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Abstract

Recent theories suggest that language acquisition is assisted by the
evolution of languages towards forms that are easily learnable. In
this paper, we evolve combinatorial languages which can be learned
by a recurrent neural network quickly and from relatively few ex­
amples. Additionally, we evolve languages for generalization in
different "worlds", and for generalization from specific examples.
We find that languages can be evolved to facilitate different forms
of impressive generalization for a minimally biased, general pur­
pose learner. The results provide empirical support for the theory
that the language itself, as well as the language environment of a
learner, plays a substantial role in learning: that there is far more
to language acquisition than the language acquisition device.

1 Introduction: Factors in language learnability

In exploring issues of language learnability, the special abilities of humans to learn
complex languages have been much emphasized, with one dominant theory based
on innate, domain-specific learning mechanisms specifically tuned to learning hu­
man languages. It has been argued that without strong constraints on the learning
mechanism, the complex syntax of language could .not be learned from the sparse
data that a 'child observes [1]. More recent theories challenge this claim and em­
phasize the interaction between learner and environment [~]. In addition to these
two theories is the proposal that rather than "language-savvy infants", languages
themselves adapt to human learners, and the ones that survive are "infant-friendly
languages" [3-5]. To date, relatively few empirical studies have explored how such
adaptation of language facilitates learning. Hare and Elman [6] demonstrated that
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classes of past tense forms could evolve over simulated generations in response to
changes in the frequency of verbs, using neural networks. Kirby [7] showed, using
a symbolic system, how compositional languages are more likely to emerge when
learning is constrained to a limited set of examples. Batali [8] has evolved recurrent
networks that communicate simple structured, concepts.

Our argument is not that humans are general purpose learners. Rather, current
research questions require exploring the nature and extent of biases that learners
bring to language learning, and the ways in which languages exploit those biases
[2]. Previous theories suggesting that many aspects of language were unlearnable
without strong biases are graduallybrealdng down as new aspects of language are
shown to be learnable with much weaker biases. Studies include the investigation
of how languages may exploit biases as subtle as attention ~d memory limitations
in children [9]. A complementary study has shown that general purpose learners
can evolve biases in the form of initial starting weights that facilitate the learning
of a family of recursive languages [10] ..

In this paper we present an empirical paradigm for continuing the exploration of fac­
tors that contribute to language learnability. The paradigm we propose necessitates
the evolution of languages comprising recursive sentences over symbolic strings ­
languages whose sentences cannot be. conveyed without combinatorial composition
of symbols drawn from a finite alphabet. The paradigm is not based on any specific
natural language, but rather, it is the simplest task we could find to illustrate the
point that languages with compositional structure can be evolved to be learnable
from few sentences.. The simplicity of the communication task allows us to analyze
the language and its generalizability, and highlight the nature of the generalization
properties.

We start with the evolution of a recursive language that can be learned easily from
five sentences by a minimally biased learner. We then address issues of robust
learning of evolved languages, showing that different languages support generaliza­
tion in different ways. We also address a factor to which scant regard has been
paid, namely that languages may evolve not just to their learners, but also to be
easily generalizable from a specific set of concepts. It seems almost axiomatic that
learning paradigms should sample randomly from the training domain. It may be
that human languages are not learnable from random sentences, but are easily gen­
eralizable from just those examples that a child is likely to be exposed to in its
environment. In the third series of simulations, we test whether a language can
adapt to be learnable from a core ·set of concepts.

2 A paradig:m for exploring language learnability

We consider a simple language task in which two recurrent neural networks try to
communicate a "concept" represented by a point in the unit interval, [0, 1] over a
symbolic· channeL An encoder network sends a sequence of symbols (thresholded
outputs) for each concept, which a decoder network receives and processes back into
a concept (the framework is described in greater detail in [11]). For communication
to be successful, the decoder's output should approximate the encoder's input for
all concepts.

The architecture for the encoder is a recurrent network with one input unit and
five output units, and with recurrent connections from both the output and hidden
units back to the hidden units. The encoder produces a sequence of up to five
symbols (states of the output units) taken from ~ = {A, ..... , J}, followed by the $
symbol, for each concept taken from .[0, 1]. To encode a value x E [0,1], the network
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Figure 1: Hierarchical decomposition of the language produced by an encoder, with
the first symbols produced appearing near the root of the tree. The ordering of
leaves in the tree represent the input space, smaller inputs being encoded by those
sentences on the left. The examples used to train the best decoder found during .
evolution are highlighted. The decoder must generalize to all other branches. LTI
order to learn the task, the decoder must generalize systematically to novel states
in the tree, including generalizing to symbols in different positions in the sequence.
(Figure 2 shows the sequence of states of a successful decoder.)

is presented with a sequence of inputs (x, 0, 0, ..).At each step, the output units
of the network assume one of eleven states: all zero if no output is greater than
0.5 (denoted by $); or the saturation of the two highest activations at 1.0 and the
remainder at 0.0 (denoted by A = [1,1,0,0,0] through J = [0,0,0,1, 1]). If the zero
output is produced, propagation is halted. Otherwise propagation continues for up
to five steps, after which the output units assume the zero ($) state.

The decoder is a recurrent network with 5 input units and a single output, and a
recurrent hidden layer. Former work [11] has shown that due to conflicting con­
straints of the encoder and decoder, it is easier for the decoder to process strings
which are in the reverse order to those produced by the encoder. Consequently,
the input to the decoder is taken to be the reverse of the output from the decoder,
except for $, which remains the last symbol. (For clarity, strings are written in
the order produced by the encoder.) Each input pattern presented to the decoder
matches the output of the encoder - either two units are active, or none are. The
network is trained with backpropagation through time to produce the desired value,
x, on presentation of the final symbol. in the sequence ($).

A simple hill-climbing evolutionary strategy with a two-stage evaluation function
is used to evolve an initially random encoder into one which produces a language
which a random decoder can learn easily from few examples. The evaluation of an
encoder, mutated from the current "champion" by the addition of Gaussian noise
to the weights, is performed against two criteria. (1) The mutated network must
produce a greater variety of sequences over the range of inputs; and (2) a decoder
with initially small random weights, trained on the mutated encoder's output, must
yield lower sum-squared error across the entire range of inputs than the champion.

Each mutant encoder is paired with a single decoder with initially random weight­
s. If the mutant encoder-decoder pair is more successful than the champion, the
mutant becomes champion and the ptocess is repeated. Since the encoder's input
space is continuous and impossible to examine in its entirety, the input range is
approximated with 100 uniformly distributed examples from 0.00 to 0.99. The final
output from the hill-climber is the language gen~rated by the best encoder found.



Evolving Learnable Languages .

2.1 Evolving an easily learnable language

69

Humans learn from sparse data. In the first series of simulations we test whether
a compositional language can be evolved that learners can reliably and effectively
learn from only five examples. From just five training examples, it seems unrea­
sonable to expect that any decoder would learn the task. The task is intentionally
hard in that a language is restricted to sequences of discrete symbols with which
it must describe a continuous space. Note that simple linear interpolation is not
possible due to the symbolic alphabet of the languages. Recursive solutions are
possible but are unable to be learned by an unbiased learner. The decoder is a
minimally-biased learner and as the simulations showed, performed much better
than arguments based on learnability theory would predict.

Ten languages were evolved with the hill-climbing algorithm (outlined above) for
10000 generations.1 For each language, 100 new random decoders were trained
under the same conditions as during evolution (five examples, 400 epochs). All ten
runs used encoders and decoders with five hidden units.

All of the evolved languages were learnable by some decoders (minimum 20, max­
imum 72, mean 48). A learner is said to have effectively learned the language if
its sum-squared-error across the 100 points in the space is less than 1.0.2 Encoders
employed on average 36 sentences (minimum 21, maximum 60) to communicate
the 100 points. The 5 training examples for each decoder were sampled randomly
from [0, 1] and hence some decoders faced very difficult generalization tasks. The
difficulty of the task is demonstrated by the language analyzed in Figures 1 and 2.
The evolved languages all contained' similar compositional structure to that of the
language described in Figures 1 and 2. The inherent biases of the decoder, although
minimal, are clearly sufficient for learning the compositional structure.

3 Evolving languages for particular generalization

The first series of simulations demonstrate that we can find languages for which a
minimally biased learner can generalize from few examples. In the next simulations
we consider whether languages can be evolved to facilitate specific forms of general­
ization in their users. Section 2.1 considered the case· where the decoder's required
output was the same as the encoder's input. This setup yields the approximation
to the line y == x in Figure 2. The compositional structure of the evolved languages
allows the decoder to generalize to unseen regions of the space. In the following
series of simulations we consider the relationship between the structure of a lan­
guage and the way in which the decoder is required to generalize. This association
is studied by altering the desired relationship between the encoder'~ input (x) and
the decoder's output (y).

Two sets of ten languages were evolved, one set requiring y = x (identity, as in
section 2.1), the other using a function resembling a series of five steps at random
heights: y == r(L5xJ); r = (0.3746, 0.5753,0.8102,0.7272,0.4527) (random step)3.
All conditions were as for section 2, with the exception that 10 training examples
were used and the hill-climber ran for 1000 generations. On completion of evolution,
100 decoders were trained on the 20 final languages under both conditions above as

lOne generation represents the creation of a more variable, mutated e~coder and the
subsequent training of a decoder.

2 A language is said to be reliably learnable when at least 50% of random decoders are
able to effectively learn it within 400 epochs.

3 L5xJ provides an index into the array r, based on the mag~tudeof x.
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Figure 2: Decoder output after seeing the first n symbols in the message, for n == 1
(a) to n == 6 (f) (from the language in Figure 1). The X-axis is the encoder's input,
the Y-axis is the decoder's output at that point in the sequence. The five points
that the decoder was trained on are shown as crosses in each graph. After the first
symbol (A, B, G, E or $), the decoder outputs one of five values (a); after the
second symbol, more outputs are possible (b). Subsequent symbols in each string
specify finer gradations in the output. Note that the output is not constructed
monotonically, with each symbol providing a closer approximation to the target
function, but rather recursively, only approximating the linear target at the final
position in each sequence. Structure inherent in the sequences allows the system to
generalize to parts of the space it has never seen. Note that the generalization is not
based on interpolation between symbol values, but rather on their compositional
structure.

well as two others, a sine function and a cubic function.

The results show that languages can be evolved to enhance generalization prefer­
entially for one "world" over another. On average, the languages performed far
better when tested in the world in which they were evolved than in other worlds.
Languages evolved for the identity mapping were on average learned by 64% of
decoders trained on the identity task compared with just 5% in the random step
case. Languages evolved for the random step task were learned by 60% of decoders
trained on the random step task but only 24% when trained on the identity task.
Decoders generally performed poorly on the cubic function, and no decoder learned
the sine task from either set of evolved languages. The second series of simulation­
s show that the manner in which the decoder generalizes is not restricted to the
task of section 2.1. Rather, the languages evolve to facilitate generalization by the
decoder in different ways, aided by its minimal biases.
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4 core concepts'

In the former simulations, randomly selected concepts were used to train decoders.
In some cases a pathological distribution of points made learning extremely difficult.
In contrast, it seems likely that human children learn language based on a common
set of semantically-constrained core concepts ("Mom", "I want milk", "no", etc).
For the third series of simulations, we tested whether selecting a fortuitous set of
training concepts could have a positive affect on the success of an evolved language.
The simulations with alternative generalization functions (section 3) indicated that
decoders had difficulty generalizing to the sine function. Even when encoders were
evolved specifically on the sine task, in the best of 10 systems only 13 of 100 random
decoders successfully learned.

We evolved a new language on a specifically chosen set of 10 points for generalization
to the sine function. One hundred decoders were then trained on the resulting
language ush"1.g either the same set of 10 points, or a random set. Of the networks
trained on the fixed set, 92 learned the tasked, compared with 5 networks trained
on the random sets. That a language evolves to communicate a restricted set of
concepts is not particularly unusual. But what this simulation shows is the more
surprising result that a language can evolve to generalize from specific core concepts
to a whole recursive langUage in a particular way (in this case, a sine function).

5 Discussion

The first series of simulations show that a compositional language can be learned
from five strings by an recurrent network. Generalization performance included
correct decoding of novel branches and symbols in novel positions (Figure 1). The
second series of simulations highlight how a language can be evolved to facilitate
different forms of generalization in the decoder. The final simulation demonstrates
that languages can also be tailored to generalize from a specific set of examples.

The three series of simulations modify the language environment of the decoder in
three different ways: (1) the relationship between utterances and meaning; (2) the
type of generalization required from the decoder; and (3) the particular utterances
and meanings to which a learner is exposed. In each case, the language environment
of the learner was sculpted to exploit the minimal biases present in the learner.
While taking an approach similar to [10] of giving the learner' an additional bias
in the form of initial weights was also likely to have been effective, the purpose
of the simulations was to investigate how strongly external factors could assist in
simplifying learning.

6 Conclusions

"The key to understanding language learnability does not lie in
the richly social context of language training, nor _in the incredi­
bly prescient guesses of young language learners; rather, it lies in
a process that seems otherwise far remote from the microcosm of
toddlers and caretakers - language change. Although the rate of
social evolutionary change in learning structure appears unchang~

ing compared to the time it takes a child to develop language a­
bilities, this process is crucial to understanding how the child can
learn a language that on the surface appears impossibly complex
and poorly taught." [3, p115].
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In this paper we studied ways in which languages can adapt to their learners.
running simulations of a language evolution process, 'We contribute additional com­
ponents to the list of aspects of language that can be learned by minimally-biased,
general-purpose learners, namely that recursive structure can be learned from few
examples, that languages can evolve to facilitate generalization in a particular way,
and that they can evolve to be easily learnable from common sentences. In al­
l the simulations in this paper, enhancement of language learnability is achieved
through changes to the learner's environment without resorting to adding biases in
the language acquisition device.

This work was supported by an APA to Bradley Tonkes, a UQ PostdoCtoral Fel­
lowship to Alan Blair and an ARC grant to Janet Wiles.
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