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Abstract 

Judgements of and sensitivity to style are ubiquitous. People become sensitive to the 

structural regularities of complex or “polymorphous” categories through exposure to 

individual examples, which allows them respond to new items that are of the same style 

as those previously experienced. This thesis investigates whether a dimension reduction 

mechanism could account for how people learn about the structure of complex categories. 

That is, whether through experience, people extract the primary dimensions of variation 

in a category and use these to analyse and categorise subsequent instances. We used 

Singular Value Decomposition (SVD) as the method of dimension reduction, which 

yields the main dimensions of variation of pixel-based stimuli (eigenvectors). We then 

tested whether a simple autoassociative network could learn to distinguish paintings by 

Picasso and Braque which were reconstructed from only these primary dimensions of 

variation. The network could correctly classify the stimuli, and its performance was 

optimal with reconstructions based on just the first few eigenvectors. Then we 

reconstructed the paintings using either just the first 10 (early reconstructions) or all 

1,894 eigenvectors (full reconstructions), and asked human participants to categorise the 

images. We found that people could categorise the images with either the early or full 

reconstructions. Therefore, people could learn to distinguish category membership based 

on the reduced set of dimensions obtained from SVD. This suggests that a dimension 

reduction mechanism analogous to SVD may be operating when people learn about the 

structure and regularities in complex categories.  
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Judgements of style: People, pigeons, and Picasso 

What makes a tree, a tree? How is it that a towering gum tree, a weeping willow, and 

a manicured Bonsai are all exemplars of a single category? Why do people not normally 

confuse a lamppost for a tree, even though the image falling on the retina would be 

similar to that of a tall, narrow tree? People’s initial reaction to this challenge can be to 

attempt to generate a rule that defines and differentiates the category “tree”. For example, 

people might claim “a tree is green and leafy, whereas a lamppost is not”. Yet they would 

also recognise a bare deciduous tree (which is neither green nor leafy) as a tree. People 

might still claim “a tree has branches”, and yet they would have no difficulty recognising 

a tree with its branches sawn off as a tree. It seems, therefore, that no explicit rule can be 

applied to consistently classify trees, and differentiate them from other, similar-looking 

objects. This is because “tree” is an example of a complex, “polymorphous”, or “family 

resemblance” category, where category membership is not defined by a simple rule. The 

individual exemplars that constitute the category tree instead seem to share a common 

tacit style (Ryle, 1951). People can make these sorts of category judgements with ease 

and accuracy in everyday life. The purpose of this thesis, therefore, is to investigate 

whether dimension reduction can account for how people learn about the structure of 

complex visual categories. That is, whether through experience with individual exemplars 

of a category, people become sensitised to the main dimensions of variation that are 

important for distinguishing those stimuli from one another, and use these dimensions to 

analyse and classify subsequent stimuli that they encounter.  

In this literature review, I will discuss how dimension reduction can account for 

how we tacitly learn about the structure of a wide variety of complex categories. I will 
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begin by discussing the evidence that this mechanism seems to capture some fundamental 

principles about the way that people recognise faces. Subsequently, I will consider Latent 

Semantic Analysis (LSA), which is a form of dimension reduction applied to written text. 

LSA is currently attracting attention in linguistics for its potential to explain human 

language acquisition, including the conundrum of how children acquire language at a rate 

greater than they can possibly be directly taught. I will also examine the evolutionary and 

physiological evidence, which suggests that it is not only plausible, but likely, that the 

visual system employs dimension reduction for analysing visual input. Finally, I will 

consider how this relates to animal learning. The experiment reported in this thesis, 

furthermore, will demonstrate that a dimension reduction model can successfully 

categorise Picasso and Braque paintings, and crucially, that dimension reduction may in 

fact be the basis for people’s judgements of style on the same task.  

Dimension reduction  

Dimension reduction is the notion that through experience with multiple instances 

of particular categories, people learn to extract the main sources of variation that 

distinguish one category from another, and use these to analyse and classify subsequent 

stimuli. This is analogous to many common statistical dimension reduction techniques, 

such as Singular-Value Decomposition (SVD), nonnegative matrix factorisation, Fourier 

Transform (FT), Factor Analysis (FA), Independent Components Analysis (ICA), 

Principal Components Analysis (PCA), and Karhunen-Loeve Transform (KLT) 

(Dunteman, 1989; Joliffe, 1986; Regment & Joreshog, 1993; Stevens, 1996; Tabachnick 

& Fidell, 2007). The precise method of dimension reduction, however, is not a pivotal 

concern here. I wish to show, rather, that the general dimension reduction mechanism is 
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the basis for people’s judgements of style. One of the most widely used dimension 

reduction techniques is PCA, its popularity stemming from the fact that it is (relatively) 

simple computationally. I will, therefore, focus on PCA. Dimension reduction techniques 

such as PCA can be characterised equivalently in terms of standard statistical techniques, 

geometrically in multidimensional space, or as neural network architectures.   

Dimension reduction and statistics  

Statistical dimension reduction can be used to summarise a large set of visual 

stimuli into a reduced set of dimensions. The first step is to quantify an image, which 

means that every pixel in the image is assigned a numerical value representing its 

intensity or brightness, and the whole image, therefore, can be treated a vector of 

brightness values. The vectors from any number of images can then be assembled into a 

covariance matrix, which is subsequently decomposed into the orthogonal dimensions 

that best distinguish all the images from one another. This is called deriving the 

eigenvectors of the covariance matrix (Calder, Burton, Miller, Young, & Akamatsu, 

2001; Devijer & Kittler, 1982; Kirby & Sirovich, 1990). Eigenvectors are the primary 

dimensions that describe the underlying structure or pattern of variation across a set of 

images. They have been conceptualised as “macrofeatures”, because they encode for the 

core, salient, dimensions along which the visual images differ (Abdi 1988; Abdi, 

Valentin, Edelman, & O'Toole, 1995).  

Once the eigenvectors have been derived, each image can be represented as its 

values or projection weights on these dimensions. This means that an image can be 

reconstructed using a weighted linear combination of the eigenvectors. When an image is 

reconstructed using all the eigenvectors, it will be a perfect representation of the original 
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image, but an image can often be well (but imperfectly) reconstructed with only a subset 

of the eigenvectors (Devijer & Kittler; Hancock, Bruce, & Burton, 1998; Valentin, Abdi, 

Edelman, & O'Toole, 1997).  

Each eigenvector also has an associated eigenvalue. The eigenvalue indicates the 

amount of variance in the whole image set that the eigenvector can account for, where a 

larger eigenvalue indicates that the eigenvector explains a greater amount of variance. 

Convention dictates that the eigenvectors are ordered from the greatest to least 

eigenvalue. The eigenvectors with the larger eigenvalues are often referred to as the 

“early” eigenvectors, whereas those with the smaller eigenvalues are called “late” 

eigenvectors. Given that each eigenvector explains progressively smaller amounts of the 

total variance, the early eigenvectors represent the largest and most obvious dimensions 

of variation, through to the late eigenvectors which represent the least obvious 

dimensions of variation (Devijer & Kittler, 1982; Hancock, Burton, & Bruce, 1996; 

Ripley, 1996).   

Dimension reduction and multidimensional space 

Dimension reduction can also be understood geometrically in multidimensional 

space. For example, in human face recognition, the visual information from the faces that 

a person has encountered would be reduced into a smaller set of dimensions 

(eigenvectors). These eigenvectors would then be the orthogonal axes that define the 

multidimensional space, and each face would be represented as a point in this space, 

where its values on the eigenvectors determine its location. Faces that are perceptually 

similar to one another will have similar values on the eigenvectors, and therefore will be 

near one another in the space. The similarity between any two faces can be defined 
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mathematically as the Euclidean distance (cosine) between them. When a new face is 

encountered, therefore, it is projected into the space, and if the distance between this face 

and an existing one is below a certain threshold, it is recognised as “familiar”. If not, then 

it is then judged to be new, and the strength of familiarity will depend on its values on the 

eigenvectors (Turk & Pentland, 1991; Valentin, Abdi, O'Toole, & Cottrell, 1994; 

Valentine, 1991).  

Dimension reduction and neural networks 

Another way of representing dimension reduction is in terms of neural network 

architectures. Neural networks are statistical models, for example, the commonly used 

linear autoassociative neural network is equivalent to PCA. A linear autoassociative 

neural network is a classifier, built from simple units (“neurons”) interlinked by weighted 

connections. It is adaptive and learns from experience. The process of learning modifies 

the weighted connections between the neurons to maximise the classification 

performance. The network, therefore, is characterised as a memory, where the content is 

stored distributively in the weighted connections. Through experience, the memory will 

come to “recognise” stimuli, and “generalise” this learning to novel (previously 

“unseen”) stimuli. The weighted connections that allow for this kind of performance are 

the dimensions of variation that best distinguish images in the set from one another 

(Abdi, Valentin, & Edelman, 1999; Abdi et al., 1995; Everson & Sirovich, 1995; Harvey, 

1994).  

Face recognition and dimension reduction  

Recognising faces is a task that people seem to be able to perform reasonably 

well. The way that this task is accomplished, however, is less obvious. One possibility is 
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that people make use of a perceptual mechanism that extracts the main dimensions of 

variation from a large set of faces that the person has encountered, and then uses these to 

analyse and classify newly encountered faces. Face recognition models that make use of 

dimension reduction are highly accurate at recognising faces. Pentland, Moghaddam and 

Starner (1994), for example, compiled a set of 7,532 images of approximately 3,000 

people, where each person contributed a minimum of two different images. The first 20 

eigenvectors were extracted using PCA, and so all the faces could be represented as 

points in a 20-dimensionsal space. Pentland et al. tested whether the model recognised 

that multiple images of the same face were different images of the same individual, rather 

than images from different individuals. To do this, 200 target faces were randomly 

selected from the image set and projected into the multidimensional space, and whichever 

face was closest to the target (i.e., smallest Euclidean distance) was selected. If the 

selected face was a second image of the same individual, then this was counted as a 

correct response, whereas if it was an image of a different individual, then this was 

counted as an incorrect response. In this way, the model performed with 95% accuracy. 

Clearly, dimension reduction is a highly accurate model of face recognition when 

there is extensive experience with faces. Extensive experience, however, is not a 

necessary condition for exceptional performance. Indeed, Kirby and Sirovich (1990) used 

just 50 faces in the image set and 10 target faces, but were still able to obtain a low error 

rate of just 3.68% (see Abdi et al., 1995; Vetter & Troje, 1997 for similar results).  

Tredoux (2002), furthermore, compared people’s ratings of similarity for a set of 

faces with the values of similarity derived from a PCA model. People sorted 20 faces into 

10 exclusive pairs, starting with the most similar pair, then the next most similar pair, and 
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so on. The PCA-based ratings were defined as the Euclidean distance (cosine) between 

the faces in multidimensional space. Thus, the most similar pair for PCA would be those 

closest together in Euclidean space, the next most similar pair would be the second 

closest, and so on. Tredoux found that the correspondence between PCA-based ratings 

and people’s ratings of similarity was very high (r = .94) (see also Calder et al., 2001; 

Hancock et al., 1996; Scheuchenpflug, 1999).  

The fact that dimension reduction can mimic human performance, however, is 

still not conclusive evidence that people are using this mechanism when they recognise 

faces. It would be informative, therefore, to determine whether eigenvectors themselves 

are perceptually meaningful. Thus, Vetter and Troje (1997) presented participants with a 

target face on a screen, with two faces beneath it, where one was a duplicate of the target 

face, and the other was a reconstruction of the target face. The reconstruction was either a 

pixel-based reconstruction, or an eigenvector-based reconstruction, using 5, 15, or 98 

eigenvectors. That is, the images were imperfect reconstructions of the originals, and the 

basic unit of information used to reconstruct the image was either pixels, or eigenvectors. 

The participants’ task was to distinguish the duplicate from the reconstruction of the 

target throughout a series of trials (Vetter & Troje).  

Vetter and Troje (1997) found that when the pixel-based reconstructions were 

used, participants made the judgement significantly faster and more accurately than when 

the eigenvector-based reconstructions were used. This is because the pixel-based 

reconstructions were perceptually less meaningful, and thus, they were easier to 

distinguish from the target. Whereas when the eigenvector-based reconstructions were 

used, people took considerably longer and made more errors in distinguishing them from 
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the target. People also took longer and made more errors as the number of eigenvectors 

used in the reconstruction increased (i.e., 5, 15 or 98). If dimension reduction was not 

fundamentally related to how people process faces, then the eigenvector-based 

reconstructions should have been easy to distinguish from the target faces. Yet they were 

not. In fact, people found them surprisingly difficult to discriminate. This suggests that 

eigenvectors are perceptually meaningful and encode for the important visual information 

in human face recognition.  

The “other-race” effect and dimension reduction  

Face recognition models based on dimension reduction techniques can account for 

ubiquitous psychological phenomena, such as how faces from other races are often more 

difficult to distinguish from one another than faces from one’s own race. It has been 

extensively documented that people demonstrate better recognition accuracy for own-

race faces than other-race faces (Bothwell, Brigham, & Malpass, 1989; Brigham & 

Barkowitz, 1978; Brigham & Malpass, 1985; Brigham & Williamson, 1979; Chance, 

Goldstein, & McBride, 1975; Chiroro & Valentine, 1995; Cross, Cross, & Daly, 1971; 

Devine & Malpass, 1985; Lindsay, Jack, & Christian, 1991; Malpass, 1974; Malpass & 

Kravitz, 1969; Malpass, Lavigueur, & Weldon, 1973; Meissner & Brigham, 2001; 

O'Toole, Deffenbacher, Valentin, & Abdi, 1994; O'Toole, Peterson, & Deffenbacher, 

1996; Shapiro & Penrod, 1986; Shepherd, Deregowski, & Ellis, 1974). This is called the 

“other-race” or “they all look alike” effect. This effect occurs equally for people from 

different races, for example, Caucasians have difficulty with Asian faces and Asians have 

difficulty with Caucasian faces, which discounts the possibility that faces of a particular 
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race are just inherently more physically similar (O'Toole, Deffenbacher, Abdi, & Bartlett, 

1991).  

O’Toole et al. (1991) proposed a perceptual learning hypothesis to explain the 

other-race effect. That is, through experience with own-race faces, a person’s visual 

system attunes itself to the dimensions of variability that best distinguish among own-

race faces. Using the face space metaphor, these dimensions are the axes that would make 

the faces maximally dispersed throughout the space. Any new face encountered 

(including other-race faces) would be evaluated along these same dimensions and 

projected into the space. The dimensions that are most important for distinguishing other-

race faces, however, would differ from these own-race dimensions. This means that 

other-race faces would be evaluated along dimensions that are not well-suited to 

distinguishing them. As a result, the other-race faces would tend to have a restricted 

range of values on these dimensions, and so be perceived as a homogenous, highly-

similar cluster (O’Toole et al.).  

To empirically test this perceptual learning account of the other-race effect, 

O’Toole et al. (1991) trained one PCA neural network with a majority of Caucasian faces 

and minority of Asian faces, and trained another on a majority of Asian and minority of 

Caucasian faces. For both networks, the average cosines between the original and 

reconstructed images were larger for majority than minority race faces. This means that 

the networks were better able to recognise the faces from the race that they had the most 

experience with; that is, they showed an other-race effect (O’Toole et al.).  

PCA networks are typically trained with the Widrow-Hoff learning rule. This 

means, essentially, that the network will develop the connection weights between the 
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neurons that optimise the processing of the stimuli that it is exposed to (Abdi et al., 

1999). The network, therefore, should learn to focus on the dimensions that are important 

for distinguishing the majority race faces, and neglect the dimensions that would be 

important for minority race faces. O’Toole et al. (1991), indeed, found that the average 

cosine between all possible pairs of reconstructed faces was smaller for minority race 

faces, which means that the network perceived them as more similar than majority race 

faces. That is, the network produced the “they all look alike effect” for other-race faces. 

Other researchers have also found support for this perceptual learning account of the 

other-race effect (Caldara & Abdi, 2006; Furl, Phillips, & O'Toole, 2002). 

Early eigenvectors describe key categorical information   

The early eigenvectors have been found to encode for key categorical 

information, whereas the later eigenvectors seem to contain the information that is 

important for differentiating individual faces from one another, rather than broad 

category judgements (Hancock et al., 1996; O'Toole, Abdi, Deffenbacher, & Valentin, 

1993; Valentin & Abdi, 1996; Valentin et al., 1994). It has been found, for example, that 

gender is represented amongst the early eigenvectors (O'Toole et al., 1991, 1994; 

Valentin et al., 1997). To illustrate, O’Toole et al. (1993) visually displayed the 

eigenvectors and found that when the second eigenvector was added to the first, the result 

appeared distinctly masculine, whereas when the second eigenvector was subtracted from 

the first, it appeared feminine. Similarly, Abdi et al. (1995) found that male and female 

faces tended to have opposite weights on the second eigenvector. It is important to note, 

however, that these primary dimensions evolve with the images that the eigenvectors are 

extracted from. For example, we extracted the eigenvectors depicted in Appendix A from 
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a set of 90 female and 68 male eye-aligned faces across a variety of races (8 African, 33 

East Asian, 24 West Asian, and 93 Caucasian). It is clear from these eigenvectors that 

both ethnicity and gender represent the most obvious dimensions of variation. However, 

if we limit the face set to, say, only Caucasians, then gender seems to represent the most 

obvious dimension. On the other hand, if we limit the set to females, then ethnicity alone 

represents the most obvious dimension.  

It is interesting to note that for any image set, the first eigenvector is always the 

mean or prototype of all the images (Devijer & Kittler, 1982). The second eigenvector, 

therefore, is essentially the first “real” eigenvector, in that it is the first to depict the 

variation (as opposed to the similarity) among the images, and it often represents gender 

information among same-race faces. This is remarkable, given that sex was never 

explicitly encoded into the model. The model is free to extract whatever eigenvectors are 

useful for discriminating the images in that particular set – and sex spontaneously 

emerged. It is important to note, however, that eigenvectors encode for information that is 

visually, rather than semantically relevant. Some eigenvectors represent dimensions for 

which there is an explicit semantic label (such as sex), whereas other eigenvectors will 

encode for the tacit visual information for which such labels do not exist (Turk & 

Pentland, 1991).  

The plausibility of dimension reduction as a model of face recognition 

When investigating the nature of the eigenvectors extracted from a set of faces, 

O’Toole et al. (1993), Abdi et al. (1995), and Valentin et al. (1997) all pre-processed the 

face images by aligning them at the pupil. This is typically done to ensure that the 

orientation of the faces, which is not of interest in these studies, is held constant, and is 
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thus not the most obvious dimension of variation. If a dimension reduction model 

required such artificial standardisation in order to work, then it would not be a realistic 

model of human face recognition. Valentin and Abdi (1996), however, allowed the 

orientation of the faces to vary, and still the model performed surprisingly well. In fact, 

including images of the same face in different orientations enhanced the model’s ability 

to recognise learnt faces.  

Dimension reduction contrasted with other models of face recognition  

An alternative approach to face recognition is a feature-based model, where 

particular facial features, such as eyes, eyebrows, nose, or mouth are thought to be the 

core components of face perception (Haig, 1984, 1986; Roberts & Bruce, 1988; Sadr, 

Jarudi, & Sinha, 2003). Such feature-based approaches, however, have been found to 

bear negligible resemblance to the way in which the people recognise faces (Abdi, 1988; 

Carey & Diamond, 1977; Goldstein, Johnson, & Chance, 1979; Loftus, 1979; Schooler & 

Engstler-Schooler, 1990; Turk & Pentland, 1991; Woodhead, Baddeley, & Simmonds, 

1979). Other researchers have instead emphasised the importance of geometrical features, 

such as nose width, mouth position or chin shape (Brunelli & Poggio, 1993; Burton, 

Bruce, & Dench, 1993), or configural information (Diamond & Carey, 1986; Mondloch, 

Le Grand, & Maurer, 2002; Rhodes, 1988; Young, Hellawell, & Hay, 1987). Face 

recognition models based on such spatial measurements or configurations, however, are 

fragile, and falter with superficial changes in the image. Such a model, for example, 

would have difficulty recognising a previously encountered face, if it was presented with 

a different orientation, perspective, or luminance. Superficial changes in the face image, 

furthermore, such as the presence of sunglasses, would also typically thwart such a 
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model’s ability to recognise a face (Turk & Pentland, 1991; Valentin et al., 1994). 

People, however, are still able to recognise familiar faces despite such changes (Abdi et 

al., 1995; Lowe, 1987; O'Toole et al., 1993; Samal & Iyengar, 1992). PCA, crucially, is 

also able to recognise previously encountered faces after such changes (Abdi et al.; 

Everson & Sirovich, 1995; Kirby & Sirovich, 1990; Lowe; Turk & Pentland, 1991). This 

suggests that PCA is capturing something fundamental about the way that people 

recognise faces.  

 The major limitation of these featural or configural models of face recognition is 

that they rely on the experimenter to arbitrarily choose some dimensions (such as 

“eyebrows” or “distance between the eyes”) to investigate. A model based on such 

dimensions, therefore, will be incomplete at best. A PCA model of face recognition, in 

contrast, does not make assumptions about what dimensions of variability are important. 

The eigenvectors extracted instead depend entirely on the statistical structure of the 

images, and thus will necessarily capture the important dimensions of variation (Devijer 

& Kittler, 1982; O'Toole et al., 1993; Valentin et al., 1994). The absence of a priori 

assumptions in a dimension reduction model, furthermore, means that the eigenvectors 

are not required to conform to explicit semantic labels (Turk & Pentland, 1991). This is 

an advantage because it is likely that the dimensions that are important for recognising 

faces will not always have a corresponding semantic label. This is why, for example, it is 

difficult to describe a person’s face to someone in sufficient detail that they could then 

walk into a crowded room and pick that person out. This is difficult to do, because the 

information that is important to the visual information in recognising faces is not easy to 
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summarise in words. The advantage of PCA, therefore, is that it encodes for this salient 

but tacit visual information.  

PCA’s sensitivity to subtle visual information has allowed it to detect some 

unexpected anomalies. Parr and de Waal (1999), for example, tested chimpanzees’ ability 

to match photographs of other unfamiliar chimpanzees and their offspring. The chimps 

could match the photographs depicting faces of mothers with sons, but not mothers with 

daughters. The authors then proposed an explanation for this in terms of a specialised 

mechanism for kin recognition that is independent of previous experience with 

individuals in question. Vokey, Rendall, Tangen, Parr, and de Waal (2004), however, 

subsequently applied a linear autoassociator to the images used in the experiment. 

Several of the resulting early eigenvectors appeared to code for a confound in the way the 

photographs had been framed. This demonstrates how PCA is sensitive to subtle, 

perceptually relevant information that is difficult to explicitly detect.   

Generality of dimension reduction  

Another important advantage is the wide generality of dimension reduction. It is 

not limited to the visual domain. It has been successfully used for analysing and 

classifying auditory stimuli. Crump (2002), for example, quantified musical pieces by 

Bach and Mozart, and simulations revealed that a linear autoassociator could learn to 

discriminate music composed by Bach from music composed by Mozart. Similarly, 

Vokey (personal communication) has found that the network can discriminate between 

gay and straight human voices.  

Language and dimension reduction  
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The dimension reduction mechanism can also be applied to language. Latent 

Semantic Analysis (LSA) is Singular Value Decomposition (SVD) applied to written 

text. LSA reduces a very large corpus of text into a smaller subset of dimensions, which 

represent the most obvious dimensions of variation within the text. Words in the text can 

then be thought of as points in multidimensional semantic space, where words with 

similar meaning will cluster closer together than those with dissimilar meaning (Landauer 

& Dumais, 1997).  

LSA treats language like a “bag of words”. That is, it makes use of the words that 

tend to go together in a particular context (semantics) and ignores word order (syntax). 

For example, LSA would treat the sentence “the cat sat on the mat” as equivalent to “the 

mat sat on the cat” (Landauer, 2002). This is a simplification, but a justifiable one. 

Landauer and Dumais (1997) estimated that over 80% of the information inherent in 

language is contained in word choice, rather than word order. Furthermore, even though 

LSA ignores word order, it still performs exceptionally well. Landauer suggests that 

while syntax is not meaningless, whatever information it provides may well be redundant 

with the information available from semantics.  

Landauer and Dumais (1997) tested whether LSA could account for human 

language acquisition. They took 4.6 million words from an encyclopaedia intended for 

young students, to mimic the experience with language a person learning English might 

have. LSA reduced the text to 300 of the most obvious dimensions of variation. This 

means, conceptually, that the 4.6 million words can be represented in a 300-dimensional 

semantic space. Landauer and Dumais then gave LSA a vocabulary test that consisted of 

80 items, where each item was a target word followed by four alternatives. LSA was used 
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to choose, from four alternatives, the most appropriate synonym for the target word. This 

means that the target words and the alternatives were projected into semantic space. The 

distance between each target word and its corresponding four alternatives was 

considered, and the alternative that was closest to the target was selected as the response. 

In this way, LSA scored 64.4% correct on the test. This vocabulary test, interestingly, is 

used to examine applicants to American colleges who are from non-English speaking 

backgrounds (i.e., the TOEFL). A large sample of such applicants obtained an average 

score of 64.5% correct on this test. The fact that LSA’s performance was virtually 

identical to that of people learning English as a foreign language, therefore, indicates that 

dimension reduction can model the way in which people acquire language (Landauer & 

Dumais).  

A nuance of LSA also offers a solution to the “poverty of stimulus” pondered 

since Plato: How do children acquire vocabulary at a rate exponentially greater than they 

could ever be taught directly? Landauer and Dumais (1997) showed that LSA’s learning 

process is highly inductive. In fact, 75% of the information required for LSA to pass a 

particular item on the vocabulary test was derived from experience with text in which the 

word did not occur. That is, the absence of a word in a particular semantic context was 

more informative than presence of that word in another semantic context. LSA’s 

inductive learning process has been proposed as a way of explaining how children’s 

vocabulary is able to increase disproportionately to direct stimulus input (Landauer, 

2002).  

There is also evidence, moreover, that dimension reduction can account for how 

people acquire other types of knowledge. Landauer, Laham, and Foltz (1998) applied 
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LSA to popular introductory psychology textbooks, and subsequently tested LSA using 

the same multiple-choice test that psychology students in large classes sit. LSA passed 

the exam, with 60% of the items correct, which was only slightly below the class average 

for a sample of students sitting this same test.  

While LSA can mimic student performance, however, this does not conclusively 

show that the same underlying mechanism is operating in both cases. It could be 

informative, therefore, to compare the types of errors that students and LSA made. A 

single mechanism will likely lead to a distinctive pattern of errors, whereas two different 

mechanisms, even if their overall accuracy rates are similar, would likely produce 

different sorts of errors. If both the students and LSA had difficulty with similar sorts of 

items, then it would more strongly suggest that students and LSA are using the same 

mechanism to perform the task. Indeed, Landauer et al. (1998) found that both LSA and 

the students had more difficulty with conceptual items, and they both did much better on 

factual questions. That is, people and LSA made qualitatively the same sorts of errors. 

This suggests that LSA could be the means via which people derive knowledge and 

understanding from lexical input.  

Evolutionary evidence for dimension reduction  

Dimension reduction is also consistent with an evolutionary perspective. It has 

been pointed out that natural scenes occupy only a minute part of the multidimensional 

space of all possible scenes (Attneave, 1954; Field, 1987, 1994, 1999; Ruderman, 1994). 

In this context natural does not necessarily mean images containing, for example, trees 

and grass, rather, it refers more broadly to any image that a person might encounter in 

their visual environment. An image containing a building, for example, would be a 
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natural image, as would the words on this page. This means that all the images a person 

could possibly encounter in their visual environment are only a tiny fraction of all images 

conceivably possible. 

Where does such an idea come from? Think of an image as an array of pixels. A 

random image is where each pixel has no systematic relationship to the pixels next to it or 

to any other pixel in the image. Computers can generate random images, and they just 

look like white noise (Ruderman, 1994). In contrast, the pixels in a natural image are 

correlated. This is because adjacent pixels typically share a common cause, that is, they 

depict the same object. For example, in a photograph of a person against a background, 

the pixels depicting the skin of the person would be correlated with one another, as would 

the pixels representing the clothes, or the background. The pixels in natural images, 

therefore, are correlated, giving them a structure that is not apparent in random images 

(Atick & Redlich, 1992; Bossomaier & Snyder, 1986; Field, 1987, 1994, 1999; Hancock, 

Baddeley, & Smith, 1992; Ruderman; Srinivasan, Laughlin, & Dubs, 1982).  

Natural selection, furthermore, predicts that the visual system would have adapted 

to the characteristics of the input that it receives. Throughout our evolutionary past, the 

visual system has been exclusively exposed to natural stimuli. It would have adapted, 

therefore, to make use of the structure and regularities in this environment (Barlow, 1961, 

2001; Laughlin, 1983; Marr, 1982; Shepard, 1992; Srinivasan et al., 1982; van Hateren, 

1992). Any model of a perceptual mechanism operating in visual system, therefore, must 

deal efficiently with this invariance that is ubiquitous in the natural world. Dimension 

reduction, interestingly, is based on this invariance, and thus is consistent with our 

evolutionary past (Bossomaier & Snyder, 1986; Hancock et al., 1992).  
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Physiological evidence for dimension reduction  

The evidence presented so far suggests that dimension reduction could be the 

means via which people learn about the structure of complex categories in the world 

around them. If dimension reduction is a core perceptual mechanism, however, then there 

should be physiological evidence for this. To this end, a number of researchers have 

applied dimension reduction techniques to natural images and examined the resulting 

eigenvectors. The most remarkable result from this line of research is the consistency of 

the dimensions that emerge: The eigenvectors extracted from natural images are virtually 

identical regardless of the content, size, number, or quality of the images (Baddeley & 

Hancock, 1991; Hancock et al., 1992; Heidemann, 2006). This suggests that there is an 

inherent consistency in the basis functions or structure of natural images. It seems likely, 

therefore, that the visual system would have adapted to make use of this inherent 

consistency, and dimension reduction, which extracts the core, common dimensions 

along which images vary, is an optimal way of doing this. Given that eigenvectors are the 

macro dimensions along which natural images vary, furthermore, encoding stimuli along 

these dimensions would be an efficient means of analysing visual input (Baddeley & 

Hancock; Hancock et al.).  

When the robust dimensions are extracted from natural images, the first few early 

eigenvectors appear as an oriented bar, and thus seem to encode for the orientation of a 

stimulus (Baddeley & Hancock, 1991; Hancock et al., 1992; Heidemann, 2006; 

Olshausen & Field, 1996; Sanger, 1989). This is intriguing, given that there are known to 

be individual neurons in the primary visual cortex that respond optimally to an oriented 

edge or bar in their receptive field (De Valois & De Valois, 1988; Heydt, Peterhans, & 
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Dursteler, 1992; Hubel & Wiesel, 1959, 1962, 1968, 1972, 1974, 1977; Petkov & 

Kruizinga, 1997). These cells encode for the orientation of a stimulus and are sometimes 

called “bar detectors” or “edge detectors”. The response properties of these cells, 

however, maps onto the macro dimensions along which natural images have been found 

to vary. This suggests that these orientation-sensitive cells in the primary visual cortex 

may in fact be encoding for the primary dimensions of variation inherent in natural 

images. That is, these cells may not be bar detectors, instead, speculatively, they might be 

“eigenvector-detectors” (Hancock et al.; Baddeley & Hancock).  

When dimension reduction is applied to chromatic natural images, furthermore, 

there are consistently early eigenvectors that encode for yellow-blue, red-green, and 

black-white dimensions (Buchsbaum & Gottschalk, 1983; Rubner & Schulten, 1990; 

Usui, Nakauchi, & Miyake, 1994). This reflects the known physiological set-up of the 

visual system, in which yellow-blue, red-green, and black-white colour-opponent 

dimensions process colour (De Valois, 1971; De Valois, Abramov, & Jacobs, 1966; 

Mitarai, Usui, & Takabayashi, 1982). The striking similarity between the eigenvectors 

yielded from dimension reduction and the receptive fields of neurons in the visual cortex 

suggests that such a mechanism is at a minimum neurophysiologically plausible, and may 

in fact be the very basis for representing visual patterns from the retina.  

Dimension reduction and non-human animals  

Following from the evolutionary and physiological basis of dimension reduction, 

it is reasonable to assume that this mechanism is not limited to humans. In the animal 

learning literature, it has been well-established that pigeons can make some apparently 

sophisticated discriminations (Aust & Huber, 2001; Bhatt, Wasserman, Reynolds, & 
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Knauss, 1988; Blough, 1982, 1985; Cerella, 1979; Herrnstein, 1979; Herrnstein & 

deVilliers, 1980; Herrnstein & Loveland, 1964; Herrnstein, Loveland, & Cable, 1976; 

Jitsumori & Yoshihara, 1997; Malott & Siddall, 1972; Morgan, Fitch, Holman, & Lea, 

1976; Poole & Lander, 1971; Siegal & Honig, 1970; Vaughan & Herrnstein, 1987). 

Pigeons are capable of making the same judgements of style as people. For example, they 

can distinguish musical excepts by Bach and Stravinsky (Porter & Neuringer, 1984), 

male from female human faces (Troje, Huber, Loidolt, Aust, & Fieder, 1999), and Monet 

from Picasso paintings (Watanabe, Sakamoto, & Wakita, 1995). In all these cases, the 

pigeons can also successfully generalise to previously unseen stimuli. 

The knee-jerk reaction to such findings is often to remark how sophisticated and 

human-like the pigeons are. It is, of course, possible that pigeons are highly intelligent 

and have just been hitherto underestimated. It should be remembered, however, that 

pigeons’ entire neural architecture is the size of a pea (hence the term “bird-brain”), and 

most of that is dedicated to flight (Rendall & Vokey, 2004). Either the psychological 

processes subserving these abilities in pigeons are more sophisticated than ever before 

imagined, or the psychological processes subserving the same phenomena in people are 

somewhat simpler than previously assumed. This latter alternative is rarely considered. It 

is my aim, therefore, to explore whether people can learn and distinguish artistic style 

using only basic perceptual information (without reference to any sophisticated “higher 

order” mental processes), an ability that we may share with creatures such as pigeons.  

Summary 

 The evidence I have reviewed so far suggests that dimension reduction can 

account for how people learn about complex categories from experience with individual 
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instances. Dimension reduction, furthermore, is at a minimum biologically plausible, and 

may in fact be the core mechanism that the visual system uses to analyse input. It seems 

likely, moreover, that this mechanism is not unique to humans.  

The current experiment  

The current experiment draws on the evidence from the wide range of research 

reviewed above, and advances an approach that has not been used in prior research. We 

use a two-pronged approach to testing people’s tacit sensitivity to style: (1) we test 

whether a simple linear autoassociative neural network (which employs dimension 

reduction) can learn to distinguish between paintings by Braque and Picasso, and (2) we 

examine whether dimension reduction could be the basis of people’s judgement of style 

on the same task.  

We decided to use Cubist paintings by Picasso and Braque in this experiment 

because they represent a complex category where no single feature or rule defines 

category membership. It is, therefore, the artistic style that defines the category. If we 

instead used photographs in this experiment, for example, images containing trees 

constituted one category (“tree present”) and photographs not containing trees constituted 

another (“tree absent”), then it is conceivable that participants may base their assessment 

of category membership on the presence or absence of an embedded object in the image 

(i.e., tree). In artwork, conversely, there are no such defining features (see the Picasso and 

Braque images in Appendices B and C respectively). Categorising these stimuli, 

therefore, demands a judgement of style, and this will allow us to investigate how people 

learn about complex or polymorphous categories they encounter in everyday life, where 

category membership is not defined by a simple rule (Ryle, 1951). 
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We decided to use Picasso and Braque in particular because they are highly 

similar visual categories. In prior work, Vokey and Tangen (2006) have shown that a 

PCA model can discriminate markedly different artistic styles (Impressionism and 

Cubism). In contrast, paintings by Picasso and Braque are highly similar. Picasso and 

Braque lived and painted together, producing Cubist art so similar that even art experts 

have difficulty distinguishing them (Rubin, 1989). One aim of this experiment, therefore, 

is to determine whether a PCA network can discriminate Cubist paintings by Picasso and 

Braque.   

We also aim to examine whether dimension reduction could be the basis for 

people’s judgements of artistic style. While previous research has shown that dimension 

reduction can model the way in which people, for example, recognise faces or acquire 

language, in this experiment we endeavour to bring the learning process under 

experimental control. To do this, we will ask participants to learn to distinguish visual 

categories that they presumably do not have extensive experience with (Picasso and 

Braque artwork). We will, furthermore, extract the eigenvectors from the paintings and 

use them to reconstruct the original images. These reconstructions will use either the first 

10 eigenvectors (“early reconstructions”), or all the eigenvectors (“full reconstructions”). 

Participants will be tested on their ability to discriminate between Picasso and Braque 

images using either the early or full reconstructions. If, as argued, dimension reduction is 

the basis for learning complex categories, then our participants ought to be able to 

perform this discrimination with the reconstructions using just the first 10 eigenvectors, 

even though these images do not appear to contain any explicit meaningful information. 

Therefore, we predict that with the early reconstructions, participants will learn to 
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discriminate between paintings by Picasso and Braque. The full reconstructions, 

furthermore, using all the eigenvectors, are perfect reconstructions of the originals. Since 

these are effectively the original images, we predict that people will also learn to 

discriminate between these paintings by Picasso and Braque.  

It is unclear, however, whether to expect higher discrimination accuracy from 

participants presented with the early versus the full reconstructions. On the one hand, the 

full reconstructions contain all the information available in the original image, whereas 

the early reconstructions contain only a fraction of that information, and so the full 

reconstructions might be expected to yield higher discrimination accuracy. On the other 

hand, if participants are basing their assessment solely on the most obvious dimensions of 

variation, then they should perform equally well with both types of reconstructions. We 

cannot, therefore, make any specific predictions about participants’ relative accuracy 

given the early and full reconstructions.   

PCA NEURAL NETWORK SIMULATION  

Simulation Method 

We scanned 428 images at 1200ppi from Rubin’s (1980) Picasso and Braque: 

Pioneering Cubism. Each artwork was represented by its coding on Red, Green, and Blue 

(RGB) colour channels. This means that each pixel was assigned a value, representing the 

intensity of the particular colour channel (0-255). Photographs of sculptures or oval-

shaped paintings were then eliminated from the set. The remaining 379 paintings were 

used in both the simulation and the experiment (252 Picasso and 127 Braque) (see 

Appendices B and C).  
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 Scanning halftone images inevitably results in an artefact referred to as moiré 

patterns. The recommended technique for dealing with these patterns involves applying a 

Gaussian mask to the image (Vakulenko, 2002). There is no quantitative test, however, 

for determining the appropriate amount of blurring to apply. Therefore, we used a 

random sample of 16 images to make a visual judgement about the best level of blur.  

There are two parameters of the Gaussian mask that control the level of blur: its 

size (hsize) and spread (sigma). We varied these systematically and applied the resulting 

Gaussian mask to a sample of images, and decided that a Gaussian mask of 12 (hsize) 

and 12 (sigma) removed the moiré from the sample of images. This Gaussian mask was 

then applied to the entire image set. The images were subsequently scaled by a factor of 

.06, and thus ranged in size from 140 x 83 to 573 x 546 pixels.  

 We used a sub-sampling technique in this experiment, in which random 

subsamples were extracted from each image in the analysis, rather than using the entire 

images. This technique has been successfully used in previous research (Vokey & 

Tangen, 2006). It is designed to capture the notion that no image is encountered in 

exactly the same way twice, and to simulate the redundancy involved in perceiving a still 

image. Five 100 x 100 pixel subsamples were randomly extracted from each of the 379 

images, resulting in a total of 1,895 subsamples.  

 The linear autoassociative neural network was then trained and tested using a 

bootstrap or “leave-one-out” technique. This means that we assembled the covariance 

matrix of the vectors of pixels for all the subsamples in the set except one (1,894 

subsamples) and then performed a Singular-Value Decomposition (SVD) on this matrix. 

This process yielded the eigenvectors and their corresponding eigenvalues of the 
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covariance matrix. This was repeated 1,895 times so that each subsample was “left out” 

once. The extracted eigenvectors were ordered from the largest to smallest eigenvalue 

(see Appendix D for the eigenvectors).  

We then computed the projection weights for all 1,895 subsamples cumulatively 

for each eigenvector. This is equivalent to creating a multidimensional space (where the 

eigenvectors are the dimensions that define the space) and projecting all the subsamples 

into that space. The discrimination weights, furthermore, for the 1,894 subsamples were 

computed. These discrimination weights were then used to classify the “left-out” 

subsample. In this way, the left-out subsample served as the test item. This is equivalent 

to projecting the test subsample into the space based on its values on the discrimination 

weights, and measuring how closely it falls to that subsample projected into 

multidimensional space based on the discrimination weights. Consequently, the cosine 

between this test subsample and the original subsample projected into the space provides 

a measure of the quality of the reconstruction.  

The network was also tested directly on the pixel-maps of the images, without 

first performing PCA. This means that the discrimination weights were computed from 

the pixel values for the 1,894 and the left-out subsample, and these weights were used to 

classify the test item.  

Simulation Results 

 We collected 252 paintings by Picasso and 127 by Braque for this simulation and 

experiment, and took five random subsamples (100 x 100 pixels) from each of these 

paintings. This means that there were 1,895 (379 x 5) subsamples used in the simulation. 

The goal was to determine the extent to which a PCA neural network could discriminate 
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between paintings by Picasso and Braque using different ranges of eigenvectors that 

reflect the most obvious dimensions of variability across the set. The dependent measure 

is a-prime (A’), which is a non-parametric estimate of discriminability and bias and 

represents the hit rate over the false alarm rate. An A’ of 1.0 indicates perfect 

discriminability, while 0.5 indicates chance discriminability. We included another 

measure of chance performance by applying the perceptron directly to the pixel maps. 

This essentially represents the network without a memory. The results from this 

simulation are presented in Figure 1.  

 

Figure 1. The neural network’s discriminability (A’) plotted as a function of eigenvector 

range. 

The results depicted in Figure 1 indicate that the network could discriminate 

paintings by Picasso and Braque reasonably well using only the “early” eigenvectors, and 

that its performance deteriorated as the number of eigenvectors used in the analysis 
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increased. Furthermore, a perceptron applied directly to the pixel maps performed 

virtually at chance (A’ = .49).  

HUMAN PARTICIPANT EXPERIMENT  

Method 

Participants 

 Sixty introductory Psychology students from the University of Queensland (20 

male, 40 female), aged between 17 and 43 (M = 18.92, SD = 3.60) were recruited through 

the first-year psychology research participation scheme. The only restriction was that 

they have normal or corrected-to-normal vision. They were given course credit for 

participation.  

Materials 

The subsamples from the simulation were used in this experiment. Each 

subsample was presented on the screen as a 200 x 200 pixel image on a maximally 

contrasting background. To create this background, the mean values of all the images on 

the Red-Green-Blue colour channels was calculated, and then the inverse of these values 

was used to determine the colour of the background. It appeared greyish-blue (R: 120, G: 

132, B: 143).  

Since there were an unequal number of Picasso and Braque paintings (252 and 

127 respectively), Picassos were randomly sampled for each participant. This ensured 

that an equal number of Picasso and Braque paintings were presented.  

Design   

 In order to examine whether a dimension reduction mechanism is operating when 

people learn about the structure of complex visual categories, we reconstructed the 
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images in the set using only the most obvious dimensions of variation. This is done by 

multiplying the projection weights of the image based on the first 10 eigenvectors by the 

same set of eigenvectors. This means that the images were reconstructed using a 

weighted linear sum of the first 10 eigenvectors (early reconstructions). These early 

reconstructions result in images that could be described as nebulous (see Appendix E). In 

fact, they bear little resemblance to the original images (compare Appendices E and F). In 

contrast, these paintings were also reconstructed using a weighted linear sum of all 1,895 

eigenvectors, resulting in perfect reconstructions of the original images (full 

reconstructions) (see Appendix F). The main independent variable, therefore, was the 

type of image reconstruction used (early vs. full) and participants were randomly 

assigned to conditions.  

 We decided to use only the first 10 eigenvectors to create the early 

reconstructions because other researchers have used the first 10 and obtained excellent 

results (e.g. O’Toole et al., 1991). The exact number of eigenvectors used, however, is 

not a pivotal concern. Rather, it is important to test whether people can perform the task 

using the reconstructions that (a) are based on a tiny fraction of the total number of 

eigenvectors (i.e., 10 out of a possible 1,895), and (b) do not appear to represent anything 

explicitly meaningful.  

 The positive stimulus category (i.e., whether the “correct response” for the 

participant was Picasso or Braque images) was counterbalanced such that for half the 

participants, Picasso was the positive stimulus category, and for the other half it was 

Braque. The dependent variable was percentage correct in classifying the images.  



                                                                                                      Judgements of style 30 

 To examine whether discrimination accuracy improved over trials, we split the 

508 experimental trials into four blocks of 127 trials each, because participants were 

presented with 127 subsamples from each artist four times. Analysing whether the trials 

blocks differed from one another in average discrimination accuracy, therefore, allowed 

us to summarise the effect of learning across trials.   

Procedure 

 Participants read an information sheet outlining the experiment and then gave 

informed consent to participate. They were asked to enter their age and gender on the 

computer screen using mouse-activated drop-down menus. The instructions for how to 

complete the task then appeared on the screen (see Appendix G). Participants were told 

that they would see two paintings for each trial, and their task was to decide which of the 

two paintings belonged to “Category A” artist. The experimenter made it clear that while 

initially they would be guessing, as they proceeded through the experiment, they should 

learn to recognise the artists’ style, and so be able to respond more accurately. After the 

participant read the instructions, the experimenter checked whether they had any 

questions and answered them accordingly, and the participant clicked the “Begin” button 

to start the task.  

 On each trial, two images were presented on the screen simultaneously (one 

Picasso and one Braque). The position (left or right) of the Picasso and the Braque was 

randomised. The images were displayed on the screen until the participant clicked on the 

image that they thought belonged to Category A artist (see Appendix H).  

If the participant made a correct response, then two things happened: a smiley 

face appeared on the screen in between the two images, and they acquired 100 points. If 
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they made an incorrect response, a frowning face was shown and they lost 100 points. 

Their cumulative score was displayed on the screen above the two images throughout the 

508 trials. Following the experiment, participants were given a verbal debriefing and an 

educational debriefing sheet and thanked for their participation.  

Contributions  

 

 The design of this project was collaborative endeavour between my supervisor 

and I. My supervisor scanned and prepared the Picasso and Braque images. After 

receiving instruction, I performed the neural network simulation in MATLAB. I was the 

experimenter for all the human participant data collection, which included 

counterbalancing and random assignment of participants to conditions. I also compiled 

and analysed all the data from the experiment.  

 Since the neural network simulation has not been performed on these stimuli in 

any previous research, my supervisor has since continued work with the subsamples and 

simulations in order to assess their stability. The design of the experiment was also 

completely novel, and so we would like to repeat the experiment using different stimuli. 

We are currently conducting an experiment with paintings by Picasso and Monet (rather 

than Picasso and Braque), using the same procedure. I have also taken over 1,000 

photographs of natural scenes and developed a searchable database of these images. This 

will permit future research examining the underlying dimensions of natural scenes. 

Results 

 The broad purpose of this investigation was to determine whether, through 

experience with stimuli, people use a dimension reduction mechanism to extract the main 

sources of variation that define a category. More specifically, this experiment tested 
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whether people could accurately discriminate between Picasso and Braque images when 

they were reconstructed using only the first 10 eigenvectors (early reconstructions), and 

reconstructed using all 1,895 (full reconstructions).  

We predicted that participants would be able to discriminate Picasso from Braque 

images significantly above chance using the early reconstructions. As illustrated in Figure 

2, participants could discriminate 57.3% (SEM = .59%, Range = 45.9-69.3%) of the 

paintings by Picasso and Braque when they were entirely reconstructed using all 1,895 

eigenvectors (full reconstructions), which is reliably above chance performance, t(29) = 

7.75, p<.001. In contrast, participants could discriminate 52.3% (SEM = .94%, Range = 

47.2-63.4%) of the paintings when they were reconstructed using only the first 10 

eigenvectors (early reconstructions), which is also significantly above chance, t(29) = 

3.97, p<.001.  

 

Figure 2. Mean discrimination accuracy for people using the early and full 

reconstructions. Error bars represent standard errors of the means. 
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Participants, furthermore, were presented with four subsamples extracted from 

each of the 127 paintings by the two artists, resulting in four blocks of 127 trials (508 

trials in total). For half of the participants, Picasso was the positive stimulus category, 

that is, the “correct response” was to click on Picasso images, and for the other half, 

Braque was the positive stimulus category, where the “correct response” was to click on 

Braque images. In order to examine the effect of learning across the 508 trials, therefore, 

and to determine whether discrimination was better for Picasso or Braque as the positive 

stimulus category, we used a mixed ANOVA with reconstruction type (early, full) and 

positive stimulus category (Picasso, Braque) as between-subject variables and trial block 

(1-4) as a within-subjects variable. As illustrated in Figure 2, participants who were 

presented with the full reconstructions were more accurate than those presented with the 

early reconstructions. This was confirmed with a significant main effect of 

reconstruction, F(1, 56) = 19.88, p<.001. From Figure 3 it is evident that participants’ 

discriminative ability improved over trials, as revealed by a significant main effect of trial 

block, F(3, 168) = 3.79, p<.01.  
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Figure 3. Mean accuracy across the four trial blocks for the early and full reconstructions. 

Errors bars represent standard errors of the means.  

This improvement, however, was greater for participants who were presented with 

the full reconstructions, as indicated by a significant interaction between reconstruction 

and trial block, F(3, 168) = 3.41, p = .019. No other main effects or interactions reached 

significance. 

Discussion  

Summary of results 

This experiment was designed to test whether dimension reduction could account 

for how people learn about the structure of a complex or polymorphous category. That is, 

we tested the notion that through experience with individual exemplars of a category, 

people will become sensitised to the main dimensions of variation that are important for 

distinguishing those stimuli from one another, and use these dimensions to analyse and 
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classify subsequent stimuli that they encounter. As predicted, a PCA neural network 

learnt to discriminate Picasso and Braque images. When the network was applied directly 

to the pixel maps of the images (i.e., without first performing dimension reduction), it 

performed virtually at chance. The network, in contrast, performed considerably better 

with the eigenvector-based reconstructions. It was most accurate at classifying the images 

reconstructed from the early eigenvectors, and its performance deteriorated as the number 

eigenvectors included in the analysis increased.  

As predicted, furthermore, when our human participants were presented with 

Picasso and Braque images reconstructed using only the first 10 eigenvectors (early 

reconstructions), they were able to categorise them significantly above chance. Likewise, 

when participants were presented with Picasso and Braque images reconstructed using all 

1,895 eigenvectors (full reconstructions), they were also able to categorise them 

significantly above chance. Although no specific predictions were made in this regard, 

we also found that the participants presented with the full reconstructions performed 

better at categorising the images than the participants given the early reconstructions. 

Furthermore, performance increased across trial blocks for participants presented with the 

full reconstructions, but unexpectedly, it did not increase for those presented with the 

early reconstructions.  

Overview 

 This discussion will be divided into subsections to guide the reader through the 

expanse of information and ideas covered. Since I have summarised the results above, I 

will subsequently interpret these results. This will include offering an explanation for the 

results in the context of the rationale for the experiment, considering alternative 



                                                                                                      Judgements of style 36 

explanations, and relating the findings to prior literature. Following this, I will discuss the 

methodological considerations of this experiment, including methodological strengths, 

justifications, and limitations. I will, moreover, explore some potential applications of 

this research. Finally, I will conclude with a section that summarises the thesis and 

integrates all the information together. I did not include a separate section for future 

research, because I found that all my recommendations were intrinsically linked to other 

sections. Recommendations for future research, therefore, will be interwoven throughout. 

Neural network simulation 

We found that a PCA network could categorise the Picasso and Braque images, 

whereas a network applied directly to the pixel-maps of the images (without first 

performing dimension reduction) could not. This demonstrates how dimension reduction 

is able to reveal the inherent structure of these highly complex and similar categories. It is 

important to remember that these categories were not defined by a simple rule or any 

obvious surface features. Instead, the network accessed information at a more macro 

level, and in doing so, was able to accomplish a task that the model without this 

information could not.  

 We also found that the network performed optimally using only the early 

eigenvectors, and its accuracy declined as the number of eigenvectors included in the 

analysis increased. The model, therefore, was more accurate at categorising the images 

when it was provided with less information. This suggests that the primary dimensions of 

variation are all that are necessary to categorise these images. The network in this 

experiment, moreover, performed exclusively a categorisation task (Picasso versus 

Braque), at no point was it required to differentiate individual exemplars from one 



                                                                                                      Judgements of style 37 

another. The fact the early eigenvectors emerged as most important for this task, 

therefore, is consistent with the notion that the early eigenvectors represent the salient 

categorical information. In the face recognition literature, for example, it has been 

established that the early eigenvectors encode for key categorical information (e.g., 

gender, race), whereas the later eigenvectors encapsulate identity-specific information 

(e.g., this face belongs to Mary not Lisa) (Hancock et al., 1996; O'Toole et al., 1993; 

Valentin & Abdi, 1996; Valentin et al., 1994). It is likely that if the model in this 

experiment had been trained to distinguish individual artworks from one another, instead 

of categorising them, then the later eigenvectors would have been more important. 

Essentially, the relative importance of the different eigenvectors will depend on task 

demand.  

Human categorisation using the early reconstructions 

When presented with the images reconstructed using the first 10 eigenvectors 

(early reconstructions), participants were able to categorise them significantly above 

chance. This is interesting because these reconstructions bear minimal resemblance to the 

original images, and in fact, they do not appear to contain any explicit meaningful 

information. Yet people were still able to systematically categorise these images. This 

suggests that the information represented in the eigenvectors is perceptually meaningful. 

It also supports the notion, moreover, that eigenvectors are a basic unit of information 

that the visual system extracts when learning to recognise the structure of complex 

categories.  

When I was debriefing the participants who were presented with the early 

reconstructions, furthermore, many of them were exasperated that there was not an 
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explicit rule that differentiated the categories, and were perplexed about the nature of the 

experiment. Yet they could perform the task. This suggests that eigenvectors encode for 

the tacit visual information that distinguishes complex visual categories, which people 

implicitly become sensitive to through exposure to individual instances of those 

categories.  

Human categorisation using the full reconstructions 

 When presented with the reconstructions based on all 1,895 eigenvectors (full 

reconstructions), participants were able to categorise them significantly above chance. 

Indeed, participants were more accurate at classifying the full reconstructions than the 

early reconstructions. This contrasts with the results from the PCA network, which 

performed better when fewer eigenvectors were included in the analysis. There are two 

explanations that could account for this pattern of results: 10 eigenvectors is not the 

optimal number for dimension reduction, or participants presented with the full 

reconstructions adopted a different strategy for categorising them.  

The first explanation stems from our somewhat arbitrary decision to use 10 

eigenvectors to create the early reconstructions. If people typically base their assessment 

of stimuli on a greater number of eigenvectors, such as 15 or 20, and we presented people 

with the reconstructions based on 10 eigenvectors, then they would have missed out on 

some of the information that the participants presented with the full reconstructions had 

access to. On the other hand, the PCA model performed optimally with fewer 

eigenvectors and its performance declined as a greater number of eigenvectors were 

included, so perhaps 10 eigenvectors was too many, and people would also have 

performed better with fewer eigenvectors. Either way, there would be an optimal number 
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of eigenvectors to use in the early reconstructions, and given the pioneering nature of this 

research, it is unlikely that we would have happened to select the optimal number this 

time. Future research, therefore, could systematically vary the number of eigenvectors 

used to form the early reconstructions, in order to discover the optimal number for this 

task. 

 The second explanation for participants’ superior performance using the full 

relative to the early reconstructions is that they adopted a different strategy for analysing 

the full reconstructions. It is possible that people used some surface features present in 

the full reconstructions that were useful (albeit not perfect or definitive) predictors of 

category membership. For example, Picasso drew a lot of sketches, so if a sketch 

appeared on the screen, participants may have learnt that there was a good chance that it 

was a Picasso. This sort of superficial information is not available in the early 

reconstructions, because for example, a reconstruction of a sketch would not look like a 

sketch. If participants presented with the full reconstructions strategically searched for 

predictive surface features, therefore, then this could explain how they were able to 

categorise the images more accurately than the participants presented with the early 

reconstructions.  

A search for surface features, however, is in stark contrast to how people typically 

categorise stimuli (Brooks, Squire-Graydon, & Wood, 2007). Brooks et al. argued that in 

everyday life, the categorisation of an object is usually secondary or incidental to a focus 

on the use of the categorised object. For example, “that is my neighbour’s friendly cat so 

I can pet it” would be a more salient concern than “that creature has four legs, pointy 

ears, and purrs, so I conclude that it is a cat”. The artificial constraints of a traditional 
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categorisation experiment, however, are not conducive to this focus on the use of the 

categorised object, instead, they typically direct participants’ focus onto the 

categorisation task itself. This is because in a traditional categorisation experiment: (a) 

the categories used will often be those defined by a simple experimenter-defined rule, (b) 

participants are aware that their categorisation performance is being assessed, and (c) 

they have nothing else to think about except the categorisation task. This situation 

compels participants to engage in an effortful and analytic search for category-defining 

surface features in the stimuli (Brooks et al.).  

To overcome the tendency, Brooks et al. (2007) proposed a “diverted analysis” 

technique. This technique was designed to divert people’s attention away from the 

categorisation itself and onto what the categorised stimulus could be used for. The 

authors found that under diverted analysis conditions, people could not only categorise 

stimuli accurately, but they also demonstrated many of the hallmarks of everyday-type 

categorisation. For example, after completing the experiment under diverted analysis, 

participants were often convinced that the family resemblance categories that they had 

been exposed to were defined by a simple rule (even though they were not). This mirrors 

how people will often claim that the natural categories which they encounter in everyday 

life are defined by simple rules, when in fact they are not (e.g. “trees are green and 

leafy”). Whereas when participants were exposed to the same stimuli under traditional 

categorisation experiment conditions, they typically recognised that the categories were 

not defined by a simple rule, because they had unsuccessfully searched for one (Brooks et 

al.). This shows how diverting participants’ analysis onto the use of categorised objects, 
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rather than focusing on the categorisation task per se, leads people to treat the stimuli in a 

way that much more closely reflects how they treat stimuli in everyday life.  

It would be informative to test whether diverting participants’ analysis from the 

categorisation task in this experiment would eliminate the advantage for the full 

reconstructions. If so, it would suggest that the analytic search for surface features was a 

strategy the participants adopted just to perform this experimental task, rather than a 

strategy that they would usually employ to make categorisation judgements in everyday 

life. This would suggest, furthermore, that people typically use the broad perceptual 

information represented in the early eigenvectors, rather than explicit surface features, 

when they learn about the structure of complex categories in the world around them.    

Pattern of performance across trials 

 The pattern of performance across trials offers further evidence that people were 

strategically focusing on surface features when categorising the full reconstructions. We 

found that the accuracy of participants’ performance increased across trial blocks when 

they were categorising the full reconstructions, but not when they were categorising the 

early reconstructions. This was unexpected. It reveals, however, that the way in which 

participants were categorising the early reconstructions was stable and consistent. This 

makes sense if they were relying on a dimension reduction mechanism that is robust and 

commonly used. When participants were categorising the full reconstructions, dimension 

reduction could have been operating in conjunction with a search for surface features – a 

method strategically employed for this experimental task. Assuming that participants had 

not previously invested time in figuring out what surface features distinguish a Picasso 

from a Braque, their accuracy in doing so would improve with experience. This could 



                                                                                                      Judgements of style 42 

account for why performance increased across trial blocks for participants categorising 

the full reconstructions, but not for those categorising the early reconstructions.  

Dimension reduction and non-human animals 

In the Introduction I mentioned that non-human animals such as pigeons can 

make seemingly sophisticated judgements, such as discriminating Monet and Picasso 

artwork (e.g. Watanabe et al., 1995). It is likely that pigeons use the macro perceptual 

information available in the early eigenvectors to do this, and can only use this 

information. Our argument, furthermore, is that people make judgements of style in 

fundamentally the same way as the pigeon; however, people can also supplement their 

performance with knowledge of language-based surface features, as they seemed to under 

the constraints of this experiment. We plan to pursue this idea by having pigeons 

discriminate Picasso and Braque images using the stimuli from this experiment. If 

pigeons perform equally well categorising the early and full reconstructions, then it 

would demonstrate that they use only the perceptual information represented in the early 

eigenvectors to perform the task. If people also perform equally well with the early and 

full reconstructions under diverted analysis conditions, then it would suggest that when 

people make everyday judgements about complex categories, they may base their 

judgement solely on the most obvious dimensions of variation, just like pigeons.  

Methodological considerations  

 Methodological strengths.  

 The major methodological strength of this experiment was that we tested both the 

network model and human participants. This allowed us to examine the similarities and 

differences between PCA’s and people’s performance. Crucially, however, we did not 
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merely correlate the two. Rather, we used dimension reduction to obtain the eigenvectors 

and then experimentally manipulated the range of eigenvectors used to reconstruct the 

images. This allowed us to definitively establish the effect of dimension reduction on 

people’s categorisation performance.  

Furthermore, the Picasso and Braque artistic styles used in this experiment are 

highly similar, such that even art experts can have difficult distinguishing them (Rubin, 

1989). These stimuli, therefore, offered a rigorous challenge for both the PCA network 

and our human participants. Future research could extend on this by testing how well 

people generalise their learning. Since we used artwork from Picasso’s Cubist era, we 

could test, for example, whether participants would generalise their learning to Picasso’s 

Blue or Rose period as well.  

Finally, this experiment employed a sub-sampling technique, where five 

subsamples were randomly extracted from each image for analysis. This method seems to 

capture something fundamental about the way that people process images. Firstly, no 

stimulus is encountered in the same way twice, and thus why random subsamples were 

extracted, rather than analysing the entire image. Secondly, there is extensive redundancy 

in the visual information received as a person shifts their eyes around a still image. This 

idea was represented by allowing the random subsamples to overlap. Given that this 

experiment was the first of its kind, however, we did not have prior studies to guide us, 

and so some of the decisions we made were essentially arbitrary. For example, we 

arbitrarily chose to extract five subsamples (rather than, say, four or six). Future research, 

therefore, could systematically vary the number and size of the subsamples, and the 
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number and size of the images, and test how this affects the model’s and people’s 

performance.   

 Methodological justifications.  

 We used Picasso and Braque images as the stimuli in this experiment because 

they exemplify the notion of complex categories, where category membership is not 

defined by a simple rule (Ryle, 1951). The artistic categories are not defined by the 

presence or absence of embedded objects in the images, because there were no such 

objects that were unique to one artistic category or the other. If we had used natural 

images, for example, and had “tree present” as one category and “tree absent” as another, 

then these categories would be defined by an obvious language-based rule. Artistic 

categories, in contrast, are defined more subtly in terms of style.  

Nonetheless, there seems to have been some consistencies in the surface features 

that our participants learnt about when categorising the full reconstructions. It is likely 

that these features would be not sufficient to define the category, and so, by themselves, 

could not be used to make above-chance categorisation, but they were able to enhance 

performance when used conjunction with more macro perceptual information. To test this 

possibility, we could reconstruct the images using the later eigenvectors, omitting the 

early (“late reconstructions”), which would therefore contain exclusively the 

individuating surface features of the images. If participants could not categorise these 

reconstructions, then it would demonstrate that while the surface information can enhance 

categorisation, it is not sufficient for it. This would show, therefore, that surface features 

in the images do not define artistic categories.  
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Using artwork was advantageous because of the complex and polymorphous 

nature of artistic categories. The trade-off for this, however, was that the stimuli were not 

true images of people or landscapes (the sorts of images that would have more 

evolutionary significance). This is why I have taken over 1,000 photographs of natural 

scenes this year, and prepared them in such a way that will allow for a rigorous test of 

whether people categorise the images based on visual style, or on the basis of the objects 

depicted in the images. When I took each photograph, I recorded the focus of the image. I 

have also recorded the presence or absence of particular pre-defined objects. I would take 

a photograph of a tree, for example, and so record that “tree” was the focus, and I would 

also record the other objects present in the image (such as human, non-human animal, 

and water). Or, alternatively, I would take a photograph of a building, and so record 

“building” as the focus of the photograph, and also record the other objects present in the 

image (e.g. tree, glass, stone, non-human animal). The photographs of a tree should share 

a common style, regardless of what other objects are also present. Crucially, however, the 

style of these tree photographs should be distinct from the style of the photographs which 

contain a tree, but where the focus of the image was some other object.  

I want to use these photographs in future research to test whether people will treat 

the photographs of trees in the same way, and whether this will be qualitatively distinct 

from how they treat photographs that contain trees, but where some other object was the 

focus of the image. For example, if these stimuli were presented very briefly to 

participants in a categorisation task, would they tend to misclassify photographs that were 

taken of a tree, but with the tree digitally removed, as containing a tree? Would they also 

tend to misclassify photographs containing a tree, but where the focus of the photograph 
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was some other object, as not containing a tree? If so, then this would strongly suggest 

that people categorise natural images on the basis of visual style, rather than the presence 

or absence of objects in the image. This would support the idea that people use the broad 

perceptual information (such as that represented in the early eigenvectors), rather than 

explicit, language-based features when they analyse natural images. 

Another methodological decision we made in this experiment was to use PCA as 

the method of statistical dimension reduction (SVD is mathematically equivalent to 

PCA). We chose PCA for two main reasons. Firstly, PCA extracts dimensions of 

variation that are entirely orthogonal (Tabachnick & Fidell, 2007). Other methods, such 

as ICA, relax the orthogonality criterion for the dimensions (Brozovic & Andersen, 

2006). This would make the interpretation of the dimensions problematic, however, 

because overlapping information would be represented in separate eigenvectors. 

Secondly, PCA is relatively simple computationally, compared with some other forms of 

dimension reduction.  

Essentially, however, the exact statistical method used is not a pivotal theoretical 

concern. Instead, it is just a tool for achieving dimension reduction. The different 

statistical dimension reduction techniques, furthermore, despite their computational 

differences, yield similar eigenvectors when applied to natural images (Baddeley & 

Hancock, 1991; Brozovic & Andersen, 2006; Caywood, Willmore, & Tolhurst, 2004; 

Hancock et al., 1992; Heidemann, 2006; van Hateren & Ruderman, 1998). The 

mathematical intricacies of PCA, therefore, are not an important consideration here. What 

is important, in contrast, is that people could use the limited information from dimension 

reduction to perform the categorisation task. This suggests that eigenvectors encode for 
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visually important information, and that dimension reduction could be the means via 

which people learn about the structure of complex categories. 

Methodological limitations. 

 The main methodological limitation was that we did not include an equal number 

of Picasso and Braque images. There were more Picasso (252) than Braque (127) images, 

and so we randomly sampled 127 Picassos for each participant. This was done so that 

each participant would be presented with an equal number of images from each artist. It 

meant, however, that each participant would be presented with a set of Picasso images, 

which would most likely differ from the set that the other participants were presented 

with. This is why we could not statistically compare people’s performance with the PCA 

model’s performance.  

Future research, therefore, could eliminate the extra Picasso images, and thus use 

an equal number of images from each artist. This would allow for a statistical comparison 

between the model and the human data. This is similar to what Landauer et al. (1998) 

tested with the multiple-choice psychology examinations. They found that both LSA and 

the students were more likely to make errors on conceptual items than factual items. I 

expect, therefore, that people and PCA will also make qualitatively similar sorts of errors 

with the Picasso and Braque categorisation. Specifically, the PCA model should have the 

highest cosines for those images which people categorise with the highest accuracy, and 

it should have the lowest cosines for those images which people categorise with the 

lowest accuracy. This would be strong evidence that people are using a mechanism 

analogous to PCA when they learn about the structure of complex categories.  

 



                                                                                                      Judgements of style 48 

Applications 

 Detecting art fraud.  

 A potential application of this research is that dimension reduction could be used 

to detect art fraud. In this experiment we found that the network could use the tacit 

information in the images to differentiate the highly complex and similar artistic 

categories. In Vokey et al.’s (2004) research, furthermore, a PCA network revealed a 

subtle confound in the way the images had been framed. I expect, therefore, that a PCA 

network could be trained to distinguish a genuine from fake artwork, even if they are 

highly similar and difficult to differentiate. 

Berezhnoy, Postma, and van den Herik (2005) have begun work on designing a 

computer-based art fraud detection model. However, the unit of information that the 

model extracts is superficial elements in the paintings, primarily brushstrokes. I suspect, 

however, that such a feature-based approach will be inadequate. The face recognition 

literature is informative in this regard. Computerised face recognition models based on 

facial features such as “distance between the eyes” and “chin shape” are highly fallible, 

whereas those based on the macro dimensions of variation from PCA, are robust (Abdi et 

al., 1995; Brunelli & Poggio, 1993; Everson & Sirovich, 1995; Lowe, 1987; Turk & 

Pentland, 1991). Artwork and faces are alike in the sense that they are both classes of 

stimuli where a large set of individual instances share the same basic configuration, and 

are differentiated only by difficult-to-verbalise visual information. This suggests, 

therefore, that an art fraud detection model that relies on the surface features of the 

artwork will similarly be fragile, and prone to error under suboptimal test conditions 

(such as detecting damaged but genuine originals, or fakes that bear the same superficial 
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features as the original). A model based on the dimensions derived from PCA, in 

contrast, should be robust.  

Training novices to be experts.  

Another potential application of this research is that the primary dimensions of 

variability could be used for efficiently training novices to be experts. For example, in 

training people to distinguish Picasso and Braque artwork, they could be shown the 

eigenvectors, that is, the main sources of variation in the image set. This would fast track 

their insight into the dimensions that are most important for distinguishing the categories, 

an insight which they would normally have to cultivate through extensive experience 

with individual instances. In the neural network simulation, for example, one of the early 

eigenvectors appeared to encode for “blue”, that is, the colour blue was an important 

dimension that distinguished Picasso from Braque images. This was unexpected, as the 

importance of blue is not something that is obvious from examining the images. Yet 

when I (repeatedly) completed this experiment myself, I found that this knowledge 

impressively increased my accuracy. This remains anecdotal, however, and so future 

research could systematically test whether eigenvectors could be used as a training 

stimulus to enhance the learning process.   

Using eigenvectors as a training stimulus is not necessarily limited to art. 

Dimension reduction has been found to yield the important dimensions of variation for 

many diverse tasks (e.g., recognising faces, learning English, and studying introductory 

psychology). This means that it has the potential to be useful in many different domains. 

For example, this dimension reduction model could also be used in the medical domain. 

Specifically, a network could be applied to medical scans (e.g. MRI scans), which would 



                                                                                                      Judgements of style 50 

yield the key dimensions of variation for these images. These dimensions could then be 

used to enhance the training of health professionals to make diagnoses on the basis of 

these scans. Essentially, dimension reduction could be useful for turning novices into 

experts in any domain that involves complex visual categories where the key 

distinguishing information is difficult to summarise in words.  

Assisting expert decision-making. 

Dimension reduction also has the potential to assist expert decision-making for 

any task that demands judgements of style about ambiguous visual stimuli. Forensic 

fingerprint identification, for example, involves making judgements about the “matches” 

and “non-matches” of complex visual stimuli. Fingerprint professionals currently use a 

classification system based on simple features such as loops, arches, and whorls in the 

fingerprints (Vokey, Tangen, & Cole, 2007).  This system seems to owe its current usage 

to precedence, rather than demonstrated validity. Furthermore, given that feature-based 

approaches to face recognition are incomplete and inadequate, it therefore seems likely 

that a feature-based approach to fingerprint identification will be similarly limited. 

Evidence for this is that people do make errors when judging fingerprint matches or non-

matches (Vokey et al.). This suggests that fingerprint identification could benefit from an 

improved classification system.  

Dimension reduction is a plausible candidate for a new fingerprint classification 

system. The advantages of a dimension reduction approach include that: (a) the 

dimensions do not have to be defined a priori, because the model extracts the important 

dimensions, and (b) they do not have to be verbally-defined features, but can instead 

represent the tacit underlying structure of complex visual categories. Future research, 
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therefore, could test whether a network exposed to fingerprint images could learn to 

accurately make “match” and “non-match” judgements. If so, then dimension reduction 

could be used to supplement, or even supersede the decision-making processes of 

fingerprint professionals.  

Conclusion  

 In summary, we found that a PCA network was able to discriminate Picasso and 

Braque artwork. Its accuracy was optimal using the early eigenvectors, and decreased as 

more eigenvectors were included. Our human participants, furthermore, could also 

categorise the Picasso and Braque images reconstructed from the early eigenvectors. 

They performed better, however, with the images reconstructed using all the 

eigenvectors. This advantage for the full reconstructions was most likely the result of 

participants adopting a strategic search for surface features in the images, due to the 

constraints of the experiment. This explanation is consistent with the pattern of 

performance across trials, where performance improved for participants presented with 

the full reconstructions, but not for those presented with the early reconstructions. In 

future research, we will examine whether under conditions more reflective of everyday 

life (i.e., diverted analysis), people will perform equally well with the early and full 

reconstructions. If so, it would suggest that people typically rely on the information 

encapsulated in the early eigenvectors to make category judgements in everyday life.  

 The findings from this experiment are consistent with a whole body of other 

research suggesting that dimension reduction is a psychologically meaningful and 

biologically plausible model for how people perform a diverse array of tasks, from 

recognising faces to learning language. In fact, dimension reduction is a comprehensive 
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yet parsimonious explanation of many phenomena that until now have eluded satisfactory 

scientific explanation. Yet, importantly, this experiment was not just a replication or an 

extension of prior research with minor modification, instead, it sailed unchartered waters. 

While other researchers have focused on a single aspect of dimension reduction (such as 

face recognition, or language acquisition) in isolation, this experiment adopted a broader 

perspective and investigated whether dimension reduction could be the basis for how 

people learn about the structure of any complex visual category.  

Although this study had some minor methodological limitations, it was on the 

whole a rigorous and meaningful test of the hypothesised dimension reduction 

mechanism. It has provided direction, furthermore, for future research and potential real-

world applications. Ultimately, a deeper understanding of this dimension reduction 

mechanism has the potential to illuminate many of the mysteries of human cognition.  
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