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Visualization of Vortex Bound States in Polarized Fermi Gases at Unitarity
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We theoretically analyze a single vortex in a spin polarized 3D trapped atomic Fermi gas near a broad
Feshbach resonance. Above a critical polarization the Andreev-like bound states inside the core become
occupied by the majority spin component. As a result, the local density difference at the core center
suddenly rises at low temperatures. This provides a way to visualize the lowest bound state using phase-
contrast imaging. As the polarization increases, the core expands gradually and the energy of the lowest

bound state decreases.
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The achievement of superfluidity in trapped ultracold
atomic °Li gases is a landmark advance in the history of
physics [1]. This is attained by utilizing a broad Feshbach
resonance, which is used to tune the interatomic interac-
tions. By changing the inverse scattering length a, contin-
uously from negative to positive values, a two-component
Fermi gas with equal spin populations has a ground state
which crosses smoothly from Bardeen-Cooper-Schrieffer
(BCS) superfluidity to a Bose-Einstein condensate (BEC)
of tightly bound pairs. Of particular interest is the unitarity
regime near resonance, where the scattering length di-
verges (1/a; = 0). Since the interparticle spacing is the
only relevant length scale, the Fermi gas exhibits a univer-
sal behavior [2].

Quantized vortices are a clear-cut confirmation of super-
fluidity, and were demonstrated experimentally by
Zwierlein et al. [1]. The equilibrium properties of vortices
in a symmetric Fermi superfluid at crossover have been the
subject of intense theoretical studies [3—9]. The Andreev-
like bound states, which are the fermionic quasiparticle
excitations localized in the core, have been widely dis-
cussed [3,6,8,9]. These bound states are found to play a key
role in the structure of vortices.

Most recently, Fermi gases with unequal spin popula-
tions have been the subject of considerable experimental
[10,11] and theoretical interest [12—18]. The presence of
spin polarization leads to exotic forms of pairing, such as
breached pairing [12] or Sarma superfluidity [13], phase
separation [14], and spatially modulated Fulde-Ferrell-
Larkin-Ovchinnikov (FFLO) states [15]. An agreement
on the true ground state of polarized fermionic superflu-
idity is yet to be reached. However, three recent measure-
ments on the density profiles of polarized °Li gases
[10,11], near a Feshbach resonance, indicate a paired
superfluid core surrounded by the excess unpaired fermi-
ons consistent with a picture of phase separation.

Combining spin polarization with a vortex may help to
resolve the issue of the nature of polarized fermion pairing.
It is natural to ask how unequal spin populations affect the
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vortex structure, and how vortex bound states evolve as the
polarization increases. This issue arises in the context of
pairing and superfluidity in many fields of physics [19]. It
is highly relevant to the condensed matter community,
where polarized superfluidity is created by applying a
magnetic field. There is now strong experimental evidence
for the existence of FFLO states in the heavy fermion
superconductor CeColns under high fields [20]. Strongly
interacting polarized Fermi gases have also been under
close scrutiny in nuclear matter [21], neutron stars [21],
and high density quark matter [19,22], where the spin
polarization is created by differences between chemical
potentials and/or by mass differences between fermions
that form pairs. Polarized vortices of color superfluidity in
rotating neutron stars are a possible mechanism for ob-
served glitches in pulsar timing [19].

Here we investigate the properties of a singly quantized
vortex in polarized atomic Fermi gases at unitarity, in a
cylindrically symmetric trap. Our main results are: (a) we
clarify the density profiles of both spin components as a
function of polarization. In addition to phase separation,
the vortex core suddenly accommodates the excess major-
ity fermions above a critical polarization or a critical
chemical potential difference, resulting in a rapid rise of
the local density difference inside the core. (b) The local
fermionic density of states explains the sudden appearance
of an unpaired core of excess majority atoms at the vortex
center. The Andreev-like bound states in the core are
occupied when the critical chemical potential difference
equals the lowest available energy. This provides a clear
visualization of vortex bound states using phase-contrast
imaging [23]. (c) With increasing polarization, the vortex
core expands while the lowest bound state energy
decreases.

The above results are obtained by numerically solving
the mean-field Bogoliubov—de Gennes (BdG) equations in
a fully self-consistent fashion [3,24], assuming a pairing
order parameter that preserves the cylindrical and axially
translational symmetries. Symmetry breaking is also pos-

© 2007 The American Physical Society


https://core.ac.uk/display/15039179?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1103/PhysRevLett.98.060406

PRL 98, 060406 (2007)

PHYSICAL REVIEW LETTERS

week ending
9 FEBRUARY 2007

sible; i.e., the order parameter may distort cylindrically.
This scenario merits further study.

Fermi gases of SLi atoms near a broad Feshbach reso-
nance are well characterized using a single channel model
[25]. The BdG equations describing the quasiparticle wave
functions u,(r) and v, (r), with excitation energies E, read

[3]:
5'[0 - M A(r) Mn(l’) - E un(r)
_3-[0 + ,ul U,,](r) K 'U.,](r) ’
(1)

A*(r)

where Hy= —1*V2/2m + Vo (r), and V., (r)=
mw?(x* + y?)/2 is the transverse trapping potential.
Along the z axis we instead assume free motion over a
length L. To account for the unequal spin population N,
for o =1, | the chemical potentials are shifted as u;; =
M = dpu, leading to different quasiparticle wave functions
for the two components. However, there is a symmetry of
the BdG equations under the replacement uf}l(r) — v,(r),
v”;]l(r) — —u(r), E, — —E,;. We can thus retain only
u(r) and v,4(r) in Eq. (1), and keep solutions with both
positive and negative energies.

The order parameter A(r) and the chemical potentials
w1, are determined by self-consistency equations for the
gap, A(r) = g3, u,(r)vy(r)f(E,), and the particle den-
sity of each component: n4(r) = Z,]Iun(r)l2 f(E,) and
ny(r) = anvn(r)lzf(—E,,). These must be constrained
so that [drn,(r) = N,, where f(x) = 1/(e¥/%T + 1) is
the Fermi distribution function, and g ( <0) is the bare
coupling constant, which is related to the s-wave scattering
length via the regularization prescription:
(dmhtag/m)~t =1/g + 3 1/2¢€.

We solve these equations via a hybrid procedure, by
introducing a high energy cutoff E. above which we use
a local density approximation (LDA) for high-lying exci-
tation levels. The standard regularization prescription then
yields an effective coupling constant through the self-

consistency equation A(r) = geff(r)zlun(r)v’;(r) f(E,),

n

where the cutoff summation Z/ is now restricted to |E ,,I =
n

E.. Further details of this will be given elsewhere. A clear

limitation of the procedure is the use of mean-field facto-
rizations implicit in the BdG equations. From earlier work,
we expect this to neglect quantum fluctuations that alter the
ground-state energy, while remaining qualitatively correct
[26].

Below the cutoff, we solve the BAG equations by work-
ing in cylindrical coordinates (p, ¢, z) and taking A(r) =
A(p)e~ ¢ for a singly quantized vortex. Assuming periodic
boundary conditions at z = *L /2, we write, for the nor-
malized modes, 1, (r) = i, (p)e™¢ /2L and
U, (X) = Uy (p)e V9 [\ 2L with k, = 2ml/L.
As a consequence, the BdG equations decouple into differ-
ent m and [ sectors [3]. Expanding the radial functions

Upmi(p) and v, (p) in a basis set of 2D harmonic
oscillators, we then solve a matrix eigenvalue problem in
each sector.

In greater detail, we consider a gas at unitarity with the
number of total atoms in the range N = Ny + N| = 2 X
10° — 4 X 10*. Two characteristic scales may be defined
by considering a symmetric ideal Fermi gas at zero tem-
perature. In the LDA analysis this leads to a Thomas-Fermi
(TF) radius pYp = (157N A/2)/%\/a/mw, and a Fermi
energy Ep = (15aN)/16)’hw = kyTy, where we de-
fine A= L/pl: as the aspect ratio of the trap.
Throughout this Letter, we calculate results at the
Feshbach resonance with 1/a, =0 and use A =1 and
E.=2FE;. We also considered coupling constants in the
BCS regime but observed no significant changes.
Dimensionality effects will be treated elsewhere.

Numerical accuracy was checked by increasing E,. up to
4Er. Because of the high accuracy of our hybrid cutoff
procedure, the results were found to be essentially inde-
pendent of the cutoff energy. We note finally that, for a
symmetric gas at unitarity, universality implies a TF radius
of prr = (1 + B)*/1°pY., a chemical potential x = (1 +
B)PEr, and a maximum order parameter A, =
8(1 + B)*/3Ef/e? [2], where BCS theory predicts the uni-
versal parameter 8 =~ —0.41.

We present in Figs. 1(a)—1(c) the density profile of each
component, as well as the density difference on(r) =
ny(r) — ny(r), for several polarizations p = (N; — N|)/N
at T = 0.05T7 and N = 10*. Because of the uniform dis-
tribution along the z axis, these profiles are linked to the
experimentally observed column densities in the axial
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FIG. 1 (color online). Density profiles of the majority ( 1 state,
solid lines) and minority ( | state, dashed lines) components at
T = 0.05T. for three typical value of polarization: p = 0.12 (a),
p = 0.35 (b), and p = 0.75 (c). Density differences are also
plotted in dot-dashed lines. All the profiles are normalized by
ngr= (1 + B35 /15aNA/2/(67%)(h/mw)~ /2, which is
the peak density for a symmetric gas at unitarity. Panel (d)
shows the order parameter profiles. The small oscillations at
the edge are a finite size effect.
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direction. Apart from the apparent phase separation at the
edge, the most salient feature of the figures is the develop-
ment of a polarized normal shell inside the vortex core
above a certain polarization. This is clearly visible as a
prominent peak in the density difference, of width about
0.05p1g. This is observable in the column integrated den-
sity difference, which is directly measurable by phase-
contrast imaging [10,23].

The onset of a polarized normal shell at the core center is
demonstrated by the central density difference as a func-
tion of the polarization. This is shown in Fig. 2(a), which
represents the most important result of this Letter. At a
sufficiently low temperature, i.e., T = 0.017, a sudden
rise of the center density difference appears at a critical
polarization p, =~ 0.30. The critical chemical potential dif-
ference is Opm, =~ 0.36Er ~ A}/2Ey, with a transition
width of around kzT. This transition is therefore much
smoother at finite temperature. The critical polarization is
nearly independent of the overall number of atoms N, as
shown in Fig. 2(b) for N up to 4 X 10*. We therefore
expect that this will apply to current experiments, where
the typical number of atoms is around 10°, and would
survive even in the thermodynamic limit.

The appearance of this intriguing shell structure is
closely related to the Andreev-like bound states inside
the core. In the BCS regime, these states are formed by
the spatial variation of the order parameter around the
center [see, i.e., Fig. 1(d)], analogous to a potential well
for quasiparticles, of depth Ay and of radius equal to the
coherence length & = hvy/A,. Hence, the confinement of
the well gives rise to discrete bound levels with spacing of
order #*/m&* = A3/2Ey [3]. This qualitative picture per-
sists in the strongly interacting unitarity limit [9].

To provide an intuitive explanation of our results, we
calculate the local density of states (LDOS),

M E) = 3 lu, 0PS(E — E,),
n

2
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FIG. 2 (color online). Left panel: center density difference as a
function of polarization at N = 10*. Inset shows the dependence
on the chemical potential difference. Right panel: critical polar-
ization and critical chemical difference as a function of the
number of total particles.

At low temperature, when integrated over negative energy,
this leads to the density profiles n,(r). In Fig. 3 we show
how the LDOS inside the core evolves with increasing the
polarization. A small spectral broadening of about 0.01Ef
has been used to regularize the delta function. Without any
polarization the LDOS of the two components coincides,
leading to a sharp peak located at positive energy Egs =
A(Z) /2Ep, associated with the lowest Andreev-like bound
state.

In the presence of spin-polarization the peak in the
density of states shifts in different directions for the two
components. To a good approximation, the energy separa-
tion between the two peaks at the vortex center equals
26 . Thus, in the general case of a nonzero polarization
one may define an effective energy of the lowest bound
state, Ey, as the midpoint of these two peaks located at
Ey, + 0. Therefore, a net density difference results pre-
cisely when the peak in N;(r = 0, E) crosses zero energy,
i.e., 6 = Eyp,. This results in a bound state for the ma-
jority spin component, which explains why a polarized
normal shell emerges above a critical population chemical
potential Su,. ~ E) =~ AJ/2E.

Thus, the integrated column density difference is an
indicator of the lowest vortex bound state, and a measure-
ment of the critical polarization p, gives its energy.

We now consider the dependence of the vortex core size
on the polarization. We extract the core size from the
superfluid density n,(r), defined as a ratio of the current
density j(r) = n,(r)v, to the superfluid velocity v, =
(h/2mp)& [9], where, since our normal fluid solutions
are nonrotating:

§0 = 20 S Ty 0,10, )+ vy0,03f(E, )16 )
n

The resulting superfluid density profiles are plotted in the
inset of Fig. 4(a). The core size may be quantified as the
distance from the vortex core at which the superfluid
density is 90% of its maximum value, namely, £9y. From
Fig. 4(a), the core size increases gradually with increasing
polarization, and almost doubles at large polarization.
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FIG. 3 (color online). Local fermionic density of states of spin-
up (solid lines) and spin-down (dashed lines) components inside
the vortex core at N = 10* and T = 0.057 .. The thin line in (a)
shows the LDOS at p = 0. Arrows point to the position at the
effective energy of the lowest bound state.
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FIG. 4 (color online). Vortex core size (a) and the effective
energy of the lowest bound state (b) as a function of polarization
at N = 10* and T = 0.05T. The core size £y at p = 0 is about
2.5kz!, where k; noninteracting Fermi wavelength at center.
Solid lines are the scaling relations as described in the text. Inset
shows superfluidity density profiles.

To explain this, note that while a phase separation occurs
at any nonzero polarization, only the unpolarized super-
fluid part can form a vortex. Thus, the vortex core should
expand with a scaling of &g = (2N) /3 o (1 — p)~1/3
[9]. In Fig. 4(a) this scaling is plotted by a solid line, which
fits well with our numerical results. Accordingly, one may
suspect that the energy of the lowest bound state will
decrease as Eu o 1/¢2, o« (1 — p)*/3. This is consistent
with the effective energy of the lowest bound state shown
in Fig. 4(b). We expect a phase separation into multiple
vortex cores in a vortex lattice, as in current nonpolarized
experiments [1].

We have considered an aspect ratio A = 1, which is
closer to the MIT experimental setup [10] than the Rice
experiment (which has A = 50 [11]). In the opposite limit
of A < 1, an interesting aspect of dimensionality would
arise. Because of strong phase fluctuations, this quasi-2D
geometry would favor the spontaneous formation of vorti-
ces at finite temperature [27]. As a result, a lattice of
vortex-antivortex pairs without phase separation may
emerge as the ground state. In such a configuration, the
spin polarization would be sustained by a polarized normal
shell inside the vortex cores, analogous to a type-II super-
conductor in a magnetic field.

In conclusion, we have analyzed vortex structures in a
polarized Fermi gas at unitarity. The lowest bound state
will be visible via phase-contrast imaging, together with a
quantum phase transition at a critical spin polarization.
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