Changing Legal Systems: Abrogation and Annulment
Part II: Temporalised Defeasible Logic

Guido Governatori' and Antonino Rotolo?

! National ICT Australia, guido.governatori@nicta.com.au
2 CIRSFID/Law School, University of Bologna, Italy, antonino.rotolo@unibo.it

Abstract. In this paper we propose a temporal extension of Defeasible Logic to
model legal modifications, such as abrogation and annulment. Hence, this frame-
work overcomes the difficulty, discussed elsewhere [7]], of capturing these modi-
fication types using belief and base revision.

1 Introduction

The aim of our work is to study the notion of legal modification in Defeasible Logic
(DL). Legal modifications are the ways through which the law implements norm dy-
namics. Typically, the law regulates its own changes and introduces norms whose pecu-
liar objective is to change the system by specifying what and how other existing norms
should be modified [Sl6]. We are interested here in investigating the concepts of ab-
rogation and annulment. Annulment is seen as a kind of repeal, as it makes a norm
invalid and removes it from the legal system. Its peculiar effect applies ex func: an-
nulled norms are prevented to produce all their legal effects, independently of when
they are obtained. Abrogation, too, corresponds to a type of norm removal, even though
it is different from annulment; the main point is that abrogations usually operate ex
nunc and so do not retroactively cancel the effects that were obtained before the modi-
fication. Retroactivity is crucial. However, the distinction is not sometimes so sharp, as
some cases of abrogation, too, admit that some (but not all) effects can retroactively be
blocked [7)516]. Hence, in a nutshell, what we have to bear in mind here is that the law
implements two different reasoning patterns in such a way as, in one case, norms are
removed with all their effects, whereas in other cases norms are removed but some or
all their effects propagate if obtained before the modification.

This paper is Part 2 of [7]. In [[7] we argued that it is hard in DL to move to a
general analysis, based on theory revision, where time is not considered. Rather, we
proposed that dynamics of a legal system LS are correctly captured by a time-series
LS(t1),LS(t2),...,LS(t;) of its versions. Each version of LS is called a norm repository.
The passage from one repository to another is effected by legal modifications or simply
by persistence [6]]. But dynamics of norm change and retroactivity need to introduce
another time-line within each version of LS. Clearly, retroactivity does not imply that
we can really change the past, but it rather requires that we have to reason on the legal
system from the viewpoint of its current version but as it were revised in the past: when
we change some LS(i) retroactively, this does not mean that we modify some LS(k),

3rd International Workshop on Normative Multiagent Systems (NorMAS 2008), Luxembourg, 15-16 July, 2008

k < i, but that we move back from the perspective of LS(i). Hence, we can “travel” to
the past along this inner time-line, i.e. from the viewpoint where we modify norms.
The layout of this Part 2 is as follows. Section [2 overviews the basics of DL. Sec-
tion [3] proposes a temporal extension of DL able to correctly model abrogation and
annulment: Section [3.1]describes the new formal language; Section [3.2] states the proof
theory; Section[3.3applies the framework to represent abrogation and annulment.

2 Defeasible Logic

Dynamics of legal change points out the importance of defeasibility due to the addi-
tion of new premises that can invalidate formerly derivable effects. This means that
norm modifications proceed on the basis of defeasible reasoning [7]. In fact, the rea-
soning used in this context forms part of the wider domain of legal reasoning, which
too is deemed to be defeasible [11]. In line with [5.6], we will show how to model
defeasible reasoning on legal modifications using DL [10i1]. DL is based on a logic
programming-like language [2l] with an argumentation semantics [4]. In addition DL
has linear complexity [9] and also has several efficient implementations [3].

A DL theory consists of a set of indisputable statements (facts), a set of rules, and a
superiority relation over rules. We have three types of rules in DL: strict rules, defeasible
rules and defeaters. A rule expresses a relationships between a set of premises and a
conclusion, and the three types of rules convey the strength of the relationships. A strict
rule states the strongest kind of relationship since the conclusion always holds when the
premises are indisputable. Defeasible rules cover the case when the conclusion normally
holds when the premises tentatively hold; finally defeaters consider a situation where
the premises do not warrant the conclusions: in defeaters the premises simply prevent
another rule to support the opposite. Accordingly, a conclusion can be labelled either
as definite or defeasible. A definite conclusion is an indisputable conclusion, while a
defeasible conclusion can be retracted if additional premises become available. DL is
based on a constructive proof theory based for conclusions. Accordingly we can say
that a derivation for a conclusion exists and that it is not possible to give a derivation
for a conclusion. Based on these two ideas, we have four possibilities:

— £Ap, meaning that we (do not) have a definite proof for p (a definite proof is a
proof where we use only facts and strict rules);
— +dp, meaning that we (do not) have a defeasible proof for p.

In what follows we will refer to +A, —A, +d and —d as proof tags, see [1]] for formal
conditions under which we can label a conclusion with one of these proof tags; in
Section [3.2] we will give proof conditions for the temporal extensions we propose.
Strict (or definite) proofs are just derivations based on detachment for strict rules.
Given a strict rule ay,...,a, — b, where we have definite proofs for all a;’s, we can
deduce b. DL is a sceptical non-monotonic formalism: when conflict between two con-
clusions (i.e., one is the negation of the other) arises, DL refrains to take a decision and
we deem both as not provable unless we have some more pieces of information that can
be used to solve the conflict. One way to solve conflicts is to use a superiority relation

over rules. The superiority relation gives us a preference over rules with conflicting con-
clusions. In case we have a conflict between two rules we prefer the conclusion of the
strongest of the two rules. The superiority relation is applied in defeasible proofs. De-
feasible proofs are structured in three phases: in the first phase we look for an argument
supporting the conclusion we want to prove. More precisely we want an applicable rule
for the conclusion. In the second phase we look for arguments/rules for the opposite of
what we want to prove. In the last phase we rebut the counterarguments. This can be
done by showing that the counterargument is not founded (i.e., some of the premises
do not hold), or by defeating the counterargument, i.e., the counterargument is weaker
than an argument for the conclusion we want to prove. In other words, a conclusion p is
derivable when: (1) p is a fact; or (2) there is an applicable strict or defeasible rule for
p, and either (2.1) all the rules for —p are discarded (i.e., not applicable) or (2.2) every
applicable rule for —p is weaker than an applicable strict or defeasible rule for p. Note
that a strict rule can be defeated only when its antecedent is defeasibly provable.

3 Temporal Defeasible Logic

Temporal Defeasible Logic (TDL) is an umbrella expression to designate extensions of
DL to capture time. TDL has proved useful in modelling temporal aspects of normative
reasoning, such as temporalised normative positions [8]; in addition, it was suggested
that the notion of a temporal viewpoint may solve the problem of retroactive modifica-
tions [5l6]. We present in this section some variants that deal with temporal dimensions
as recalled above and presented in [[7]]. Dynamic aspects of legal reasoning are cap-
tured by two means: by first introducing temporal coordinates and, second, normative
modifications.

[8] extended DL with temporalised literals, i.e., every literal in the logic has associ-
ated to it a timestamp. Thus we have expressions of the type ', meaning that a holds at
time 7. This means that we have to give the condition to prove a literal at time 7. So be-
sides the straightforward extension of the conditions given above, we have to consider
whether a conclusion is transient (holding at precisely one instant or time) or whether
it is persistent. To prove that a holds at ¢, we can prove that a held at a previous instant
¢ and then for all instant in between ¢ and ¢/, it is not possible to terminate a. We will
refer to this property as persistence of a conclusion.

However, the other components of our knowledge, too, have their temporal validity:
we can speak of the time of force of a rule, i.e., the time when a rule can be used to
derive a conclusion given a set of premises. In this perspective we can have expressions
like (r : @' — b')"* meaning that the rule r is in force at time 7, or in other words, we
can use the rule to derive the conclusion at time #,. The full semantics of this expression
is that at time 7 we can derive that b holds at time #;, if we can prove that a holds at time
t,. But now we are doing a derivation at time ¢,, so the conclusion b% is derived at time
t, and the premise a’@ must be derived at time £, as well. In the same way a conclusion
can persist, this applies as well to rules and then to derivations.

Let us consider the following example from a hypothetical taxation law. If the tax-
able income of a person at January 31, for the previous year is in excess on 100,000$,
then the top marginal rate computed at February 28 is 50% of the total taxable income.

And this provision is in force from January 1. This rule can be written as follows:
(Threshold®"*" = HighMarginalRate*F)1/an

Let us suppose that the last instalment for the salary was paid to an employee on January
4, and that it makes the total taxable income greater than the threshold stated above.
We used Threshold¥™ to signal that the threshold of 100,000$ has been certified on
January 4. Clearly Threshold*®" is a persistent property, thus in this case we can derive
that the threshold was reached by January 31. So let us ask what the top marginal rate
for the employee is if she lodges a tax return on January 20. What we have to do is to
see whether the rule is still in force on January 20. Given that the norm was valid from
January 1, and no changes were made to the legislation in between, the rule persists.
Thus from the point of view of January 20, the top marginal rate is 50%. Suppose now
that there is a change in the legislation and that the above norm is changed on February
15, and the change is that the top marginal rate is 30%.

(Threshold®"™" = MediumMarginalRate*3F¢?)13Feb

In this case if the employee lodges her tax return after February 15, the top marginal
rate is 30% instead of 50%.

From the above example it is clear that what we derive depends on what rules are
valid, and on the normative content of rules, at the time when we do the derivation.
In addition the above example illustrates the case that the content of a rule can be
changed. Thus we have to devise a mechanism to capture this phenomenon. To this end
we introduce meta-rules, i.e., rules where the consequent is itself a rule and not only a
simple proposition. In addition, to keep track of the norm changes, i.e., to represent the
different versions of a legal system, we use the notion of repository, i.e., a snap-shot of
rules and literals known to exist at a specific time instant. In the rest of the section we
will give a formal presentation of the notions discussed so far.

3.1 Language

The language of TDL is based on a (numerable) set of atomic proposition Prop =
{p.,q,...}, a set of rule labels {r;,r,,...}, a discrete totally ordered set of instants of
time .7 = {t;,f,...}, the negation sign —, and the rule signs — (for strict rules), =
(for defeasible rules) and ~ (for defeaters). A plain literal is either an atomic proposi-
tion or the negation of it. Given a literal / with ~/ we denote the complement of [, that
is, if [is a positive literal p then ~I = —p, and if | = —p then ~/ = p. If [is a literal and
t is an instant of time, i.e.,t € .7, then [' is a temporalised literal. If I' is a temporalised
literal and x € {#ran,pers}, then [(%) is a duration literal. 1f 17*) is a duration literal,
y € {tran,pers} t' € 7, then I"Y) @(¢',y) is a fully temporalised literal.

A rule is a relation between a set of of premises (conditions of applicability of the
rule) and a conclusion. In this paper the admissible conclusions are either literals or
rules themselves; in addition the conclusions and the premises will be qualified with
the time when they hold. We consider two classes of rules: meta-rules and proper rules.
Meta-rules describe the inference mechanism of the institution on which norms are
formalised and can be used to establish conditions for the creation and modification of

other rules or norms, while proper rules corresponds to norms in a normative system.
In what follows we will use Rules to denote the set of rules, and MetaRules for the set
of meta-rules, i.e., rules whose consequent is a rule.

A temporalised rule is either an expression (r: 1)) (the void rule) or (r: @)
(the empty rule) or (r: A < B)("¥)_ where ris a rule label, A is a (possibly empty) set of
temporalised literals, < is a rule sign, B is a duration literal, 7 € 7 and x € {tran, pers}.

We have to consider two temporal dimensions for norms in a normative system. The
first dimension is when the norm is in force in it, and the second is when the norm exists
in the normative system from a certain viewpoint. So far temporalised rules capture
only one dimension, the time of force. To cover the other dimension we introduce the
notion of temporalised rule with viewpoint. A femporalised rule with viewpoint is an
expression (r: A — B)¥ @(¢',y), where (r: A — B)""*) is a temporalised rule, t' € .7
and y € {tran,pers}.

Finally, we introduce meta-rules, that is, rules where the conclusion is not a simple
duration literal but a temporalised rule. Thus a mefa-rule is an expression (s : A — (r:
B—)@ (t,y), where (r: B — C)(’/”‘) is a temporalised rule, r #s,t € 7 and y €
{tran,pers}. Notice that meta-rules carry only the viewpoint time (the validity time) but
not the “in force” time. The intuition behind this is that meta-rules yield the conditions
to modify a legal system. Thus they specify what rules (norms) are in a normative
system, at what time the rules are valid, and the content of the rules. Accordingly, these
rules must have an indication when they have been inserted in a normative system,
but then they are universal (i.e., apply to all instants) within a particular instance of a
normative system.

Every temporalised rule is identified by its rule label and its time. Formally we can
express this relationship by establishing that every rule label r is a function r : .7 —
Rules. Thus a temporalised rule #* returns the value/content of the rule ‘r’ at time 7.
This construction allows us to uniquely identify rules by their label and to replace
rules by their labels when rules occur inside other rules. In addition there is no risk
that a rule includes its label in itself. In the same way a temporalised rule is a function
from .7 to Rules, we will understand a temporalised rule with viewpoint as a function
with the following signature: .7 +— (Z — Rules). A legal system LS is a sequence
of versions LS(y),LS(t1),.... The temporal dimension of viewpoint corresponds to a
version while the temporal dimension temporalising a rule corresponds to the time-line
inside a version. Thus the meaning of an expression r'* @t, is that we take the value of
the temporalised rule 7 in LS(z,). Accordingly, a version of LS is just a repository (set)
of norms (implemented as temporal functions). Given a rule r, the expression r @¢’
gives the value of the rule (set of premises and conclusion of the rule) at time ¢ in the
repository #'. The content of a void rule, e.g., (r: 1) @t is |, while for the empty rule
the values is the empty set. This means that the void rule has value for the combination
of the temporal parameters, while for the empty rule, the content of the rules does not
exist for the given temporal parameters.

Given a set R of rules, we denote the set of all strict rules in R by Ry, the set of
defeasible rules in R by Ry, the set of strict and defeasible rules in R by Ry, and the set

3 We do not need to impose that the function is an injection: while each label should have only
one content at a given time, we may have that different labels (rules) have the same content.

of defeaters in R by Rz R[g] denotes the set of rules in R with consequent g. For a rule
(r:A— B)"M@(ty) or ameta-rule (r: A — B)@(t,x) we will use A(r) to indicate
the body or antecedent of the rule, i.e., A, and C(r) for the head or consequent of the
rule, i.e., B. Given a temporalised rule (r: A — B)(’)

R~ ={(r: L)' U{(r:0)"}u{(r:A" < B)Y|A' £ A or B # B}

Finally, for every literal, rule, and every temporal dimension, we have the specification
whether the element is persistent or transient for that temporal dimension. The inter-
pretation of transient and persistent elements is as follows: a transient temporalised
literal 1(779") means that [holds at time ¢, while a persistent temporal literal 1(t.pers)
signals that / holds for all instants of time after ¢ (¢ included), for the time-line of
the legal system in which the literal is found. For a transient fully temporalised lit-
eral [V @ (', tran) the reading is that the validity of / at 7 is specific to the legal system
corresponding to repository associated to ¢/, while [=x)@(t’ ,pers) indicates that the
validity of [at ¢ is preserved when we move to legal systems after the legal system
identified by ¢". An expression ("7 sets the value of r at time ¢ and just at that time,
while r":P¢7S) gets the values of r to a particular instance for all time after ¢ (¢ included).

We will often identify rules with their labels, and, when unnecessary, we will drop
the labels of rules inside meta-rules. Similarly, to simplify the presentation and when
possible, we will only include the specification whether an element is persistent or
transient only for the elements for which it is relevant for the discussion at hand.

Meta-rules describe the inference mechanism of the institution on which norms are
formalised and can be used to establish conditions for the creation and modification
of other rules or norms, while proper rules corresponds to norms in a normative sys-
tem. Thus a temporalised rule 7 gives the ‘content’ of the rule ‘7’ at time ¢; in legal
terms it tells us that norm r is in force at time ¢. The expression (p'?,qv = (p'r =
s(ts-pers))(trpers)) @ (¢, tran) means that, the repository at 7, if p is true at time ¢, and ¢ at
time 74, then p'r = sUs:Pers) i< in force from time ¢, onwards.

A legal system is represented by a temporalised defeasible theory, i.e. a structure

(y’F’ an’Rmeta’Rmod, <)

where .7 is a totally ordered discrete set of time points, F is a finite set of facts (i.e.,
fully temporalised literals), R™ is a finite set of unmodifiable rules, R™™ is a finite set
of meta rules, R™¢ is a finite set of proper rules, and <, the superiority relation over
rules is formally defined as .7 — (.7 — Rules x Rules).

An unmodifiable rule is a rule such that Vz,7,#”,/"” ¥ @¢ = /" @¢". This means
the content/value of the rule is the same across all repositories for all instants. The su-
periority relation < determines the relative strength for rules for every instant in every
version of the legal system. Thus it is possible that a rule r is both stronger and weaker
than another rule s in two versions of the legal system, and then that two rules in differ-
ent repositories have opposite relative strengths. To illustrate this case, consider water
restrictions in force in South East Queensland in January 2007, where it is permitted
to water garden in residential properties on Tuesday, Thursday and Saturday for odd
number properties and on Wednesday, Friday and Sunday for even number properties;

and watering is otherwise forbidden. This regulation can be represented as follows
r: = —watering, o:0ddNumber = watering, e :EvenNumber = watering

where the superiority contains, among others:

2007 2007 2007 2007
o '<M0nday nor —<Tuesdays o, e —<M0nday Lo r —<Wednesdays e

Hence, in 2007, on Tuesday rule e is stronger than rule r, but on Monday r is stronger
than e.

3.2 Proof Conditions

We are now ready to define how conclusions can be obtained in TDL. Notice that the
main difference between the proof conditions given here and those of basic DL (of
course besides the presence of the temporal dimensions) is that, in basic DL, rules are
always given as elements of the theory, while here every time we have to use a rule, we
have to ensure that the rule is derivable from the theory. Given the structure of a theory
and the types of the rules we have, the proof conditions for rules are slightly different
from those for literals (though they follow the same intuition). Accordingly, we will
give separate proof conditions for deriving literals and for deriving rules.

The main notion at hand is the notion of derivation (or proof). A proof P is a finite
sequence of tagged expressions such that:

1. Each expression is either a temporalised rule or a temporalised literal;

2. Each tag is one of the following: +Ar@t', —Ar@t', +0t@t', —dt @t';

3. The proof conditions “strict rule provability”, “defeasible rule provability”, “strict
literal provability” and “defeasible literal provability” given below are satisfied by

the sequence P.

Given a proof P we use P(n) to denote the n-th element of the sequence, and P[1..1]
denotes the first n elements of P.

A proof tag has four components: (1) sign, (2) tag, (3) derivation time and (4) repos-
itory time. Accordingly, the meaning of the proof tags is a follows:

— +At@t x'*: we have a definite derivation of x’* at time ¢ using the elements in the
repository at time ¢';

— —Ar@¢' x'*: we can show that it is not possible to have a definite derivation of x*
at time ¢ using the elements in the repository at time ¢’;

— +0t@1' x'*: we have a defeasible derivation of x* at time 7 using the elements in
the repository at time #;

— —dt@¢’ x*: we can show that it is not possible to have a definite derivation of x'* at
time ¢ using the elements in the repository at time #'.

In the presentation of the proof conditions we will adopt the following convention for
the various times involved: #; is the time with respect to which we do the derivation and
it refers to the time-line within a repository, ¢, is the repository time, thus it is the time-
line of the legal system as a whole. Finally, the last temporal dimension is the object

time, which in the case of a rule is the time of force ¢,, for a literal a it is the time when
the literal holds; we use a’@ for a temporal literal. The derivation and the repository
times are parameters of the proof tags.

The general mechanism for a derivation in the present framework is as follows.
First of all, a derivation corresponds to a query, and the query is parametrised by two
temporal values: the repository time and the derivation time. The repository time is
used to time-slice the information relevant for the query using the time-line of the legal
system. This means that we retrieve all elements of the theory where the repository time
is equal to the repository time of the query and all elements whose repository time is
less than the repository time of the query but the element carry over due to persistence
over repositories. After this step we have the legal system in force at the repository
time. At this stage the derivation time kicks in. Similarly to what we have done in the
previous step, we use the value of the derivation time to time-slice the legal system
under analysis. In particular we consider all rules whose time of force is equal to the
derivation time, or rules whose time of force precedes the current derivation time but
carries over to it because such rules are marked as persistent. Finally, we consider the
temporalised literals in the rules resulting from the two previous steps, and we check
whether the literals are provable with the time with which they appear in the rules.

Strict Rule Provability

If P(n+1) = +At; @1, r'v then

1) @t/ € R™ or

2) ds@1]. € R : Va'a € A(s),+A1,@t, a's € P[1..n], or
3) +AL, @1 1.

where:

1. if r is persistent, then ¢, < f,; if r is transient, then #, =/ ;

2. if facts, rules and meta-rules are persistent across repositories, then . < t,, other-
wise 1. = f,;

3. t), < tq if conclusions are persistent within a repository; otherwise ¢/, = t4;

4. 1" < 1, if conclusions are persistent across repositories; otherwise 7/ = t,.

Notice that for clause (2) we must be able to prove the antecedent of the meta-rule s
with exactly the same reference point, i.e., the combination of derivation time 7; and
repository time 7, as the reference point of the conclusion we prove, i.e., r'v; whether
the literals used to apply s are obtained by persistence or by a direct derivation with the
appropriate time reference depends on the proof conditions for literals and the variant
of TDL at hand. Finally clause (3) is the persistence clause for strict derivation of rules.

Defeasible Rule Provability

If P(n+1) = +9t,@t, r'v, then

1) +At, @1, ¥ or

2) —At;@t, ~r" and

2.1) @1 € R or Jg's € R (%] : Va' € A(s), +0t, @1 a' € P[1..n] and

2.2) Vm'm € R[~r"] either
1) A € A(m) : —at]j @t b’ € P[1..n] or
2) mim < ' if @t € R™4 or mim <y, s, if @t ¢ R™4 or
3) Iwh € R[] : Ve € A(w),+01]' @1 ¢ € P[1..n] and m' <" w'

where

—_—

if r is persistent, then #, < t,; if r is transient, then ¢, = 7};

2. if d's, (resp. b", c') is persistent within the repository at #,, then #/, <1, (resp.
1 <tg, 1) <t1);if d' (vesp. b,) is transient within the repository at ., then
th=1g) (vesp. 1l =14, 1] =14);

3. if @'a’s, b'’s and ce’s are persistent with respect to repositories (i.e., conclusions
are persistent), then /¢ """ <t,; otherwise ¢/, 1" 1/ =1,

4. if ¥ and s (i.e., facts, rules, and meta-rules) are persistent with respect to reposito-
ries, then ¢/ < t,; otherwise 7. = f,..

A rule r is defeasibly provable at time #;, given the information available in a repository
t,, if (1) the rule is strictly provable with the same parameters, or (2) we have definitely
rejected that the content of the rule is different from what we want to prove, and then
we have some justification to the claim. This means that (2.1) the rule is given in theory
r € R™_ In this case, the rule can be given with a previous validity time (¢, , < t,)
if that parameter is labelled as persistent. Similarly for the enactment time (or in-force
time) #.. Notice that for a given rule, there are no constraints for the derivation time (z;):
given rules are understood as universally valid for that temporal dimension. For the
second part of (2.1) we have that there is a meta-rule having r as its conclusion. In this
case we have to check that the antecedent of the rule has been available to make the rule
applicable at the derivation time ;. This aspect depends on the particular variant of TDL
one wants to adopt. The antecedent could have been derived at a previous time #,, t, <1y,
in a variant where conclusions persists within a repository; or with the same derivation
time #, = 14, but in a previous version of the repository #, < t, if conclusions persist over
repositories. We will fully explain these concepts when we present the proof conditions
for literals. Clause (2.2) ensures that there are no justified reasons to claim the content
of the rule different from what we want to prove. Remember the given interpretation of
rules (rule labels) as function from the temporal dimensions to the content of a rule (i.e.,
the relationships between the antecedent, a set of premises and the conclusion). Thus
for every combination of temporal parameters for a rule, there is only a single value for
the content of the rule. Thus if we want to prove +d10@1 (r: d« = b™) we have to
ensure that there is not way in which the content of rule r at time 10 in repository 1 is
different from a'e = b'.

Strict Literal Provability

If P(n+1) = +At; @1, p'r, then
1) p’l/’@t; eF;or
2) 3 € Ry[p'], +At,@t, € P[1..n], £, =1, and
Vd'« € A(r) : +At;@t, a'« € P[1..n]; or
3) +Af, @1 p'v € P[1..n).

where:

1. if p is persistent, then t1/7 < tp; if p is transient, then tI'7 =1y}

2. if ris persistent, then ¢, < ¢,; if r is transient, then t, =/,;

3. if facts, rules and meta-rules are persistent across repositories, then ¢, < #,, other-
wise 1] = t,;

4. if conclusions are persistent within a repository, then t; < #4; otherwise ;, = 14

5. if conclusions are persistent across repositories, then t; < t,; otherwise t; =1t

What we want to point out for strictly literal provability is the mechanism governing
persistence of conclusions. While persistence of rules and facts (within or across repos-
itories) is a property of the single instances, persistence of conclusions is a property
characterising variants of TDL. In this case, a conclusion is persistent within a reposi-
tories if it is possible to carry over a derivation from one instant to a successive instant
while keeping the time reference relative to the repository unchanged. This means that,
for example, if one is able to prove +Ar@1 p, for t = 10 then for all ' > 10, +At' @1 p
can be proved. Notice that in this case all we have to do is to provide a strict proof for
p at time ¢ using the information in the repository at time 1. For persistence of con-
clusions across repositories, on the other hand, we keep fixed the derivation time, but
once a conclusion has been proved in a repository, it can be used in all repositories suc-
ceeding it. Thus, for example, if we prove +A10@t p, with t = 2, then for all ¢/ > 2,
we have +A10@¢" p. Notice that, in this case, it is possible, as it often happens with
abrogation (see Section for details), that the reason for proving p in repository ¢ no
longer subsists in repositories after ¢. The two types of persistence of conclusions can
be combined.

Defeasible Literal Provability

If P(n+1) = +dt; @1, p'r, then
1) +Ar, @1, p'» € P[1..n] or
2) —Aty; @1, ~p'r € P[1..n] and
2.1) @1, # 0, @1l € Ryy[p'], +0t, @1 r* € P[1..n] and
Va's € A(r), +0t,@t) a'« € P[1..n], and

2.2) Vs's € R[~p'~r] if +31/@1"s's € P[1..n], then either

1) 3" € A(s), —dtj @t b € P[1..n] or

22) Iwh € R[p'?] such that +dt)] @t wv € P[1..n] and

Ve € A(w),+01)@t] ¢ € P[1..n] and s <7 wi.

where
1. if pis persistent, t[’, <t., <tp,, otherwise t1/7 =top=1p;
2. 1, <, if s is persistent, otherwise t; =1, = t,;
3. ty <1, if s is persistent, otherwise 7, =t = t4;
4. if conclusions are persistent over derivations (i.e., +dt, @1, pP* implies 401, @1, p?

/! !/ " . H Y/ .
yvhere fg < ta), ty <ty .g t4; otherwise tg =15 =1a; .
5. if conclusions are persistent over repositories, ¢ < ¢/ < t,; otherwise 1. =t/ = t,..

o 777':77>) 777{77> o __IZ%_ s o LT N
\ / \ ’
| g K 7o J | P K g K
\ / \ / \ / \ /
re t/"@l‘/ ,,,,,, >y [///@t//
¢ ¢ ¢ P

(a) Rule Persistence. A persistent rule r en- (b) Causal Conclusion Persistence. A conclu-
acted at time ¢’ and in force at 1" carries over sion is causal if it persists from LS(¢') to
from the legal system LS(¢') to the legal sys- LS(¢”) even if the rules used to derive it are

tem LS(¢""), where it is still in force at £ no longer effective in LS(t").

Fig. 1. Rules and Conclusions Persistence

The conditions to defeasibly derive literals, inherit intuitions from standard DL and
the features described for the other types of derivation. The mechanism of persistence
of conclusion over derivation (or within a repository) is essentially the same as that
of strict conclusions. The main difference regards the way conclusions persist across
repositories. In this case it is not enough that a defeasible derivation existed in previous
repository. What is required is that the rule used to prove the conclusion still exists
in the current repository w.r.t. the time it was valid in the previous repository, plus
the conclusions that are to be proved can carry over from one repository to successive
ones. Thus, for example, if we are able to prove +910@1 p'» because we can prove
+010@1 (r:a" = p'r) and +910@1 a'+, then we must be able to prove +9d10@2 g’
and that r has not been revoked after 1.

The proof conditions given above produce classes of variants of TDL, according
to conditions on the temporal parameters. In particular, it is possible to define variants
capturing different types of persistence. Of particular relevance to norm modifications
we mention rule persistence and causal conclusion persistence. Generally once a norm
has been introduced in a legal system, or better in a specific version of it, the norm con-
tinues to be in the system unless it is explicitly removed. This means that the norm must
be included in all versions succeeding the one in which it has been first introduced (see
Figure [I(a)| for a graphical representation of this phenomenon). This effect is achieved
by specifying that the derivation of rules is persistent over repositories. On the other
hand, if we can prove a conclusion with respect to a specific version of the legal system
in some cases we have to propagate it to successive versions. In particular, this is the
case when we have causal conclusions. However, for some type of norm modifications,
namely annulment, we have to block the persistence of conclusion over repositories
when the reasons for deriving a conclusion are no longer in the system. See Figure|l(b)
for a graphical representation of causal conclusion persistence. This effect depends on

whether derivations of conclusions are persistent over repositories, and it is in function
of the particular type of modification we want to implement.
To illustrate these ideas consider the following theory:

(r:a' = b(zo”’em)lo@(l,tran) (s: 00 = c<30”’6”))15@(1,pers)

Since r is marked as transient, the rule can be used only in repository 1, while s can be
used in all repositories after repository IE] Given a'’@1 we can +910@1 b, since b
persists from 20 to 30. But the the second rule cannot be applicable, since its validity
time is 15. Thus, to apply it we have to assume that derivations are persistent within a
repository. If this is the case then we obtain +d15@1 b*°, which makes rule s appli-
cable, and from which we get +915@1 ¢*°. If we have that conclusions are persistent
across repositories, then we can conclude +915@2 30, Notice that we can conclude
+d15@2 ¢ even if the reasons for deriving it (i.e., rule r) do not persist across repos-
itories. The point to note for conclusion persistence is that, if we have a derivation in a
preceding repository and the derivation is not ‘killed’ in successive repositories, we can
carry over the conclusion from the repository where the conclusion has been proved to
successive repositories.

3.3 Abrogation and Annulment in TDL

Let us apply TDL to abrogation and annulment. Both modifications cancel norms from a
legal system. Let LS(r') be the repository containing a modifiable rule (r: A < B)(»¢’s)
such that ' <1, <", and LS(¢") be the subsequent repository where we apply the
modification of r, which is effective from a certain time f,. Then LS(¢") will contain (r :
0)(fPers) This makes the previous version of r inapplicable in LS(z"") from t,, and so,
there, we no longer obtain B using rE] condition (2.1) for Defeasible Literal Provability
states that (r : A < B) is applicable if it is provable with that content, but this does not
hold after the modification (see condition (2.2) for Defeasible Rule Provability).

Does this solution solve all problems? Suppose the modification is retroactive, such
that ¢, < 1,, < ¢”. This means that LS(¢”") contains an applicable meta-rule such as (mr :
A" < (r: 0)Pes))@1". Note that the effect of mr is persistent to guarantee that r is
null from 7, onwards. With some examples of abrogation, this measure may work, as
we block the derivation of B, based on r in LS(¢"), from ¢, onwards. Accordingly, if B
was derived (with its own appropriate time) in LS(¢'), it can carry over from LS(¢') to
LS(t") (see Figure . But this does not apply to annulments, for which B can carry
over only through the inner time-line of LS(¢') In [6] we suggested that the solution is
that annulment is obtained by blocking persistency of derivations across repositories. In
other words, conclusions of the annulled rule are only derived in the repository in which
the modification does not occur (see Figure 2(b)). However, no technical solution was
offered. Our solution is as follows. Let the positive defeasible extension of a theory T
be the set ET9(T) = {p'» @1|T - +0#' @t p'» }.

4 To make the example simpler we have used two different scales for the derivation time and the
repository time. Anyway in legal reasoning these will be on the same time scale.

3 For simplicity, let’s explicitly reason for the moment on the repository time and time of force
only. For example, B will also have a temporal parameter and, if persistent, will hold from then
onwards. Let’s assume that B is persistent and its time is slightly after #,.

I @t abrog(r)« @¢t" 1 @t annul(r)%= @¢"

/! "

t 1" ¢ t
(a) Abrogation. In LS(¢') rule r produces a (b) Annulment. In LS(¢') rule r is applied and
persistent effect B. B carries over by persis- produces a persistent effect B. Since r is an-

tence to LS(¢"") even if r is no longer in force. nulled in LS(¢"), B must be undone as well.

Fig. 2. Abrogation and Annulment

Abrogation Given a rule (r: A — b')'* @t, the abrogation of r at 7, in repository 'is
defined as follows:
abrtiad) _ | T if r¢ EY(T) W
' (F,R',<) otherwise

where R’ = RU {(abr, : = (r: L)@P™))@(t',pers)}, where ¢/ > t. The abrogation
simply terminates the applicability of the rule. More precisely this operation sets the
rule to the void rule. The rule is not removed from the system, but it has now a form
where no longer can produce effects. This is in contrast to what we do for annulment
where the rule to be annulled is set to the empty rule. This amounts to removing the rule
from the repository. From the time of the annulment the rule has no longer any value.

Annulment The definition of a modification function for annulment depends on the un-
derlying variants of TDL, in particular whether conclusions persist across repositories.
In a variant where conclusions do not persist over repositories, the operation can be
simply defined by the introduction of a meta-rule setting the rule to be annulled to 0,
with the time when the rule is annulled and the time when the meta-rule is inserted
in the the legal system. Thus to annul at 7, the rule r7 @t we introduce a meta-rule
(mr: = (r:0)@rer))@(t, pers).

In a variant where conclusions persist over repositories we need some additional
technical machinery: given a set of duration literals D, a set of temporalised literals T
and a total discrete ordered (.7, <), we define

DNz T={l'¢e T|31"Y) € D:f =t if x=tran, and ' <1 otherwise}

Given a duration literal b*¥) and a theory T', we defined the dependence set, i.e., the set
of literals (called critical literals) potentially depending on it, as follows:

Dep(b)) = {p"}U{cle)[3r € R: C(s) = ™) NA(r) N7 <) Dep(b"™)) # 0}

Then, if the annulment applies at ¢, in repository ¢’

/ i +d
Tanmtl(ta:l) {T if r §é E (T) @

(rap,an—b®?)r@r) (F,R' <) otherwise

R =RU{(r: @)(Ia,pem)@(t’7pers),

(r~ o Nb(fb7x))(’avf’”5> @(t',tran),
(r™ := ann(b) "9l @(¢' tran) }

U{ (™" : A(s) — Dep(C(r)) U {ann(a)|a € A(s) "7 <) Dep(C(r))} —

ann(C(S))(t“ ,per.y))(ta tran) @ (t/, tran),
(5™ :ann(C(s))* ~ ~C(r))(ta'pm)@(t,’tmn”
if A(s) N7 <) Dep(C(r)) # 0}
U{ (5" :A(s) = ~vann(C(r)) =) i« @ (¢ ran)

|
if C(s) € Dep(C(r)) NA(r) N y<Dep((r)) =0}
=== U{(10,777, 1)|r € RYU{(H 10, 7", 5™™)|rys € R}

The idea behind this construction is to introduce new (auxiliary) literals to signal whether
literals are eventually revoked (declared null) as a consequence of an annulment. Then,

for every rule where literals depending on the conclusion of the rule to be annulled

occur in the antecedent, we create a copy of the rule where all critical literals are re-

placed by auxiliary literals. Moreover, for each critical literal its auxiliary literal is the

body of a defeater for the complement of the critical literal. Finally, for each rule for a

critical literal different from the conclusion of the rule to be annulled where no critical

literal appears in the antecedent, we create a defeasible rule with the same body and as

conclusion the complement of the critical literal.

Note that the above construction guarantees that for every pair /, ann(l) at most one
of them is defeasibly provable, and that, if the strict part of the theory is consistent,
then if +0t@¢’ ann(l), then —dt@¢’ I. The intuition here is that the introduction or
the meta-rule setting the rule to be annulled to L determines that we no longer carry
over the conclusion of the rule from one repository to the next one. However, this does
not prevent conclusions depending on it to pass over (after all at the time they were
derived we had then valid reasons to derive them, and unless some preventing reasons
occurred after, we have no reasons to stop them to pass from one repository to next

% To simplify the notation in the rest of the definition the rules are the conclusion of a meta-rule
(each with a unique name), thus the expression (r: ay,...,a, < b")" @t must be understood
as the abbreviation of the meta-rule (with empty body) (mr: = (r: ay,...,a, — b)) @t.

one). Hence, we need specific reasons to stop them. Thus the idea to refute them is to
add the explanation that they were derived from ‘causes’ declared null in a successive
step, and thus they must be null as well.

Example 1. Consider a legal system at time 1 encoded in the following theory T':

F ={a'’@(1,pers),c'°@(1,pers), f10@(1,pers)},
R = {(”1 :al() :>b(l().pers))(l().pers)@(Lpers)7 ("2 Zb107610 :>d(l().,pers))(l().pers)@(LPers)7
(r3 LY :>e(lO,pers))(lO,pers)@(l’pers) (}’4 :f10 = e(lOvtran))(IO,per:)@(LPers)}

<=0.

Clearly we can prove +d10@1 X for X € {a,b,c,d,e, f}. Now suppose that the
legal system is changed by revoking rule r|, and that the change is valid from 10.
The resulting legal system is the legal system at time 2. If the change is an abro-
gation, then, the resulting legal system at time 2 is obtained by the addition of the

rule (r§b": 1)(102¢r) @ (2, pers). The legal system at 2 is obtained by adding the rules

(meta-rules) implementing the annulment function T,‘;""(lo’z)

introducing the rules

. Namely we revise T by

(r1 : 0)10P¢) @ (2, pers), (7~ p10pers)y(10.per) @ (2 gran),
(e = arm(b)(10'1""”))(10'[’8"‘?)@(2,tran),
(rgep : clo,ann(b)lo = ann(d)(lo’p“’”))(lo’p“’”)@(2,tran)7
(g™ ann(d)lo ~ —|d<10”’m>)(10’”“")@(27tr(m)7
(rgep : ann(d)lo = ann(e)(lo’pe”))(lo’pem) @(2,tran),
(g™ ann(e)lo ~ ﬂe(lo’l’er‘v))(lo’tm”) @(2,tran),

(,ﬁan . fIO = ﬁann(e)(lo,tran))(IO,Zran)@(Ltran).

From the point of view of the legal system at 1 we have a derivation of 5'° at 10
(+010@1 b'0). Thus, allowing conclusions to persist over repositories, would mean
that we can carry over the derivation of it to the repository at 2 (Clause 2.1 of Defeasible
Literal Provability, plus condition on conclusion persistence). But setting rule r; to 0
in 2 produces the effect that now the rule no longer exists and thus it cannot longer be
used. Hence we block the derivation »'°, more precisely, —d10@2 »'°. When we look
at d, without rules 5”7 and r§™, d 10(+910@1 D'%) was obtained from the viewpoint
of 1. Rule r; has not been revoked, and at the time the conclusion was derived, the rule
was applicable (i.e., the antecedent was provable). Thus, the conclusion passes from 1
to 2, that is +010@2 d'° would be derivable. However, this conclusion was the result
of an act declared null by the (retroactive) annulment. Finally, for e we have that there
are two rules for it. In the first rule (r3) where e depends on some annulled literal, but
this is not the case for the second rule (r4). In the annulment r3 generates r;ep ,and ry
generates 4. These two rules are in conflict which each other, but ;7 <%, 4", thus
rq™ prevails, and we are able to prove ann(e), —d10@2 ann(e), so r§™" is not applicable
at 10 w.r.t. repository 2. Hence we can use r4 to continue to derive +d10@2 e.

4 Summary

In this paper we extended the logic presented in [S]] to capture different temporal as-
pects of abrogations and annulments. This extension increases the expressive power
of the logic and it allows us to represent meta-norms describing norm-modifications
by referring to a variety of possible time-lines through which conclusions, rules and
derivations can persist over time.

We outlined the inferential mechanism needed to deal with the derivation of rules
and literals. In particular, for each proof condition we identified several temporal con-
straints that permit to allow for, or block, persistency with respect to specific time-lines.
This virtually leads to define different variants of TDL according to whether a condition
is adopted or not. Then we described some issues related to norm modifications and we
illustrated the techniques with respect to annulment and abrogation. We showed that
the temporal formalism introduced here is able to deal with complex scenarios such as
retroactivity. In particular, we solved the problem of how legal effects of ex-func mod-
ifications, such as annulment, can be blocked after the modification applied. The idea
we suggested is to block persistency of derivations across repositories. In other words,
the conclusions of the annulled rule will only be derived in the repository in which the
modification does not occur.

Acknowledgements National ICT Australia is funded by the Australian Government’s
Department of Communications, Information Technology and the Arts and the Aus-
tralian Research Council through Backing Australia’s Ability and the ICT Centre of
Excellence program. Antonino Rotolo was supported by the EU project ESTRELLA
(IST-2004-027655).

References

1. G. Antoniou, D. Billington, G. Governatori, and M.J. Maher. Representation results for
defeasible logic. ACM Transactions on Computational Logic, 2(2):255-287, 2001.

2. G. Antoniou, D. Billington, G. Governatori, and M.J. Maher. Embedding defeasible logic
into logic programming. Theory and Practice of Logic Programming, 6(6):703-735, 2006.

3. N. Bassiliades, G. Antoniou, and I. Vlahavas. DR-DEVICE: A defeasible logic system for
the Semantic Web. In Proc. PPSWR03, 2004.

4. G. Governatori, M.J. Maher, D. Billington, and G. Antoniou. Argumentation semantics for
defeasible logics. Journal of Logic and Computation, 14(5):675-702, 2004.

5. G. Governatori, M. Palmirani, R. Riveret, A. Rotolo, and G. Sartor. Norm modifications in
defeasible logic. In Proc. JURIX05. 10S Press, 2005.

6. G. Governatori, M. Palmirani, R. Riveret, A. Rotolo, and G. Sartor. |Variants of temporal
defeasible logic for modelling norm modifications, In Proc. ICAILO7. ACM Press, 2007.

7. G. Governatori and A. Rotolo. Changing legal systems: Abrogation and annulment. Part I:
Revision of defeasible theories. To appear in DEON 2008.

8. G. Governatori, A. Rotolo, and G. Sartor. [Temporalised normative positions in defeasible
logic. In Proc. ICAILOS, pages 25-34. ACM Press, 2005.

9. M.J. Maher. Propositional defeasible logic has linear complexity. Theory and Practice of
Logic Programming, (6):691-711, 2001.

10. D. Nute. Defeasible logic. In Handbook of Logic in Artificial Intelligence and Logic Pro-
gramming. Oxford University Press, 1993.
11. G. Sartor. Legal Reasoning. Springer, Dordrecht, 2005.

http://espace.uq.edu.au/eserv/UQ:9620/tocl.pdf
http://espace.uq.edu.au/eserv/UQ:9620/tocl.pdf
http://espace.uq.edu.au/eserv/UQ:8942/embedding.pdf
http://espace.uq.edu.au/eserv/UQ:8942/embedding.pdf
http://espace.uq.edu.au/eserv/UQ:9614/preamble.pdf
http://espace.uq.edu.au/eserv/UQ:9614/preamble.pdf
http://espace.uq.edu.au/eserv/UQ:9046/jurdef-n.pdf
http://espace.uq.edu.au/eserv/UQ:9046/jurdef-n.pdf
http://espace.uq.edu.au/eserv/UQ:13611/icail.pdf
http://espace.uq.edu.au/eserv/UQ:13611/icail.pdf
http://espace.uq.edu.au/eserv/UQ:134084/part1.pdf
http://espace.uq.edu.au/eserv/UQ:134084/part1.pdf
http://espace.uq.edu.au/eserv/UQ:9579/ic05.pdf
http://espace.uq.edu.au/eserv/UQ:9579/ic05.pdf

