programming/sse-base64/
http://www.alfredklomp.com/programming/sse-base64/
https://github.com/aklomp/base64
https://github.com/aklomp/base64
https://www.codeproject.com/Articles/276993/Base-Encoding-on-a-GPU
https://www.codeproject.com/Articles/276993/Base-Encoding-on-a-GPU
https://tools.ietf.org/html/rfc1421
https://tools.ietf.org/html/rfc2397
https://www.elastic.co/guide/en/elasticsearch/reference/current/binary.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/binary.html
https://docs.mongodb.com/manual/reference/mongodb-extended-json/
https://docs.mongodb.com/manual/reference/mongodb-extended-json/
http://dx.doi.org/10.1145/3032970.3032982
http://dx.doi.org/10.1145/2512938.2512939
http://dx.doi.org/10.1145/2568058.2568059

	Introduction
	Base64
	Character Encodings
	Efficient Scalar Encoding
	Efficient Scalar Decoding

	Advanced x64 Instructions and Intrinsics
	Vectorized Base64
	Vectorized Encoding
	Unpacking Procedure
	ASCII Translation

	Vectorized Decoding
	ASCII Translation
	Packing Procedure

	Performance Evaluation
	Conclusion
	Advanced Error Checking
	White Space
	Complete Description of the Vectorized ASCII Translation

