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We show how a single trapped ion may be used to test a variety of important physical models realized as
time-dependent harmonic oscillators. The ion itself functions as its own motional detector through laser-
induced electronic transitions. Alsing et al., �Phys. Rev. Lett. 94, 220401 �2005�� proposed that an exponen-
tially decaying trap frequency could be used to simulate �thermal� Gibbons-Hawking radiation in an expanding
universe, but the Hamiltonian used was incorrect. We apply our general solution to this experimental proposal,
correcting the result for a single ion and showing that while the actual spectrum is different from the Gibbons-
Hawking case, it nevertheless shares an important experimental signature with this result.
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I. INTRODUCTION

The time-dependent quantum harmonic oscillator has long
served as a paradigm for nonadiabatic time-dependent
Hamiltonian systems and has been applied to a wide range of
physical problems by choosing the mass, the frequency, or
both, to be time-dependent. The earliest application is to
squeezed state generation in quantum optics �1–3�, in which
the effect of a second-order optical nonlinearity on a single-
mode field can be modeled by a harmonic oscillator with a
frequency that is harmonically modulated at twice the bare
oscillator frequency. It was subsequently shown that any
modulation of the frequency could produce squeezing �4�,
and thus the same model could be used to approximately
describe the generation of photons in a cavity with a time-
dependent boundary �5,6�.

The model has been used in a number of quantum cosmo-
logical models. In Ref. �7�, a time-dependent frequency has
been used to explain entropy production in a quantum
minisuperspace model. The model, with both mass and fre-
quency time-dependent, has been particularly important in
developing an understanding of how quantum fluctuations in
a scalar field can drive classical metric fluctuation during
inflation �8,9�. In a cosmological setting the time dependence
is not harmonic and is usually exponential. In all physical
applications, of course, the model is only an approximation
to the true physics, and its validity can be tested only with
considerable difficulty, especially in the cosmological set-
ting. Here we propose a realistic experimental context in
which the time-dependent quantum harmonic oscillator can
be studied directly.

Many decades of effort to refine spectroscopic measure-
ments for time standards now enable a single ion to be con-
fined in three dimensions, its vibrational motion restricted
effectively to one dimension, and the ion cooled to the vibra-
tional ground state with a probability greater than 99% �10�.
Laser cooling is based on the ability to couple an internal
electronic transition to the vibrational motion of the ion �11�.
These methods can easily be extended to more than one ion

and their collective normal modes of vibration �12�. Indeed
so carefully can the coupling between the electronic and vi-
brational states be engineered that it is possible to realize
simple quantum-information processing tasks �13,14�. We
use the control of trapping potential afforded by ion traps,
together with the ability to reach quantum limited motion, to
propose a simple experimental test of quantum harmonic os-
cillators with time-dependent frequencies. We also make use
of the ability to make highly efficient quantum measure-
ments, based on fluorescent shelving �10�, to propose a prac-
tical means to test our predictions.

In this paper, we calculate the excitation probability of a
trapped ion in a general time-dependent potential. When be-
ginning in the vibrational ground state of the unchirped trap
and starting the chirping process adiabatically, the excitation
probability is simply related to the Fourier transform of the
solution of the Heisenberg equations of motion �which is
also the same as the trajectory of the equivalent classical
oscillator�. We compare our result with that of Ref. �15� for
the case of a single ion undergoing an exponential frequency
chirp. The cited work attempts to use this experimental setup
to model a massless scalar field during an inflating �i.e., de
Sitter� universe, which would give a thermal excitation spec-
trum as a function of the detector response frequency �16�.
The analysis is incorrect, however, because the wrong
Hamiltonian was used. Nevertheless, the corrected calcula-
tion presented here also gives an excitation spectrum with a
thermal signature, although the particular functional form is
different.

II. GENERAL SOLUTION

The quantum Hamiltonian for a single ion in a time-
dependent harmonic trap can be well-approximated in one
dimension by

H =
p2

2M
+

M

2
��t�2q2, �1�

where ��t� is time-dependent but always assumed to be much
slower than the time scale of the micromotion �10�. For em-
phasis, we have indicated the explicit time-dependence of the*nmen@princeton.edu
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frequency �; we will often omit this from now on. Working
in the Heisenberg picture, we get the following equations of
motion for q and p:

q̇ =
p

M
, �2�

ṗ = − M�2q . �3�

Dots indicate total derivatives with respect to time. Differen-
tiating again and plugging in these results gives

0 = q̈ + �2q , �4�

0 = p̈ − 2
�̇

�
ṗ + �2p . �5�

As we shall see, only Eq. �4� is necessary for calculating
excitation probabilities, so we will focus only on it. These
equations are operator equations, but they are identical to the
classical equations of motion for the analogous classical sys-
tem. Interpreting them as such, we will label the two linearly
independent c-number solutions as h�t� and g�t�, where the
following initial conditions are satisfied:

h�0� = ġ�0� = 1 and ḣ�0� = g�0� = 0. �6�

Writing q�0�=q0 and p�0�= p0, the unique solution for q to
the initial value problem above is

q�t� = q0h�t� +
p0

M
g�t� . �7�

By differentiating and using the relations above, we know
also that

p�t� = Mq0ḣ�t� + p0ġ�t� . �8�

To check our math, we can verify that �q�t� , p�t��= i�, which
is fulfilled if and only if the Wronskian W�h ,g� of the two
solutions is one for all times—specifically,

hġ − ḣg = 1, �9�

where we have assumed that �q0 , p0�= i�.
Moreover, if the initial state at t=0 is symmetric with

respect to phase-space rotations, then we have additional ro-
tational freedom in choosing the initial quadratures. �This
would be the case, for instance, if we start in the instanta-
neous ground state.� Notice that Eq. �7� can be written as the
inner product of two vectors:

q�t� = �q0,
p0

M�0
� · „h�t�,�0g�t�… �10�

�and similarly for Eq. �8��, where we have normalized the
quadrature operators to have the same units. As an inner
product, this expression is invariant under simultaneous ro-
tations of both vectors. Thus if the initial state possesses
rotational symmetry in the phase plane, then the rotated
quadratures are equally as valid as the original ones for rep-
resenting the initial state, which means that an arbitrary ro-
tation can be applied to the second vector above without

changing any measurable property of the system. This free-
dom can be used, for instance, to define new functions h��t�
and g��t� that are more convenient for calculations, where
the linear transformation between them and the original ones
�with prefactors as in Eq. �10�� is a rotation. We will use this
freedom in the next section.

One reason why ion traps have become a leading imple-
mentation for quantum-information processing is the ability
to efficiently read out the internal electronic state using a
fluorescence shelving scheme �10�. As the internal state can
become correlated with the vibrational motion of the ion, this
scheme can be configured as a way to measure the vibra-
tional state directly �17�. To correlate the internal electronic
state with the motion of the ion, an external laser can be used
to drive an electronic transition between two levels �g� and
�e�, separated in energy by ��A. The interaction between an
external classical laser field and the ion is described, in the
dipole and rotating-wave approximation, by the interaction-
picture Hamiltonian �10�

HL = − i��0��+�t�eik cos �q�t� − �−�t�e−ik cos �q�t�� , �11�

where �0 is the Rabi frequency for the laser-atom interac-
tion, �L is the laser frequency, k is the magnitude of the wave
vector k�, which makes an angle � with the trap axis, q�t� is
given in Eq. �7�, and

�±�t� = e±i�t�±. �12�

The electronic-state raising and lowering operators are de-
fined as �+= �e�	g� and �−= �g�	e�, respectively, and

� = �A − �L �13�

is the detuning of the laser below the atomic transition. We
can construct a meaningful quantity that characterizes the
“size” of q�t� based on the width of the ground-state wave
packet for an oscillator with frequency ��t�, namely

� /2M��t�. As long as this quantity is much smaller than
k cos � throughout the chirping process, then we can expand
the exponentials in Eq. �11� to first order and define the in-
teraction Hamiltonian HI between the electronic states and
vibrational motion �still in the interaction picture� by

HI = ��0k cos �q�t��e−i�t�− + e+i�t�+� , �14�

where we have assumed that �L is far off-resonance, and
thus ��0.

Using first-order time-dependent perturbation theory, the
probability of finding the ion in the excited state is

P�1� =
1

�2�
0

T

dt1�
0

T

dt2	HI�t1�PeHI�t2��

= �0
2k2 cos2 ��

0

T

dt1�
0

T

dt2e−i��t1−t2�	q�t1�q�t2�� ,

�15�

where Pe=1vib � �e�	e� is the projector onto the excited elec-
tronic state �and the identity on the vibrational subspace�. We
always assume that the ion begins in the electronic ground
state. If the ion also starts out in the instantaneous vibrational
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ground state for a static trap of frequency �0=��0� at t=0
�which is most useful when the chirping begins in the adia-
batic regime�, then we can evaluate the two-time correlation
function as

	q�t1�q�t2��ground = 	q0
2�h�t1�h�t2� +

	p0
2�

M2 g�t1�g�t2�

+
	q0p0�

M
�h�t1�g�t2� − h�t2�g�t1��

=
�

2M�0
�h�t1� − i�0g�t1���h�t2� + i�0g�t2��

=
�

2M�0
f�t1�f*�t2� , �16�

where we have used the facts that for the vibrational ground
state, 	q0

2�= 	�p0 /M�0�2�=� /2M�0 and 	q0p0�= 1
2 	q0 , p0�

+ �q0 , p0��= i� /2, and we have defined the complex function

f�t� = h�t� − i�0g�t� , �17�

which is the solution to Eq. �4� with the initial conditions

f�0�=1 and ḟ�0�=−i�0. Plugging this into Eq. �15� gives,
quite simply,

P�1� → ��0�0�2�F�2, �18�

where

F = �
0

T

dt e−i�t f�t� , �19�

and we have defined the unitless, time-dependent Lamb-
Dicke parameter �10� as

��t� =
�k2 cos2 �

2M��t�
, �20�

and �0=��0�. Recalling that f�t� can be considered a com-
plex c-number solution to the equations of motion for the
equivalent classical Hamiltonian, Eq. �18� shows that the ex-
citation probability is simply related to the Fourier transform
of the classical trajectories when beginning in the vibrational
ground state.

III. EXPONENTIAL CHIRPING

Recent work �15� has suggested that an exponentially de-
caying trap frequency has the same effect on the phonon
modes of a string of ions as an expanding �i.e., de Sitter�
spacetime does on a one-dimensional scalar field �18�. An
inertial detector that responds to such an expanding scalar
field would register a thermal bath of particles, called
Gibbons-Hawking radiation �16�. Reference �15� suggests
that the acoustic analog �19� of this radiation could be seen
in an ion trap, causing each ion to be excited with a thermal
spectrum with temperature �	 /2
kB, as a function of the
detuning �, where 	 is the trap-frequency decay rate. The
analysis used an incorrect Hamiltonian that neglected
squeezing and source terms that have no analog in the ex-

panding scalar field model but which are present when con-
sidering trapped ions in this way, and the results are incor-
rect. In this section, we revisit this problem and calculate the
excitation probability for a single ion in an exponentially
decaying harmonic potential, as a function of the detuning �.

We write the time-dependent frequency as �20�

��t� = �0e−	t. �21�

This results in

q̈ + �0
2e−2	tq = 0. �22�

Solutions with initial conditions �6� are

h�t� =

�0

2	
�J1��0

	
�Y0� �

	
� − Y1��0

	
�J0� �

	
�� , �23�

g�t� =



2	
�− J0��0

	
�Y0� �

	
� + Y0��0

	
�J0� �

	
�� , �24�

where the time dependence is carried in �=��t� from Eq.
�21�, and Jn and Yn are Bessel functions. We could plug these
directly into the formulas from the last section, but we will
simplify the calculations by considering the limits of slow
and long-time frequency decay, represented by

�0 � 	 and �0e−	T � 	 , �25�

respectively. This allows us to do several things. First, it
allows us to use the usual ground state of the unchirped trap
at frequency �0 as a good approximation to the ground state
of the expanding trap at t=0, since at that time the system is
being chirped adiabatically. This is important because it al-
lows the experiment to begin with a static potential, which is
useful for cooling. Second, it allows us to simplify h�t� and
g�t� using the phase-space rotation freedom discussed above.
Using asymptotic approximations for the Bessel functions in
the coefficients,

J0��0

	
� � − Y1��0

	
� �
 2	


�0
cos��0

	
−




4
� , �26�

J1��0

	
� � Y0��0

	
� �
 2	


�0
sin��0

	
−




4
� , �27�

we get

h�t� �

�0

2	
�sin �Y0� �

	
� + cos �J0� �

	
�� , �28�

�0g�t� �

�0

2	
�− cos �Y0� �

	
� + sin �J0� �

	
�� , �29�

where �=�0 /	−
 /4. Since we are taking the initial state to
be the ground state, which is symmetric with respect to
phase-space rotations, we can use the freedom discussed in
the previous section to undo the rotation represented by Eqs.
�28� and �29� and define the simpler functions

h�t� → h��t� =

�0

2	
Y0� �

	
� , �30�
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g�t� → g��t� =
 


2	�0
J0� �

	
� . �31�

The primes are unnecessary due to the symmetry of the ini-
tial state, so we drop them from now on and plug directly
into Eq. �17�:

f�t� =

�0

2	
�Y0� �

	
� − iJ0� �

	
�� = − i

�0

2	
H0

�1�� �

	
� ,

�32�

where Hn
�1� is a Hankel function of the first kind. The integral

in Eq. �19� can be evaluated in the limits �25� using tech-
niques similar to those used in Ref. �15�. First, define

e� =
�

	
,  = � − 	t, u = e, and x = �/	 . �33�

The integral in question then becomes �neglecting the pre-
factor�

�
0

T

dt e−i�tH0
�1�� �

	
� = �

0

T

dt e−i�tH0
�1��e�−	t�

=
1

	
�

�−	T

�

d e−ix��−�H0
�1��e�

→
e−ix�

	
�

−�

�

d eixH0
�1��e�

=
e−ix�

	
�

0

�

du uix−1H0
�1��u� . �34�

Inserting a convergence factor with x→x− i�, and then tak-
ing the limit �→0+, we can use the formula

�
0

�

du uix−1H0
�1��u� = − 2ix ��ix/2�

�e
x − 1���1 − ix/2�
�35�

to evaluate

�F�2 =

�0

2	

1

	2� ��ix/2�
��1 − ix/2�

�2 1

�e
x − 1�2 =
2
�0

	3x2

1

�e
x − 1�2 .

�36�

When plugging in for the dummy variables �33�, this gives

P�1� = ��0�0�22
�0

	�2

1

�e
�/	 − 1�2 . �37�

The calculated result from Ref. �15� for a single ion is

PGH
�1� = ��0�0�2 2


	�

1

e2
�/	 − 1
, �38�

which contains a Planck factor with Gibbons-Hawking �16�
temperature T=�	 /2
kB but is different from the actual re-
sult for a single ion, given by Eq. �37�.

Several things should be noted about these functions.
First, they both break down as �→0 because of the approxi-
mation made in obtaining Eq. �14�. They also fail if the time-
dependent Lamb-Dicke parameter �20� ever becomes too

large throughout the chirping process. Furthermore, most
cases of interest will be ���0 �the first red sideband� and
near ��−�0 �the first blue sideband�, which means that
�� � �	, since �0�	. The first red sideband represents a
detector that requires the absorption of one phonon �plus one
laser photon� in order to excite the atom—the usual thing we
mean by “particle detector” when the particles are phonons.
The first blue sideband, on the other hand, represents a de-
tector that emits a phonon in order to excite the atom �along
with absorbing one laser photon�.

There are a couple of ways to compare these functions.
First, we can take the ratio of the two for both the red- and
blue-sideband cases. In both cases, we obtain

P�1�

PGH
�1� �

�0

���
�1 + 2e−
���/	� �39�

plus terms of order O�e−2
���/	�. Since �� � ��0, the prefactor
is close to one, and the second term is very small �since
�0�	�. Furthermore, it is cumbersome to directly compare
the measured probability to the full function �with all the
prefactors�. It is often easier instead to make measurements
on both the first red sideband and the first blue sideband and
then take the ratio of the two. The constant prefactors disap-
pear in this calculation, and both functions then have the
same experimental signature:

P�1����
P�1��− ��

=
PGH

�1� ���
PGH

�1� �− ��
= e−2
�/	, �40�

which is that of a thermal distribution with temperature T
=�	 /2
kB, which is of the Gibbons-Hawking form �16�
with the expansion rate given by 	. Therefore, although the
Hamiltonian used in the calculations in Ref. �15� was miss-
ing terms, the intuition �at least for a single ion� was correct
in that the actual experimental signature in this case matches
that of an ion undergoing thermal motion in a static trap,
where the temperature is proportional to 	.

To see whether this experiment is feasible, we must ex-
amine the validity of our approximations. For a typical trap,
we expect that �0�1 MHz, and thus if we take 	�1 kHZ,
we easily satisfy the first of conditions �25�, namely �0�	.
The second of these conditions gives a constraint on the
modulation time T. For these parameters we expect that T
� a few msec. This is compatible with typical cooling and
readout time scales and is less than those for heating due to
fluctuating patch potentials �10�. Thus this is a realizable
experiment with current technology.

IV. CONCLUSION

We have shown that a single trapped ion in a modulated
trapping potential can serve as an experimentally accessible
implementation of a quantum harmonic oscillator with time-
dependent frequency, including robust control over state
preparation, manipulation, and measurement. The ion itself
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serves both as the oscillating particle and as the local detec-
tor of vibrational motion via coupling to internal electronic
states by an external laser. For the case of a general time-
dependent trap frequency, we calculated the first-order exci-
tation probability for the ion in terms of the solution to the
classical equations of motion for the equivalent classical os-
cillator. We applied this general result to the case of expo-
nential chirping and corrected the calculation in Ref. �15� for
a single ion. We found that while the results from the two
calculations differ, the experimental signature in both cases
is the same and is equivalent to that of a thermal ion in a
static trap.
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