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Abstract 

This paper presents an internal energy exchange scheme for the Relaxation Time simulation method 

(RTSM) which solves the BGK equation for the perfect gas flow at near-continuum region. The Larsen-

Borgnakke model with discrete rotational energies is introduced to model the energy exchange 

between the translational and internal modes. This development improved the agreements between 

RTSM and DSMC with little additional computational cost. The result shows a possibility of a hybrid 

RTSM/DSMC code for the continuum/rarefied gas flow. 
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1. Introduction 

Rarefied gas flow is an important problem in aeronautics and astronautics. In resent years, the 

rapid development of MEMS technique has brought us an exigent requirement for the investigation of 

gas flow in micro systems[1,2]. In such flows, the Knudsen number is so high that the continuum 

assumption breaks down, and that the molecular based methods should be used. Bird’s direct 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/15039737?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


simulation Monte Carlo (DSMC) method[3] is the standard computational method for the high-

Knudsen-number flows, where the governing equation is the Boltzmann equation. In DSMC the flow 

is represented by a large number of simulated particles, and the flow evolution is tracked by 

calculating the motion of these particles and their collisions amongst themselves and with any 

boundaries.  

The DSMC method is suitable for gas flows with a high Knudsen number. However, in micro 

flows the gas can be dense despite a high Knudsen number due to the small characteristic length[4]. 

The frequent collisions between gas molecules bring a high cost at the computation of DSMC. Pullin[5] 

proposed a particle simulation method called the Equilibrium Particle Simulation Method (EPSM) as 

the infinite collision rate of DSMC for a given cell network and number of simulator particles. In 

EPSM, as in DSMC, the flow is simulated by tracking the motion and interactions of the 

representative particles. However, no collisions between particles are calculated and the effect of 

collisions is simulated by redistributing the total momentum and energy of all the particles in each cell 

at each time step amongst all the particles in the cell. Chen et al.[6] used the EPSM to combine with 

DSMC to handle flows in the transition regime between rarefied gas flow and fully continuum flows. 

Macrossan[7-9] developed this method based on the BGK equation and proposed a new method called 

the Relaxation Time Simulation Method (RTSM). In RTSM, not all the particles in each cell are 

redistributed. The particle number for velocity distribution determined from the local relaxation time 

can be derived from the cell density and temperature and any desired viscosity law.  

 

The present paper develops Macrossan’s RTSM by introducing the Larsen-Borgnakke model 

with discrete rotational energies to model the energy exchange between the translational and internal 

modes. The new model is verified by a micro channel flow simulation, comparing with the DSMC 

method. The computational efficiencies of both the new method and the DSMC method are compared, 

especially in the near-continuum flow region. 



2. Numerical Method 

2.1  Relaxation Time simulation method 

The BGK approximation simplifies the collision term on the right hand side of the Boltzmann 

equation by using a relaxation time that poses the greatest mathematical difficulties and needs modify. 

The best known model equation is called the BGK equation after Bhatnager, Gross and Krook[10,11]. It 

may be written 
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where the τ  is the local relaxation time, n  is the number density of molecules, 0f  is the local 

Maxwellian distribution. 

Based on this relaxation time BGK approximation the collision term can be approximated as 
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The exact solution of Eq. (2) is 

0 0( ) ( (0) )exp( / )f t f f t fτ= − − − ,      (3) 

where (0) ( 0)f f t= =  is the particle velocity distribution established by the convection phase of the 

simulation before the effect of collision is simulated. That is to say, the distribution function relaxes 

towards equilibrium with a time interval of τ  for all velocities. Therefore, after a time interval of 

collision t t= ∆ , the distribution function can be expressed as 

0( ) exp( / ) (0) (1 exp( / ))f t t f t fτ τ∆ = −∆ + − −∆ .     (4) 

The Eq.(4) indicates that after collisions of a time interval t∆ , the final distribution of molecular 

velocities is a mixture of the initial distribution in the cell and a statistical approximation of the final 

equilibrium distribution. 



The relaxation time τ  is a little different from the collision time. The Chapman-Enskog viscosity 

for the relaxation time approximation is RTµ ρ τ= [12]. Therefore, the relaxation time is determined 

by 

nkT
µτ = ,          (5) 

where k  is the Boltzmann constant, m  is the molecular mass, and n  is the number density.  

2.2 Larsen-Borgnakke model 

The Larsen-Borgnakke model is a phenomenological model to deal with internal and translational 

energies exchange for inelastic inter-particles collisions[3]. In this model the distribution function for 

the internal energy of a molecule may be written as 
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where iε  is the internal energy of a molecule, and ζ  is the internal degrees of freedom. In fact, not all 

collisions are regarded inelastic. Therefore when the Larsen-Borgnakke model is introduced into the 

RTSM method, the crucial part is the determination of the probability of the inelastic parts. We have 

tried two methods to determine the rotation relaxation fraction. Scheme A is to select a certain part 

from the molecules with translational energy redistribution. The fraction of molecules for the 

rotational energy relaxation RP  is then 
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where VP  is the probability for the translational energy relaxation, RZ  is the rotational 

relaxation number which is a function of local temperature. This scheme is consistent with the 

standard DSMC of Bird[3]. 



The second scheme B is to use a rotational relaxation probability independent with the 

translational one: 

41 exp
( ) ( )R

R

nkT tP
Z T Tπ µ

⎛ ⎞∆
= − − ⋅⎜ ⎟

⎝ ⎠
       (8) 

Eq. (8) shows it is not necessary that any particle which undergoes rotational relaxation also 

undergo translational relaxation at the same time. 

2.3  Redistribution procedures 

In each time step of the RTSM simulation, the number density n , temperature T  in each cell are 

sampled. After the local viscosity µ  and the rotational relaxation number RZ , which are function of 

local temperature in cells, are calculated, the probabilities for translational relaxation and rotational 

relaxation can be obtained from Eqs. (5-8). For the translational energy relaxation, if a random number 

f VR P> , the particles will be selected to undergo translational relaxation. The relaxed particle 

number tN  is about V pP N⋅  with pN  is the total particles number in one cell. Similar process is 

performed for the rotational relaxation, and the rotational relaxation number is r R pN P N≈ ⋅ . Both the 

translational energy and rotational energy, which need redistribution, form a thermal energy pool with 

a total energy totE . Thus the characteristic temperature of the re-distributed energy can be calculated 

as 
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All the rescaling procedures for either the translational redistribution or the rotational 

redistribution will be based on this characteristic temperature. It is clear that this temperature equals to 

the sampled temperature in one cell for Pullin’s EDSM[5]. 



3. Results and Discussion 

The present algorithm was performed in FORTRAN based on the standard DSMC code[3] in 

UNIX system. The INDEX technique of DSMC is introduced to avoid tracking each particle so that 

little additional memory is required. To verify the new models, a 2D gas flow in a micro channel is 

simulated and the results are compared with the standard DSMC method. The physical model is shown 

in Fig. 1.  

 

Fig. 1 Channel flow with freesteam incoming gas 

 

The channel is 5 µm long and 1 µm wide. The incoming gas Knudsen number is 0.1. The 

freesteam velocity u∞  is 200 m/s and the temperature T∞  is 300 K. The channel walls are isothermal 

and the temperature is 300 K. Full diffuse model is used to calculate the collisions between the 

molecules and the walls. 50×20 cells and 4×4 subcells in each cell are used. In each time step, the 

molecules can move half of cell size with a most possible velocity ( 8 /kT mπ + u ). Over 105 

simulated particles are calculated for each method and the sample size is over 2×106. The results are 

shown in Fig. 2.  

Fig. 2 shows the results of the modified RTSMs and the standard DSMC. Different schemes for 

RTSM to determine the rotation relaxation probability are plotted and compared. The generally-used 

EPSM is also showed in the same figures. The results show that the rotational relaxation in scheme A 

improves the RTSM results with better agreement with the standard DSMC results, when comparing 

with the scheme B and non-rotational relaxation RTSM. The reason may lie in the scheme A is closer 



to the method in DSMC than the scheme B. The EPSM has large deviations and fluctuations from the 

standard DSMC result, which even can not be improved soundly by increasing sample sizes even up to 

108. 

 

(a) Velocity comparisons (b) Pressure comparisons 

Fig. 2 Velocity and pressure along the midline of the channel 
 

Fig. 3 compares the temperature contours at same contour-levels between the DSMC and the 

RTSM in scheme A. Difference between the contours indicated the thermal conductivity in the RTSM 

was over-predicted, which was ascribed to the Prandtl number for the BGK equation was always unity 

instead of a real one.  Recently, a few new models were reported to modified the BGK equation in  

Fig. 3 (a)  Temperature contours. DSMC 



Fig. 3 (b) Temperature contours. RTSM, Scheme A 
 

equilibrium distribution[13,14], which were expected to get a Prandtl number closer to the real one and 

to improve the heat transfer modeling in RTSM. These new models will be introduced into our future 

work for the next step. 

From Eq. (4), the computational cost of RTSM is mainly relative to the relaxation time τ  

and increases little with the gas density n , while that of DSMC is basically determined by the 

gas density. When the gas density is larger than a certain value, the RTSM method will be 

more efficient than the DSMC method. For the channel flow shown in Fig. 1, the efficiencies 

of both methods are on a same level for a Knudsen number of 0.05. When the Knudsen 

number is 0.01, the efficiency of DSMC is about 30% of that of RTSM. These comparisons 

show that for the near continuum flow the RTSM method is more efficient than the DSMC 

method and could replace DSMC in that region. 

4. Conclusions 

The Relaxation Time simulation method (RTSM) was modified and improved by introducing the 

internal energy exchange scheme. The Larsen-Borgnakke model with discrete rotational energies is 

introduced to model the energy exchange between the translational and internal modes. The developed 

RTSM agrees better with the standard DSMC with little additional computational cost. Although the 

Prandtl number in the RTSM is still overestimated, the present results show a possibility of a hybrid 

RTSM/DSMC code for the continuum/rarefied gas flow. 
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