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OPTIMIZATION OF NEURAL NETWORK PATTERN 
RECOGNITION SYSTEMS FOR GUIDED WAVES DAMAGE 
IDENTIFICATION IN BEAMS 

C. K. Liew and M. Veidt 

Division of Mechanical Engineering, University of Queensland, Brisbane, Qld 4072, 
Australia 

ABSTRACT. Neural network pattern recognition is an advanced regression technique that can be 
applied to identify guided wave response signals for quantifying damages in structures. This paper 
describes a procedure to optimize the design of a multi-layer perceptron backpropagation neural network 
with signals preprocessed by the wavelet transform. The performance can be further improved using a 
weight-range selection technique in a series network since there is increased sensitivity of the neural 
network to experimental damage patterns if the training range is reduced. Damage identification in beams 
with longitudinal guided waves is used in this study. 
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INTRODUCTION 

Ultrasonic guided waves have gained much interest in the evaluation of damages in 
structural health monitoring. Although guided waves are physically sensitive to 
discontinuities in a structure, the transient wave response measured is susceptible to noise, 
dispersive changes, pulse overlapping, and unwanted wave modes [1]. Consequently, 
observing the raw signal alone to quantitatively identify damages can prove difficult 
especially when there are many possible damage cases to consider. 

The pattern recognition concept in neural networks fits well to cope with this problem 
by learning patterns of randomly selected damage cases and then generalizing these cases 
to an approximate function. A neural network that has generalized the given patterns can 
identify a new damage case that has not been seen before provided that it lies within the 
learning range. Neural network pattern recognition is thus generally an advanced regression 
technique and has been recently implemented in processing guided waves, e.g. [2]. 

Neural networks offer a wide range of customization options [3] that can lead to the 
difficulty of selecting a design with optimal damage identification performance. A 
systematic design procedure for a multi-layer perceptron backpropagation neural network 
is presented here. The computation time in training the neural network is also significantly 
reduced by decomposing the signals with the wavelet transform in a preprocessing stage. 

The cost of implementing neural networks is low when simulated patterns are used in 
training the network. However, large uncertainties in damage prediction generally exist in 
this procedure when an experimental damage pattern is presented to the trained network. 
The performance of the optimized neural network can thus be further improved using a 
weight-range selection technique in a series network. 
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FIGURE 1. Point of measurement and semi-infinite region in the beam with a full width step damage. Pulse 
Excitation inset shows the 8-cycle 80kHz Hanning windowed tone burst pulse while the Damage Model inset 
shows the inhomogeneity model for generating simulated patterns. 

EXPERIMENTAL AND SIMULATED PATTERNS 

To study the neural network pattern recognition system, a 2-metre long 12mm x 6mm 
aluminum beam is considered. A 40mm x 1mm full width step damage is located at the 
center of the beam, as shown in Figure 1. An 8-cycle 80kHz Hanning windowed tone burst 
pulse (see the Pulse Excitation inset in Figure 1) is excited by a longitudinal Pz27 
piezoceramic transducer attached by epoxy adhesive at one end of the beam. A brass 
backing mass is bonded to the transducer to increase the signal-to-noise ratio [1]. Out-of-
plane displacements are measured at the center of the 6mm thickness of the beam with a 
Polytec OFV 303/OFV 3001 laser vibrometer system. All measurements are collected at 
500mm from the transducer end. Considering this measurement location and a 500mm 
semi-infinite region of investigation at the center of the beam helps to prevent severe pulse 
overlapping in the measurement, which is not included in the current study concept. 

The damage region is modeled as an inhomogeneity [4] with average material properties 
(see the Damage Model inset in Figure 1). The location and length of the inhomogeneity 
are exactly that of the damage. The acoustic wave impedance, 7, is defined as the product 
of the material density, wave velocity and the cross-sectional area. Since the cross-sectional 
area is a function of the thickness, 7 at the damage region is different from the original 
beam. Therefore, reflection and transmission coefficients at the boundaries, CR and CT 
respectively, can then be found from 7, as in Equation (1). Together with the group 
velocity of the pulse, the signal patterns can then be easily simulated. 

C„ 7 - 7 
7, +7, 

27. 

7, +7, 
(1) 

PREPROCESSING: DISCRETE WAVELET TRANSFORM 

Sampling at 1MHz, the average wave response captured on an oscilloscope can be seen 
in Figure 2(a). The equivalent simulated signal based on the inhomogeneity model is also 
shown. Both signals span from the start of the incident pulse at lOOus to just before the 
onset of the free end reflection of the first transmitted pulse at 940us. This gives in total 
841 sampling points for each signal and since the same number of hidden neurons is 
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FIGURE 2. (a) Experimental and simulated signals in the 100-940(xs range, (b) The discrete wavelet 
transform of the absolute experimental and simulated signals at the 3r level of decomposition for the 8 order 
Daubechies wavelet. 

required in a multi-layer perceptron neural network, learning patterns of this length can 
consume a large amount of computation time. Although the arrival times match reasonably 
accurately between the signals, there are substantial amplitude and phase differences that 
can lead to large errors in pattern recognition. The cause of these differences is rather 
complicated and difficult to ascertain but is expected to be the result of numerous effects 
including but not limited to, noise, pulse rotation, mode coupling, and dispersion [1]. 

The discrete wavelet transform can decompose the signal by reducing the number of 
sampling points through a wavelet derived filter bank in dyadic scales [5]. Performing the 
discrete wavelet transform on the absolute signals produces wavelet transforms as 
illustrated in Figure 2(b). The wavelet coefficients shown are the result of 3 levels of 
decomposition with the 8 order Daubechies wavelet. The discrete wavelet transform has 
reduced the number of points to 108, i.e. approximately 12% of the original number, while 
preserving all essential features that describe the damage, viz. arrival times, pulse 
magnitudes and lengths. 

NEURAL NETWORK DESIGN 

The multi-layer perceptron neural network containing a single hidden layer of neurons, 
M, with a hyperbolic tangent sigmoid activation function, F, can generalize patterns 
arbitrarily well for wavelet coefficients obtained from the guided wave response signals. 
This architecture gives a function: 
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Ov=YJWvMYJWmJu+Bm\ + Bv (2) 
711=1 V U = l / 

where / is the input, O is the output, U is the number of inputs in a pattern (U = 108 from 
Figure 2(b)), subscript v is the output number, W is the weight, and B is the bias. 

This neural network applies supervised learning where input-target pairs are required for 
training and the objective is to reduce the error between computed outputs and supplied 
targets for a given corresponding input. Weights and biases are firstly initialized randomly, 
then adjusted iteratively during training so that at the end, the inputs can map correctly to 
the targets. Backpropagation with the mean square error (MSE) function in Equation (3) 
and the resilient backpropagation (RP) algorithm is used to adjust these weights and biases. 
The MSE function evaluates the error between outputs and targets while the RP algorithm 
adjusts the weights and biases based on the sign change of the derivative of the MSE 
function with respect to the corresponding weights and biases [3]. 

r ' v=l p=\ 

where O is the output, T is the target, V is the number of outputs and P is the number of 
training patterns. Three parameters (V = 3) are selected to identify the damage, namely the 
damage center position (DCP), the damage depth (DD), and the damage length (DL). DCP 
is determined by the pulse arrival time while DD and DL are determined by the pulse 
magnitude and length respectively. Since the three damage parameters are relatively 
different in orders of magnitude, they are scaled in the range [-1,1]. Half the training 
patterns are added with small amplitudes of random Gaussian noise to give some 
sensitivity to the function approximated to small amounts of noise [6], observed in the 
transient response signals (see Figure 2(a)). The rest of the clean patterns are necessary to 
capture the correct mapping of the inputs to the targets without the influence of noise. 

M in Equation (2) and P in Equation (3) are unknowns that can be optimized for 
training. The total weights and biases in the network, Nw, and the total functions evaluated 
during training, Ny, can be found from Equation (4). According to [7], good generalization 
can be achieved in a single hidden layer network when there are at least twice as many 
functions compared to the total weights and biases. Evaluating this criterion together with 
Equation (4) allows M to be estimated, as in Equation (5). Although good generalization 
can be achieved, this estimate does not constitute the optimum M. However, it can provide 
an idea of the range of number of neurons that can be tested to find the optimumM. 

Nw=(U + \)M + (M+\)V , Nf=PV (4) 

M~ nP~2) (5) 
2{U+v + \) 

A neural network with no hidden layer, thus no hidden neurons, typically requires 10 
times as many training patterns as U for noisy inputs and only twice as many training 
patterns as U for clean inputs for generalization [8]. Since the averaged guided wave 
response contains only noise of around 1% the amplitude or less (see Figure 2(a)), even 
with the additional layer of neurons in the network considered, Equation (6) is assumed as 
a sufficient guideline to predict the minimum number of patterns required for good 
generalization. That number of training patterns, P, can then be generated from simulation 
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based on the damage model. Also with P known, a neuron range can be selected for testing 
to find the optimumM based on the result from Equation (5). The neural network is trained 
to the number of iterations specified and if the MSB function does not converge, the 
network is reinitialized and retrained again but at a higher number of iterations. 
Convergence of the MSB function is necessary to ensure that the error in training has 
reached a minimum. 

P = \0U (6) 

The random initial weights and biases provide a broad variation in generalization. Even 
when minimum error is achieved after training for a particular set of initial weights and 
biases, the trained network might not necessarily give the best generalization for new input 
patterns. Therefore, it is essential to conduct a reasonable number of trials for training 
different random initial weights and biases to obtain a broader spectrum of generalization. 
Identifying new input patterns can then be based on outputs averaged over all the trained 
neural networks from the trials. 100 trials are used in this study. 

The quality of generalization of the trained neural network can be measured by means 
of a test set. The test set contains Q randomly simulated patterns and corresponding 
expected damage parameters, E, that lie within the training range. Q is arbitrary as long as 
it is representative of the training range. Here Q is taken to be 540 patterns, which is 
equivalent to half the number of training patterns. The trained neural network performance 
is then measured by evaluating the generalization error, G, that is defined as: 

1 K 

-Y(o -E)2 (7) 

where K is the number of trials and v is the output number and since three damage 
parameters are evaluated here, v = 1,2,3. G is calculated based on the MSE like the error 
function in training because it statistically measures the bias and variance, which are ways 
of gauging generalization [6]. When more than one damage parameter (i.e. V > 1) is 
considered like in the present study, the weighted average generalization error, WAGE, is 
calculated to measure the overall generalization. In WAGE, given in Equation (8), the 
normalized generalization errors are weighted by assigning each damage parameter with a 
weight factor, WF, depending on its criticality in a particular application. The damage 
parameters are weighted equally in the present study. The number of neurons with the 
lowest WAGE value is selected as the optimumM required in the network. 

WAGE = WF, G./CG.U + WF2 G2/(G2)mn + ... + WFV Gv /(Gr)^ 

V 

The next step is to optimize P. A recommendation given in [8] suggests that for noisy 
patterns, 3 0 ^ is required for good generalization and since the guided wave response 
signals contain low noise levels, this criterion is taken to be the upper limit of P of the test 
range while the lower limit is simply given by Equation (6). The same procedure is 
repeated to find the optimum P. 

The results of finding the optimumM and P are plotted in Figure 3. Based on WAGE, 
Figure 3(a) clearly shows that for the present network, the optimumM is 20. In Figure 3(b), 
the WAGE values converge after 5NW with no significant improvement in the 
generalization. Therefore, to minimize the computation time, the optimum P is taken to be 
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FIGURE 3. The plots for measuring generalization from neural network tests by considering WAGE for 
finding (a) the optimum number of neurons, M, and (b) the optimum number of training patterns, P. 
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FIGURE 4. Design flowchart to determine the optimum M and P for a single hidden layer neural network. 

5NW. The procedure to design for the optimum M and P in a multi-layer perceptron 
backpropagation neural network with a single hidden layer of neurons is summarized in the 
flowchart in Figure 4. 

TEST RESULTS: EXPERIMENT VS. SIMULATION 

The designed neural network is trained and then used to test the experimental pattern for 
the real damage described in Figure 1. Previously during the design stage, the training 
iterations are fixed so that the different networks with varying M and P can be compared 
equally. But now to ensure convergence of the MSE function without overfitting [8] the 
mapping of the simulated patterns, early stopping using a validation set is applied [3,6]. 
Here the validation set contains randomly generated patterns that fall in the training range 
with a size that is half the number of training patterns. The test, as in the design stage, is 
conducted in 100 trials for broader generalization. The errors in identifying the DCP in the 
100 trials are shown in Figure 5 for both the tests with experimental and simulated patterns 
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FIGURE 5. Pattern recognition DCP prediction errors in 100 trials for experimental and simulated test 
patterns of the same damage (DCP = 1000mm, DD = 1.0mm, DL = 40mm). 

for the same damage parameters. Similar trends for tests between experimental and 
simulated patterns are observed for DD and DL. 

The consistent and low errors (average bias = 0.3mm, SD = 0.1mm) for tests with the 
simulated pattern prove that the neural network design procedure has produced optimized 
generalization with respect to the training patterns. However, it is also clear from the 
results that there is significant increase in the uncertainty of identifying the DCP for the 
experimental pattern with SD of 209.3mm. The average bias of 58.4mm is still acceptable, 
yielding less than 12% error when compared with the 500mm range of investigation. The 
large SD can be attributed to features in the experimental pattern not being captured in the 
corresponding simulated pattern and the influence of the random selection of initial weights 
and biases, which may result in large errors as illustrated for example in trials 6, 34, 37, 41, 
44, 77-79, and 89. Thus, the necessity to take a reasonable number of trials to obtain an 
average bias that gives an acceptable prediction of the damage parameters is obvious. 

SERIES NETWORK 

The +1 standard deviation, SD, for the experimental patterns in Figure 5 is a statistical 
parameter that can be used to improve the quality and to lower the uncertainly of 
prediction. A new set but same number of training patterns is simulated within +1 SD and a 
second cycle of neural network training and testing is performed. In this cycle, only test 
results that are within the +1 SD range are accepted. This filters off poor initial weights and 
biases during training that can give poor generalization with respect to experimental 
patterns. In the new test results, a new +1 SD range is defined for the subsequent cycle and 
the process repeats for a specified number of cycles. This procedure is called the weight-
range selection technique in a series network. 

The results in a series network with three cycles are shown in Figure 6 for the three 
damage parameters of the present damage studied. Good improvement in the damage 
identification is observed in DCP with the number of cycles while DD and DL achieve the 
best predictions in the 2n and 1st cycle respectively. Since the number of training patterns 
is kept constant throughout the series network, a smaller range with the same amount of 
training information is likely to improve generalization due to a more accurate function 
approximated by the network. However, as seen in the average biases in DD and DL, this is 
not always the case and it depends on the new mapping between the inputs and targets 
during training in the smaller range, and how sensitive that mapping is related to the 
experimental patterns. In contrast, the SD decrements with cycles for all three damage 
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FIGURE 6. Experimental pattern test results for the weight-range selection technique in a series network. 

parameters, mainly because of the removal of predictions that are out of the training range 
after the 1st cycle. Furthermore, as the training range reduces, the neural network can 
predict with lower uncertainties since there are less damage cases to consider. 

CONCLUSION 

The application of neural network pattern recognition to identify damage in beams has 
shown that: 
• discrete wavelet transform is a useful preprocessing tool to prepare neural network 

input data to reduce computational costs. 
• a systematic procedure of testing and evaluating the quality of generalization via G and 

WAGE enables the design of a network with optimum network parameters. 
• the determination of very accurate experimental damage parameters is possible 

provided a reasonable number of trials is used to obtain reliable average biases. 
• the weight-range selection technique in a series network can improve the quality of 

damage predictions. 
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