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Abstract— Agents within a group can have different percep-
tions of their working environment and autonomously fulfil their
goals. However, they can be aware of beliefs and goals of the
group as well as other members so that they can adjust their
behaviours accordingly. To model these agents, we explicitly
include knowledge commonly shared by the group and that
obtained from other agents. By avoiding actions which violate
“mental attitudes” shared by the majority of the group, agents
demonstrate their social commitment to the group. Defeasible
logic is chosen as our representation formalism for its computa-
tional efficiency, and for its ability to handle incomplete and
conflicting information. Hence, our agents can enjoy the low
computational cost while performing “reasoning about others”.
Finally, we present the implementation of our multi-agent system.

I. INTRODUCTION

As can be observed from a society, every individual member
can take any action driven by his/her desires. However, the
individuals are often required to comply with the society
“conventions”. Essentially “conventions” could be norms, con-
straints or desires which are popularly recognised by the soci-
ety. Being aware of those conventions, an individual member
can strengthen his/her social relationships and coordinates
better with other members. Similarly, in a multi-agent system,
an agent maintains its social commitments by discovering
the “common attitudes” and fulfils its own demands whilst
obligating to these attitudes. Hence agents reason not only
about their own beliefs and goals but also about those of
other agents. Besides, agents autonomously observe and judge
their surroundings by their own view resulting in partial and
sometimes conflicting descriptions of the world. Consequently,
modelling those agents requires representing and reasoning
with incomplete and conflicting information, which is beyond
the classical logics and monotonic reasoning.

Recently, defeasible logic (DL)[1], [2] has attracted consid-
erable interest from the research community [3]–[5], especially
in application to modelling rational agents [6]–[9]. DL is an
elegant and computationally efficient tool [10], [11] to deal
with partial and conflicting knowledge. The key advantage
of DL is being able to draw a plausible conclusion from a
reasonable amount of information. In addition, DL provides a
compact representation and an effective way to accommodate
new information.

In this paper, we propose a new modelling technique based
on DL to explicitly describe the knowledge that is commonly
shared by agents, and that obtained from other agents. The
new model enables an agent to reason about the environment

and the intentions of other agents. Social actions are achieved
by balancing between the desires of an individual and the
beliefs of the majority. To tackle multi-source reasoning, we
extend the reasoning mechanism of DL with the notion of
superior knowledge. This new mechanism allows an agent to
integrate its mental attitudes with a more trustworthy source
of information such as the knowledge shared by the majority
of other agents. In the implementation of our multi-agent
system, we add modal notions including Belief, Intention, and
Obligation in order to have a fine grained model of “mental
attitudes” and social actions.

In the rest of this paper, we firstly describe the basic
concepts of DL in Section II. We then introduce our modelling
technique and discuss discuss how to represent the knowledge
base of agents including the meta-knowledge about agents’
importance in Section III. Also, we outline the strategies
to allow agents to discover approximate “common attitudes”
among the group and the mechanism for reasoning with a
priority source of knowledge. In Section IV, we present the
architecture of our system including the extension of Rule
Markup Language as a knowledge representation tool and the
algorithm of the reasoning engine. Finally, we provides an
overview of research works related to our system in Section
V.

II. DEFEASIBLE LOGIC

Following the presentation in [5], a defeasible theory D
is a triple (F,R,>) where F is a finite set of facts, R is a
finite set of rules, and > is a superiority relation on R. The
language of DL consists of a finite set of literals, l, and their
compliments ∼l. A rule in R is composed of an antecedent
(body) A(r) and a consequent (head) C(r), where A(r) consists
of a finite set of literals and C(r) contains a single literal. A(r)
can be omitted from the rule if it is empty. There are three
types of rules in R, namely Rs (strict rules), Rd (defeasible
rules), and Rd f t (defeaters). We use Rsd for the set of strict and
defeasible rules, and R[q] for the set of rules whose head are q.
A conclusion q derived from the theory D is a tagged literal
and is categorised according to how the conclusion can be
proved: +∆ – definitely provable; −∆ – definitely unprovable;
+∂ – defeasibly provable; −∂ – defeasibly unprovable.

The set of conclusions of a defeasible theory is finite 1, and
can be computed in linear time [10](See [4] for a more detailed
exposition of DL and [11] for existing implementations).

1It is the Herbrand base that can be built from the literal occurring in the
rules and the facts of the theory.
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III. MODELLING TECHNIQUE

A. Knowledge Representation

In general, each individual agent can take any action by
balancing the its desires, its knowledge about the environment,
and perception of other agents’ behaviours. As a member of
a group, each agent should be aware of the mental attitudes
commonly held among the group and should avoid actions
which can violate the group’s desires. Similarly, individual
behaviours can be significantly influenced by either members
with high reputation or the majority of the group. By con-
sidering its knowledge and the “collective wisdom” of the
group, an agent can adjust its behaviours accordingly. In order
to capture this concept, we propose a knowledge structure
for an agent, which consists of three components including
background, other members, and internal knowledge i.e. the
agent’s own knowledge.

Given a group of agents, A = {A1, . . . ,An+1}, and a weight
function, wA : {A1, . . . ,An+1} 7→ R+, representing the impor-
tance (reliability) of an agent to the group. The knowledge
structure of an agent Ame in A is depicted by a set of
defeasible theories T = {Tbg,Tme,Tother}.

Tbg is the background theory representing the background
knowledge. This knowledge represents information commonly
shared by all agents, which motivates general (social) be-
haviours. Also this knowledge can present desires or restric-
tions popularly known among agents.

Tme is the internal theory representing the own knowledge of
Ame, which describes its own view about the working environ-
ment. This knowledge enables Ame to achieve autonomously
and distinctively its goals.

Tother = {Ti : 1≤ i≤ n+1 & i 6= me} where Ti is a defeasible
theory that Ame obtains from Ai in A . The importance of Ti
is derived from that of the corresponding agent as wT (Ti) =
wA(Ai). The knowledge of other agents provides a rough
understanding of their possible behaviours. This information
could be learnt from past experience or via information
exchange. However, methods to obtain this information are
not the primary concern of this paper.

Our approach favours the internal view approach [12] to
model agents’ behaviours in the sense that an agent can adapt
or react to events depending on what it knows about the
environment and other agents. Moreover, our approach can be
used as a tool for modelling the external view on behaviours
of agents. Interactions between agents in the group can be
fully investigated and validated when every individual agent
is equipped with detailed knowledge of the other agents.

B. Majority Knowledge

The majority rule from [13] retrieves a maximal amount
of consistent knowledge from a set of agents’ knowledge.
Conflicts between agents can be tackled by considering not
only the number of agents supporting that information but
also the importance of the agents. The approach provides a
useful and efficient method to discover information largely
held by agents. The majority knowledge can be used either to

reinforce the current knowledge of an agent or to introduce
new information into the agent’s knowledge.

Due to possible conflicting information within a knowledge
source, the majority rule cannot be directly applied to our
approach. Instead, the majority rule pools potential joint
conclusions derived by the defeasible reasoning process.

Given the knowledge structure of an agent, Ame, Ci denotes
the set of conclusions derived from Ti ∈ Tother. The support
level of a conclusion c is obtained from the weight of the
theory that holds c:

support(c,Ti) =

{
wT (Ti) c ∈Ci

0 otherwise

The majority knowledge from the others, Tmaj, whose elements
are inferred from {C1, . . . ,Cn} by the majority rule, is deter-
mined by:

Tmaj =

{
c| ∑

Ti∈Tother

support(c,Ti) >
W −wT (Tme)

2

}
where W = ∑Ai∈A wA(Ai). W is the total weight of the group.
Each conclusion in Tmaj can have different support levels
accumulated from individual theories. The weight of majority
conclusions is a set {wmaj}, whose elements have values
ranging from W −wT (Tme) to W−wT (Tme)

2 .
Proposition 1: For any literal q, it is impossible to have

both +∂q and +∆∼q in Tmaj
Due to the nature of DL proofs and conflicts between

knowledge sources, there can be strict and defeasible conclu-
sions of a literal and its complement in the inference from
individual sources. However, the outcome of the majority
rule is still coherent. The proof for the proposition is rather
straightforward by contradiction.

As Tmaj is derived from what the agent Ame knows about the
other agents, Tmaj can conflict with Tme (the internal knowledge
of Ame). In the case that Ame joins the majority pool, the greater
importance (weight) Ame acquires, the greater influence it has
on the joint knowledge. If the weight of Ame is greater than
W/3, Ame’s support for any conclusion c is tantamount to half
of the group’s support for c. Ame can have two strategies to
handle conflicts :

1) Adaptive strategy: if wme ≤W/3, Ame should consider
conclusions from the others, since it is unlikely that
Ame can successfully override conflicts from the joint
knowledge. That means Tmaj introduces new information
to Ame.

2) Dominant strategy: otherwise, Ame can defeat conflicts
from other agents if Ame joins the pool. The joint
knowledge from the others just reinforces the current
knowledge of Ame.

In both strategies, background knowledge commonly shared
by the group is respected absolutely; i.e. in case of a conflict
between a conclusion from background knowledge and either
from the majority or the agent’s knowledge, the conclusions,
which are supported by the background part prevail.



C. Defeasible Reasoning with Superior Knowledge

In this section, we propose a simple method to integrate two
independent defeasible theories. Note that a defeasible theory
has finite sets of facts and rules, and a derivation from the
theory can be computed in linear time [10].

Suppose that an agent considers two knowledge sources
represented by defeasible theories labelled as Tsp – the superior
theory, and Tme – the agent’s internal theory. The agent con-
siders that Tsp is more important than Tme. Thus, conclusions
from the internal theory should be withdrawn if they conflict
with the superior theory; the agent prefers the superior theory’s
conclusions to its own.

Owing to the transformations of the superiority relation and
defeater rules [4], we can assume that the two theories contain
only strict and defeasible rules. To perform the defeasible
reasoning, the agent generates a superiority relation over
sets of rules as in Rsp

s > Rme
s ;Rsp

d > Rme
d . In this scheme,

the subscript denotes the type of rules while the superscript
indicates the type of the theory which contains the rules.

A derivation from the two theories is a finite sequence P =
(P(1), . . . ,P(n)) of tagged literals satisfying proof conditions
(which correspond to inference rules for each of the four kinds
of conclusions). P(1..i) denotes the initial part of the sequence
P of length i. The definite conclusion, +∆q, will be derived
by performing forward chaining with the strict rules in the
superior theory, or in the internal theory if the complementary
literals cannot be positively proved by the superior theory.

+∆: If P(i+1) = +∆q then
(1) q ∈ F or
(2) ∃r ∈ Rsp

s [q] ∀a ∈ A(r) : +∆a ∈ P(1..i) or
(3) ∃r′ ∈ Rme

s [q] ∀a ∈ A(r
′
) : +∆a ∈ P(1..i) and

∀r ∈ Rsp
s [∼q] ∃a ∈ A(r) :−∆a ∈ P(1..i)

The conclusions tagged with −∆ mean that the extended
mechanism cannot retrieve a positive proof for the correspond-
ing literals from the strict parts of both theories.

−∆: If P(i+1) =−∆q then
(1) q /∈ F and
(2) ∀r ∈ Rsp

s [q]∪Rme
s [q] ∃a ∈ A(r) :−∆a ∈ P(1..i).

The proof for −∆ implicitly satisfies the principle of strong
negation [3]. The proof, which strictly complies with that
principle, requires an additional condition such that at least
one strict rule from the superior theory supports the comple-
mentary literals. However, this condition is never met as it
violates the coherence property of the strict rules.

A defeasible conclusion +∂q can either be drawn directly
from definite conclusions, or by investigating the defeasible
part of the integrated theory. In particular, it is required that a
strict or defeasible rule with an “applicable” head q is in the
theory (2.1). In addition, the possible “attacks” must be either
unprovable (2.2 and 2.3.1) or counter-attacked by “stronger”
rules (2.3.2).

+∂ : If P(i+1) = +∂q then either
(1) +∆q ∈ P(1..i) or

(2.1) ∃r ∈ Rsp
sd [q]∪Rme

sd [q] ∀a ∈ A(r) : +∂a ∈ P(1..i) and
(2.2) −∆∼q ∈ P(1..i) and
(2.3) ∀s ∈ Rsp

sd [∼q]∪Rme
sd [∼q] either

(2.3.1) ∃a ∈ A(s) :−∂a ∈ P(1..i) or
(2.3.2) ∃t ∈ Rsp

sd [q]∪Rme
sd [q] such that t > s and

∀a ∈ A(t) : +∂a ∈ P(1..i)

The conclusions tagged with −∂ mean that the extended
mechanism cannot retrieve a positive proof for the correspond-
ing literals from the strict and defeasible rules of both theories
or these conclusions are rebutted because of “stronger” con-
clusions. The proof for −∂ derives from that of +∂ by using
the strong negation principle.

The extended defeasible reasoning with the superior knowl-
edge has these properties2

1) If Tsp ` +∆q then Tsp + Tin 6` +∆∼q and Tsp + Tin 6`
+∂∼q. If a strict conclusion is derived from the superior
theory, the extended mechanism does not provide any
proof for its negation.

2) If Tsp ` ∼∆∼q and Tin `+∆q then Tsp +Tin `+∂q. The
conclusions from the extended mechanism can violate
defeasible conclusions obtained from the superior theory
if the agent has a strong evidence of the contradiction
in its internal knowledge.

3) The extended reasoning mechanism is coherent and
consistent.

Given two defeasible theories T and S and a proof tag #, we
use T ` #q to state that #q can be proved from theory T using
the basic proof conditions of DL, while T B S ` #q means that
there is a derivation of #q from the theory integrating T and
S using the proof conditions given in this section whereas T
plays the role of Tsp and S the role of Tme.

The extended mechanism computes a consistent set of
conclusions with respect to the superior theory. The mech-
anism goes beyond the standard defeasible reasoning since it
extends the superiority relation of rules to that of theories.
This increases the size of theory to be investigated. Hence
the complexity class of the reasoning algorithm [10] remains
unchanged.

D. Reasoning Mechanism

We are now able to describe how to incorporate the ma-
jority rule into a reasoning mechanism based on the notions
introduced in the previous sections. The reasoning mechanism
operates in two steps. The first step is to identify the majority
knowledge from the other agents. In the second step, the agent
performs either adaptive or collective reasoning depending on
its weight.

a) Determining the majority knowledge from other agents.
i) Draw defeasible conclusions from the others:

Tbg B Ti `Ci : 1≤ i≤ nandi 6= me

ii) Establish the majority knowledge Tmaj over the sets
of defeasible conclusions, {Ci : 1≤ i≤ n} (see III-B).

2The proof for these properties is omitted due to the space limit.



b) Reasoning strategies.
At this stage, the set of knowledge sources is reduced
to the background, the majority, and the agent’s own
knowledge. Depending on its weight, an individual agent
can either follow or reject the majority knowledge.
Adaptive reasoning.: First, the agent combines the back-
ground and its own knowledge by considering the back-
ground as the superior source. Next, the joint knowledge
is used to adjust the derivation from the first step. That
is, the agent withdraws conclusions which violate the
joint knowledge.

Tmaj B (Tbg B Tme) `C
′
me

Dominant reasoning: Any conflict from the majority is
rejected by the agent.

(Tbg B Tme) B Tmaj `C
′
me

Proposition 2: The complexity of the proposed mechanism
is in the O(n) class.

This property is due to the linear complexity of defeasible
reasoning and the majority rule.

IV. “LIKE MAJORITY” MULTI-AGENT SYSTEM

A. MAS-LM Architecture

Our architecture for “like majority” multi-agent system,
MAS-LM, has two major components as shown in Figure 1.
The first component is the repository of the agents’ knowl-
edge, which is built by designers. In order to facilitate the
interactions between designers and agents, RuleEditor module
provides a Java user interface to create defeasible theories
representing knowledge of individual agents. Once designers
finish composing sets of knowledge including individual’s
knowledge and meta-knowledge of the agents’ weights, these
knowledge are stored in the RuleML-like repository (see Sec-
tion IV-B). Only background knowledge and meta-knowledge
are accessible to all agents.

The second component in the dashed-line box in Figure 1
presents essential modules of an individual agents. RuleLoader
parses defeasible theories into Java objects, which is suitable
for ReasoningEngine. KnowledgeExchange performs commu-
nication with other agents in the group. Incoming information
is stored in the internal repository as Java objects.

ReasoningEngine performs decision-making process by us-
ing the extended defeasible reasoning (see Section IV-C).
Decisions are stored in the internal repository for knowledge
exchange or further investigation. Action module essentially
provides connections between an agent and its working envi-
ronment.

B. Knowledge Representation

1) Knowledge Structure with modal notions: As presented
in Section III-A, an individual agent has a knowledge struc-
ture as a tuple T = {Tbg,Tme,Tother}, whose elements are
defeasible theories. In order to better capture social actions,
we introduce modal notions including Belief, Intention, and
Obligation. These notions allow agents to explicitly reason

Fig. 1. MAS-LM system architecture

not only about beliefs of other agents but also about their
goals resulting in a stronger social behaviours [14]. Now every
Ti ∈ T (Ti 6= Tbg) has two independent sets of defeasible
theories T B

i and T I
i that represent the set of beliefs and

the set of intentions correspondingly. Meanwhile, Tbg has all
three modal notions Tbg = {T B

bg,T
I

bg,T
O

bg}. Essentially, beliefs
represent what agents believe to be true; intentions represent
what agents want to achieve; and obligations represent what
agents should commit to the group.

Example 1: There is a man in a sinking boat and three
agents A1,A2,A3 observe the situation having the weight of
{6,3,1} respectively. Knowledge commonly shared among the
agents is:

T B
bg = {Rs = {r1 :→ manOnSinkingBoat}}

T I
bg = {Rd = { r1 : manOnSinkingBoat⇒ manInDanger

r2 : manInDanger⇒ rescue}
T O

bg = {Rd = {r1 : risk⇒∼rescue}}

The background knowledge state that the man is in danger,
the rescue should be performed if it is safe to do so. Besides,
A3 knows about the intentions of A1,A2, and itself:

T I
1 = {Rd = {r1 :⇒ swim,r2 : swim⇒ risk}}

T I
2 = {Rs = {r1 :→ throwRope,r2 : throwRope→∼risk}}

T I
me = T I

3 = {Rd = {r1 :⇒ sur f ,r2 : sur f ⇒∼risk}}

Essentially, the knowledge structure is interpreted as A1 wants
to swim directly to the sinking boat while A2 intends to throw
a rope to the boat, and A3 plans to approach the boat by a surf
board.

2) RuleML Extension as Knowledge Representation: Rule
Markup Language (RuleML) is an XML based language
for the representation of rules. It offers facilities to specify
different types of rules from derivation rules to transformation
rules to reaction rules. RuleML already supports derivation
rules via Implies element. However, we need to define a new



syntax to represent the strength of the rules and superiority
relations. Following that of DR-DEVICE [15], every rule in
the knowledge structure now has a @ruletype attribute taking
one of three values: strictrule, defeasiblerule or defeater.
Because a rule can be superior to more than one other rule, we
explicitly represent the superiority relation using the predicate
Override [16].

The conclusions from corresponding theories, represented
by the Conclusion element, are also stored for exchanging
knowledge or explaining agents’ behaviours. Each conclusion
includes the literal and the strength of the proof. Finally,
every defeasible theory in the knowledge structure, containing
a collection of rules, facts, and superiority, is represented
by DLTheory element having three attributes, namely source,
weight, and modality corresponding to the source name, the
weight, and the modal notion of the theory.

C. Reasoning Engine

1) Social Categories: As in Section III-B, an individual
agent can adapt to the majority by dropping its own beliefs
and intentions in favour of those popularly recognised by the
group. However, the agent can dominate the group by promot-
ing its own intentions and rejecting contradictory beliefs and
intentions from the majority of the group. In both situations,
obligations from the background knowledge plays as “filter”
so that any behaviour violating these obligations is cancelled
by the individual agent.

We categorise our agents into two types of social behaviours
entitled “majority” and “obedience”. Agents in the first cate-
gory totally commit to the group avoiding conflicts with the
majority and the group’s “common conventions”, represented
by T O

bg. These agents collect the majority beliefs and intentions
from others by running the reasoning mechanism in Section
III-D over belief and intention elements of the knowledge
structure respectively:

1) T B
maj B (T B

bg B T B
me) `C

′B
me

2) T I
maj B (T I

bg B T I
me) `C

′I
me

3) {T O
bg;C

′B
me}> C

′I
me

In contrast, obedient agents only commit to “common conven-
tions” and perform the reasoning process:

1) (T B
bg B T B

me) B T B
maj `C

′B
me

2) (T I
bg B T I

me) B T I
maj `C

′I
me

3) {T O
bg;C

′B
me}> C

′I
me

Example 2: Reconsidering Example 1, since A3 does not
know about the belief of other agents, the majority belief
equals the derivation of the background belief T B

bg. That is
T B

maj = {+∆manOnSinkingBoat}.
A3 identifies intentions of A1 and A2 by integrating what A3

knows with T I
bg, T I

bg B T I
i `CI

i : i = 1,2:

CI
1 ={+∂manInDanger6,+∂ swim6,+∂ risk6,+∂ rescue6}

CI
2 ={+∂manInDanger3,+∆throwRope3,+∆∼risk3,

+∂ rescue3}

The superscript of defeasible conclusions represents the weight
inherited from the corresponding knowledge source. The ma-
jority intentions from others are:

T I
maj = {+∂manInDanger9,+∂ swim6,+∂ risk6,+∂ rescue9}

wmaj = {9,6}
The superscript of a majority conclusion shows the weight ac-
cumulated from that of the sources supporting the conclusion.
Since A3’s weight is the smallest, A3 adapts its intentions to
the majority IA3 = T I

maj. In the final step, A3 drops the intention
of doing the rescue due to r1 in T O

bg.
Suppose the weight of the group changes from {6,3,1}

to {6,3,5}. By integrating A3’s intentions with that of the
background, T I

bg B T I
me, A3 derives

CI
me = {+∂manInDanger5,+∂ sur f 5,+∂∼risk5,+∂ rescue5}

Clearly, if A3 joined the majority pool, the majority conclu-
sions would favour those from A3. A3 now rejects conflicts
from the majority intentions, T I

maj, and persists with its own
intentions with respect to group obligations. That is obedi-
ent agents only maintain their commitments to the group
by eliminating intentions against obligations specified in the
background knowledge.
We believe that the “majority agents” can express a strong
social commitments to the group. Being aware of knowledge
from others, these agents dynamically learn new “conventions”
recognised by the majority and change their intentions toward
this knowledge. On the other hand, “obedient agents” can
introduce “new values” into the group. Thanks to their high
weight, these agents could take leading actions so that other
agents could follow.

2) Algorithm: As in the previous section, every agent
in MAS-LM has there knowledge layers corresponding to
Belief, Intention and Obligation notions. Eliminating conflicts
with Obligation layer from agents’ intentions is done by
the standard defeasible reasoning. The key component for
MAS-LM engine is the mechanism for integrating with a
superior knowledge source (Section III-D), which operates on
Belief and Intention layers in order to determine beliefs and
intentions of the majority. The engine allows an agent either
to adapt to or to override the mental attitudes of the majority
by implementing adaptive or dominant strategies.

Thanks to the conflict resolution of the reasoning mech-
anism, the implementation of the majority rule is straight-
forward. Therefore, this part focuses on the implementation
of the reasoning with the superior knowledge. The algorithm
for the reasoning mechanism extended from [11] takes the-
ories in RuleML format as input to create the data structure
for the inference process. The inference process flattens the
superiority relation between theories in order to apply Basic
Defefasible Logic. Differing from [11], literals proved in the
strict rules can be defeated by definite conclusions derived
from the superior theory. Hence, the inference can be used
for both strict and defeasible rules by separately investigating
those rules. The outcome from processing the strict rules is
considered as facts when examining the defeasible rules.



V. RELATED WORK

One major stream in multi-agent systems to capture social
commitments is to modify the BDI architecture [17] by
introducing deontological properties like laws, norms, and
obligations to place constraints on agents’ behaviours. The
deontological properties are considered as external influences
on individual’s decision making and the commitment to other
members. This idea is supported by several authors in [18]–
[20]. Clearly modal logics are very powerful to represent these
concepts. Our approach differs from BDI-like agents in the
consideration of incomplete and conflicting information. The
social commitment is implemented by pondering the conflicts
with “desires” commonly shared by the group and “desires”
shared by the majority. That is our agents demonstrate a social
ability via their commitments to beliefs and goals of the group
[14].

Generally, agents adjust their behaviours to the majority at-
titudes, which are dynamically discovered during interactions
with other agents. However, if an agent has a strong belief
to the contrary of the common (shared) desires, the agent can
break its commitment. This exception can be against the goals
of the group but offers the agent some levels of autonomy and
flexibility in making a decision.

The modal logic framework in [21] combines the multi-
agent epistemic logic and multi-source reasoning systems to
perform knowledge integration. The reasoning process tackles
with conflicts by applying two cautious strategies namely
level cutting fusion – reject all conflicting beliefs of sources
having lower reliability; and level skipping fusion – discard
only the level containing the conflicts. This framework differs
from ours not only in fusion techniques, but also in conflict
handling. Thanks to the defeasible logic, the agents’ knowl-
edge can have conflicting information but the information is
consistent at the end of reasoning process. Also, the conflicts
in knowledge sources can be resolved by further exploiting
the superiority relation.

VI. SUMMARY

This paper has presented a modelling technique based on
defeasible logics for multi-agent systems which explicitly cap-
tures the background knowledge of the group and knowl-
edge about other agents. The technique also uses the meta-
knowledge to the importance of individual agents in the sys-
tem. One important feature of our technique is being able to
maintain the computational efficiency of both the defeasible
reasoning and the majority rule.

Being aware of beliefs and goals of other agents, an indi-
vidual agent can discover mental attitudes, which are largely
shared by the group, and balances those attitudes with its
own. In our MAS-LM, agents are categorised into two types:
majority and obedience depending on the reasoning strategies
they use. An agent can either adapt to majority behaviours
or dominate the group. In the second strategy, the agent can
introduce a distinct behaviour that would lead other agents
while committing to obligations commonly recognised by the
group.

We are investigating a framework to simulate emergency
situations where rescue teams are well equipped with compre-
hensive emergency protocols but the information is incomplete
and conflicting. The simulation tool can be used to evaluate
the performance of team members and the effectiveness of
the protocols. To better model agents’ behaviours, we need to
develop a sophiticated mechanism for rule-based information
exchange. With respect to Foundation of Intelligent Physical
Agents (FIPA) speech acts and defeasible logics, [22] is a
worth investigation.
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