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Reference Enthalpy Method Developed from Solutions
of the Boundary-Layer Equations

William E. Meador* and Michael K. Smart'
NASA Langley Research Center, Hampton, Virginia 23681

A simple average of local enthalpy over the velocity profile is proposed as the proper definition of reference
enthalpy for the purpose of quasi-one-dimensional treatment of compressible boundary layers. Use of Van Driest’s
nearly exact solutions of the laminar boundary-layer equations shows that this definition produces Eckert’s ref-
erence enthalpy formulation for the special case of an adiabatic wall. For surfaces other than adiabatic, either
Eckert’s form should be replaced by that of Young and Janssen, or the coefficient in Eckert’s viscous heating
term should be slightly modified. A similar analysis was conducted for turbulent flows using Whitfield and High’s
simplified solutions of the turbulent boundary-layer equations. Dorrance’s derivation of reference quantities is
also addressed. This work provides a theoretical basis for the empirical reference enthalpy formulas of Eckert and
others and supplies practical expressions for the reference enthalpy of both laminar and turbulent compressible

boundary layers.
Nomenclature
C = Chapman—Rubesin parameter (= 01/ pefle)
Cy = skin friction coefficient =1,/ 1 p.u?
Cp heat transfer coefficient = g,/ pett.c,(Tpn, — Toy)
cp = specific heat at constant pressure
f = velocity ratio (=u/u,)
g = enthalpy ratio (=h/h,)
h = specific enthalpy
M = Mach number
Pr = Prandtl number
Gw = surface heat transfer
Re, = Reynolds number
r = adiabatic wall recovery factor
T temperature
u = velocity
X,y = coordinates
a =175
B = coefficient of viscous heating term in Eckert’s
reference enthalpy formula
Bi1, B2 = coefficients in the proposed laminar reference
enthalpy formula
y = ratio of specific heats
8 = boundary-layer thickness
&* = boundary-layer displacement thickness
e = 1-P,
0!, 011 functions of Pr and f in Van Driest’s
enthalpy profile
n = function of f in Van Driest’s local shear stress
" = viscosity
P = density
T - = shear stress
1) = wall enthalpy ratio (= h,,/ h.)
Subscripts
aw = adiabatic wall
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e = edge of boundary layer

t = turbulent

w = wall

Superscript

* = reference value
Introduction

UASI-ONE-DIMENSIONAL treatments of compressible
boundary layers model the real boundary layer, which has
continuously variable velocity and gas properties, as a viscous layer
with variable velocity but constant or “reference” gas properties.
These methods are an attractive alternative to computational solu-
tions of the boundary-layer equations for preliminary design pur-
poses when estimates of C; and C}, are required. Such treatments
have also been used by Mirels! to predict boundary-layer effects on
test times in shock tubes with reasonable accuracy. An obvious pre-
requisite for quasi-one-dimensional boundary-layer analyses is the
availability of reference gas properties that are adequately represen-
tative of the entire boundary-layer cross section. As the temperature
can vary significantly across a compressible boundary layer, calcu-
lation of reference gas properties requires a reference temperature
or reference enthalpy to be established.
The most popular choice for the reference enthalpy of both lam-
inar and turbulent boundary layers is due to Eckert.? His equation
for the reference enthalpy ratio of a boundary layer is

8 =n"/h. =05(1+¢) + pri(y — 1)/21M? M

where ¢ =h,/h,, r is the adiabatic wall recovery factor, and
B =0.22.

Eckert arrived at the factor of 8=0.22 in the viscous heat-
ing term of Eq. (1) by empirically matching the “reference en-
thalpy corrected” incompressible flat-plate wall shear stress with
a database of solutions of the laminar compressible boundary-layer
equations by Van Driest.® In particular, Eckert corrected the clas-
sical expression for laminar incompressible flat-plate skin friction
(Cy =0.664/./Re,) for use in compressible flow by evaluating the
gas properties at the reference enthalpy, such that

0.664
/ Re:

Rearrangement of Eq. (2) supplies the following expression for 7,,:

7, = 0.664 //Re; 1 p*u? 3)

* Tw -

=—2 = 2
¢ 1/2p*u? @
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Substitution of Eq. (3) into the incompressible C; formula led to the
following expression for the skin friction coefficient in compressible

flow:
Cy+/ Re, = 0.664,/ p*uu*/p.pte = 0.664+/C* )

A value of 8 =0.22 most closely matched Eq. (4) with Van Driest’s
database.? This formula was developed for boundary layers on flat
plates; however, it is commonly used for more complicated flows
by simply using the local edge conditions.

Although Eckert’s reference enthalpy formula is well known
throughout the literature, it is interesting to note that Eq. (1) is not
unique in satisfying the wall shear stress—based procedure. About
equally successful, for example, is the somewhat different form for
g* proposed by Young and Janssen.* The purpose of the present
paper is to determine how a more fundamentally defined g* re-
lates to the Eckert and Young and Janssen forms. Limitations will
be discussed and improved forms recommended, one for laminar
boundary layers and another for turbulent boundary layers. Because
the current formulas for g* are derived directly from solutions of
the boundary-layer equations, the results can be said to be derived
in some sense from first principles. As far as we know, the only
previous such attempt was that of Dorrance,’ which is discussed.

Proposed Reference Enthalpy

If the ratio of specific enthalpies, g =h/h,, is assumed to depend
only on the velocity profile within the boundary layer, f =u/u,., a
straightforward definition of a representative reference value, g*, is

1
g*=/ g(f)df ®)
0

Given this definition, our task is to use it to develop a generalized ex-
pression for g* without demanding prior knowledge of g(f); other-
wise its utility for quasi-one-dimensional analyses is defeated. This
is accomplished through the use of solutions of the boundary-layer
equations. For the purposes of the present investigation we assume
steady-state flow of a calorically perfect gas (y = const), nearly con-
stant freestream parameters (0., (L., U.), wall temperature T,,, and
relatively constant Prandtl number Pr across the boundary layer
compared with variations of other gas properties. As in Ref. 2, gen-
eralization can be achieved to some extent by replacing Pr with its
reference value Pr* in the final results. The same may be done for
flows with variable y through the use of y*.

Reference Enthalpy Ratio for Laminar Flow

Especially convenient for use in Eq. (5) is the enthalpy profile
g(f) developed by Van Driest® from the laminar flat-plate boundary-
layer equations. With the aforementioned restrictions and the as-
sumption that

ou _ n(f)
— —_— 6
‘ Hay V2x ©

the boundary-layer equations for the flow of a single-species gas
over a flat plate reduce to

" + Cpeptet f =0 )
n(g"+ Pru/h)+ (1 - Pring =0 (8)

where derivatives in Eqgs. (7) and (8) are with respect to the single
independent variable, f. Based on Crocco’s experience® that g(f)
is practically independént of the viscosity law chosen to specify
C =C(g), Van Driest set C to unity in Eq. (7) and used the Blasius
velocity distribution for 1 to solve Eq. (8). His result can be written
as

g=0+1 -0 +(y - M2 ©)

where 67 and 9!/ are functions of Pr and f.

Using this g and the form of C(g) appropriate to Sutherland’s
viscosity law, he then returned to Eq. (7) to get the final n(f). For
our current purposes, however, his expression for enthalpy ratio is

Table 1 Coefficients in Van
_ Driest’s enthalpy formulation

Pr B B2

0.50 04134 0.1520
0.725 0.4595 0.1609
1.00 0.5000 0.1667

Table 2 Coefficient 3 for conditions where the current
formulation reduces to the Eckert form

Pr B(Pr=1) B@=1) B (adiabatic wall)
0.50 — 0.152 0.239
0.725 — 0.161 0.201
1.00 0.167 0.167 0.167

of greatest interest, as substitution of Eq. (9) into our definition of
g™ gives the Young and Janssen form of the reference enthalpy:

g =B+ 1~ B¢+ Borlly — 1)/21M; (10

where r = ./Pr and the constants 8, and B, are given by

1 2 1
ﬁ1=f o'df, p= —f o' df (11)
0 rJo

Integrations of Van Driest’s tabulated functions (8! and 6'7) to
obtain B; and B, are shown in Table 1 for selected Prandtl num-
bers. These can be compared with Young and Janssen’s values of
B1=0.42 and B, =0.19 for air, which were determined empiri-
cally from the surface shear stress. Note that the results for Pr =1
can be derived from Crocco’s relation; that is, 67 = f and 8/ =
0.5f(1— f).

For the purpose of comparing-how the- expression in Eq. (10)
relates to Eckert’s form for g* in Eq. (1), Eq. (10) can be rewritten
as

. y—l 2 (d)__}_)_(o_s:ﬁz
g _0.5(1+¢)+r< 5 )Mel:ﬂz“i' r[(y—l)/2]M3} (12)

leading to an expression corresponding to Eckert’s 8:

(¢ —1DO5-8)
rlly — 1/21M;

Examination of Eq. (13) indicates that Egs. (1) and (10) are of similar
formin all of the following situations: 1) Pr = 1,sothat 8; = 0.5 and
Eq. (13) reduces to B = B,; 2) ¢ = 1.0, corresponding to the surface
cooled to the freestream temperature, where B = 8, once again; and
3) an adiabatic wall, where Eq. (13) reduces to 8 =, +0.5 — ;.

The values of B that correspond to situations 1-3 are listed in
Table 2 for several Prandtl numbers. These values show that only
for an airlike gas flowing over an adiabatic surface are the results
close to the g = 0.22 used by Eckert. This is perhaps not surprising
because almost half the solutions Eckert used to determine his g*
involved an adiabatic wall, and the rest were for a wall with ¢ > 1.
The key result here is, however, that use of the proposed definition
of g* and a generalized enthalpy profile developed from solutions of
the boundary-layer equations leads to a formula for g* that reduces
to Eckert’s reference enthalpy formula for the special case of an
adiabatic wall.

B=p+ 13)

Recommended g* for Laminar Boundary Layers

The definition of g* in Eq. (5) and the presented analysis suggest
a generalization to the two-constant representation for g* given in
Eq. (10). This expression is expected to be more appropriate than
that of Eckert, as it is developed from solutions of the boundary-
layer equations with no assumptions involving the value of the wall
enthalpy ratio. For Prandtl numbers roughly in thé range of 0.67
for inert gases and 0.72 for air, the entries in Table 1 suggest the
engineering approximation

g* = 0.45+0.55¢ + 0.16r[(y — 1)/21M? (14)

with r = ./Pr* and y based on reference conditions.
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Fig. 1 Eckert and Meador—Smart reference enthalpies.

Figure 1 shows a plot of Eq. (14) for a large range of wall temper-
ature conditions up to Mach 6 (labeled Meador-Smart). The Eckert
reference enthalpy is also included for comparison purposes. The
first thing to note from Fig. 1 is that g* increases with wall enthalpy
ratio (¢) and Mach number for both methods. This is to be expected,
because a meaningful reference enthalpy must account for heat input
or removal at the wall, as well as viscous heating. Another feature,
already noted in the preceding section, is that both formulations pro-
duce an almost identical g* for adiabatic wall conditions. For cold
wall conditions, defined as when T, < T,,, (i.e., the flow is being
cooled), Fig. 1 shows that the current reference enthalpy formula-
tion supplies a lower g* than Eckert. This difference increases with
Mach number and the amount by which 7, is less than T,,. For
¢ =0.25 and M, = 6.0, the current formulation is 20.5% lower than
Eckert. For hot wall conditions, where T,, > Ty, (i.e., the flow is be-
ing heated), the current formulation supplies a higher g* than Eckert.
For ¢ = 6.0 and M, =0.0, this difference is 7.1%. The usefulness
of both formulations for prediction of laminar flat-plate boundary
layer properties is quantified in a later section by comparison with
numerical solutions of the boundary-layer equations.

Comparison with Dorrance’s Reference Enthalpy

A possible concern with the proposed definition of g* is that
it does not generally agree with a similar expression deduced by
Dorrance.® With C = put/ pe it and the requirement that (t,,)* = 7y,
Dorrance correctly used a formal solution of the momentum bound-
ary layer equation to write the reciprocal of C* as the ratio of two
integrals. However, his next step, near the bottom of p. 137 in Ref. 5,
where the integral ratio is replaced with an approximation, is enig-
matic. Our best guess, based on use of his previous equations to
evaluate the denominator integral and to s1mphfy the numerator
integral, is that an essential intermediate step is

1 e Cag
5=/0 (E)‘ af ~ /O—df f—-df (1s)

whereas the equality clearly states that nothing informative is de-
termined (it is simply 1 = 1). The approximate equalities used sub-
sequently by Dorrance demonstrate the risk of replacing part of an
integrand with its average and taking it outside the integral. Accord-
ingly, we do not accept his result

1
(g*)l“”=/ (NI " df - (16)
0

for viscosity proportional to 7", nor do we regard the agreement
with Eq. (5) for n = 0 as anything but fortuitous. The reader should

observe that the notation here is different from that of Dorrance,
including our f being his f’.

Comparison with Numerical Solutions
of the Boundary-Layer Equations

Reference enthalpy predictions of skin friction coefficient and
other boundary-layer properties can be tested for accuracy by com-
parison with numerical solutions of the boundary-layer equations.
In the current work the compressible boundary-layer code listed
in the text by Cebeci and Bradshaw’ has been used for this pur-
pose. This code solves the compressible boundary-layer equation
set with the assumption that both y and Pr are constant through the
layer. Figure 2 shows a comparison of C; vs Mach number plots
at different values of ¢ calculated using the proposed reference
enthalpy formula, Eckert’s reference enthalpy formula, and numer-
ical solutions for laminar flow over flat plates. Under adiabatic wall
conditions both reference enthalpy formulations predict C s very ac-
curately, with the maximum error reaching 1.2% and 1.4% for the
proposed and Eckert formulas, respectively, at M, = 6.0. For cold
wall conditions it has already been noted that the proposed formu-
lation produces a lower g* than Eckert, so it is not surprising that
the proposed formulation predicts a higher C s than Eckert. It is also
interesting to note that the numerical solutions of cold wall flows
fall between the two reference enthalpy predictions, except for very
cold walls at low Mach number, where both reference enthalpy for-
mulas overpredict C ¢. For hot wall conditions both methods predict
C with an error of less than 1.2%.

In general, both formulations predict laminar C very well but be-
come slightly less accurate as Mach number increases. Table 3 shows
the percentage differences between the Cy calculated by numeri-
cal solutions and the reference enthalpy formulas at M, =6.0. The
proposed formula remains within 1.2% of the numerical solutions,
whereas Eckert’s formula differs by a maximumof 1.9% at ¢ =0.25.

The Reynolds analogy relates values of Cy and C}, in boundary-
layer flows through

2

C;/2C, = Pr} a7

Table 3 - Percentage error in laminar flat plate Cy
at Mach 6 of both reference enthalpy formulations

) A (Meador-Smart) A (Eckert)
025 +1.12 ~1.86
1.00 +0.85 —1.65
2.00 +0.55 -1.39
4.00 -0.13 -1.20
Ty =Ty —-1.22 —1.45
0.7
i LT Pt R
=T
~ Brr > Y
0.65 NG g
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=
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Fig. 2 Laminar Cy prediction comparison with numerical solutions. -
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Fig. 3 Laminar Cj predictioh comparison with numerical solutions.

Use of Eq. (17) in conjunction with the C s values calculated with

the reference enthalpy formulas supplies values for C,, that are com-
pared with numerical solutions in Fig. 3. The same trends indicated
in Fig. 2 for C; are repeated for C;, with the proposed reference
enthalpy formulation being closest to the numerical solutions over
a wide range of wall temperature conditions and Mach numbers.
The results presented in Figs. 2 and 3 not only indicate that the pro-
posed reference enthalpy formula supplies a slightly more accurate
prediction of laminar C and C,, than Eckert’s formula, but confirm
that useful reference enthalpy formulas can be developed directly
from the boundary-layer equations with no empirical dependence
on numerical solutions or experimental data.

Turbulent Boundary Layers

In a manner similar to our use of Van Driest’s enthalpy ratio to
recommend a g* for laminar boundary layers, we use Whitfield and
High’s first-order theory® to get a g* for turbulent boundary layers.
Based on their approximation

T(f)/tw % (0/ pw) eXp(=4 %) - 13)

deduced from the assumption that the Reynolds stress is proportional
to the local turbulent kinetic energy and that the mean velocity obeys
a 1 power law (f = {y/8}"/"), these authors solved a turbulent ver-
sion of Eq. (8) obtained by replacing the molecular Prandtl number
with a turbulent Prandtl number (Pr,) containing -molecular and
eddy contributions. Their resulting ordinary differential equation is

g+ (=DM —e[(y = DMZ+ @) (@) f* g’ +(8)*/g] = 0.0
(19)

where differentiation is once again with respect to the single inde-
pendent variable f.

Withe =1 — Pr, taken to be a small number, Whitfield and High®
produced zero- and first-order perturbation solutions of Eq. (19)
for both an adiabatic wall and ¢ = 1. Use of the hypersonic flow
approximation M2>> 1 enables simplification of these solutions,
such that for an adiabatic wall we get

y —1
awwl A

8
xMZ{l—f2+s[1-f2+ >

_ fat2
(a+1)(a+2)(1 7

+2(1+f)€n(1+f)+2(1—f)@w(l—f)—“wZ]} (20

Application of the wall boundary condition g;,(0)=1-r
[(y — 1)/2]M? and substitution of r = 3/Pr and & =17.5 (from
Ref. 8) yields

8a

&= 1—Pr, = (1—7‘)[4&»2—1—m

-1
] =0.074914
(21)

giving Pr; =0.9251. Integration of Eq. (20) according to the defi-
nition of g* in Eq. (5) leads to

. Y=\l oy b
e (5 )efi-nfi- e ) e

This expression for g* can be shown to have the same form as the
Eckert reference enthalpy formula of Eq. (1):

gt =05(1+¢) + Bri(y — 1)/21M?
but with

2 6a

Likewise, for ¢ =1, the first-order solution of Eq. (19) with the
assumption of hypersonic flow can be written as

: -1
g(¢=1)’~vl+<VT)MZ{f(1-f)
SOlf _ pa+ly 4f _ fo
+6|:(ot+1)(a+2)(1 -t
+f(1—f)+f€fvf—(1—f)fn(1—-f)” (24)

Integration according to the proposed definition of g* also leads to
Eq. (1), but with

Cuf, T @1
ﬁ“ﬁr{l 28[1 @ D@+ D@+

Contrary to the different 8 (adiabatic wall) and 8(¢ = 1) in Table 2
for an airlike laminar boundary layer on a flat plate, here we have
near equality of the two values of B. Atleast partly responsible is the
somewhat closer to unity Pr, =0.9251. These results suggest that
a reasonable reference enthalpy formulation for turbulent boundary
layers is

:|} =0.1646 (25)

g =0.5(1+¢) +0.16r[(y — 1)/2]1M? (26)

The reference enthalpy formulation of Eq. (26) may now be used
to estimate the properties of turbulent compressible boundary layers.
Several relations for incompressible turbulent flat-plate skin friction
are offered in the literature. We have chosen the formula

_0.02296
f= Re01%

7

listed by Schlichting,” which is based on the data of Nikuradse!® at
Reynolds numbers between 1.7 x 10° and 18 x 10°. Following the
procedure used to develop Eq. (4) for laminar boundary layers, we
arrive at the following relation for the skin friction coefficient in tur-
bulent compressible boundary layers, where the reference quantities
are calculated at the reference enthalpy indicated by Eq. (26):

0.02296 [ p* 0.861 - 0.139
Cr= Re0139 E IL: (28)

The accuracy of the proposed reference enthalpy formulations for
the prediction of turbulent skin friction can be gauged by comparing
the results of Eq. (28) with values calculated using Van Driest I1.!!
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Table4 Percentage difference relative to Van
Driest II in turbulent flat plate C; at Mach 6
of both reference enthalpy formulations

¢ A (Meador—Smart) A (Eckert)
©0.25 +9.2 —6.5
1.00 +0.7 -12.0
2.00 -6.2 —-155
4.00 —-16.1 —-23.2
w=Taw —26.6 -30.9
0.004 —_r
Van Driest it
------ Eckert
= = Meador-Smart
0.003
=TIN
-~ ¢=1.0
- g ~ $=0.26
© TNO
0.002 SR
e e e L Pyt My
: T e B
( ~‘=: --._EE
0.001 e=a0 =" ik e
00

2 3 4 5 6
M,

e

Fig. 4 Predictions of turbulent skin friction.

Figure 4 shows plots of C; vs Mach number for each of these meth-
ods at different values of ¢ at Re, =107. Values calculated from
Egq. (28) using the Eckert formulation are added for reference. The
first thing to note from Fig. 4 is that both reference enthalpy formu-
lations predict a C that follows the same trends as in Van Driest IT
for values of ¢ between 0.25 and 4.0. However, the typical 20%
difference between the reference enthalpy-generated Cy and Van
Driest II is considerably greater than the error associated with ref-
erence enthalpy predictions of laminar flow skin friction (Fig. 2).
Under adiabatic wall conditions, both reference enthalpy formula-
tions underpredict C at all Mach numbers, with maximum errors
of 27 and 31% for the proposed and Eckert formulas, respectively,
occurring at M, = 6.0. These differences are due in part to the offset
between the incompressible correlation of Eq. (27) and Van Driest II
at M, =0.0. '

Both reference enthalpy formulations predict C; values closest
to Van Driest II for cold wall conditions. Errors become larger with
increased ¢. This is partially due to the discrepancy between both
reference enthalpy formulas and Van Driest II at M, =0 and large
¢(i.e., hot walls), which could be alleviated through the use of an
incompressible correlation that accounted for the effect of heat trans-
fer. Table 4 shows the percentage difference between Van Driest II
and reference enthalpy formulas at M, = 6.0. The proposed method
predicts C s values within 16% of Van Driest I for all cases except an
adiabatic wall, whereas Eckert’s method predicts C; values within
23% of Van Driest II for the same range of wall conditions. It is
also interesting to note that Eckert’s method is slightly closer to Van
Driest II for ¢ =0.25 and M, =6.0. Given the relative simplicity
of applying reference enthalpy formulas, this level of accuracy is
considered adequate for preliminary design calculations of viscous
drag and heat transfer in high-speed flows.

Conclusions

A simple average of the local enthalpy over the velocity profile is
proposed as the proper definition of reference enthalpy for the pur-
pose of quasi-one-dimensional treatment of compressible boundary
layers. Substitution of generalized enthalpy profiles obtained from
solutions of the boundary-layer equations into this definition leads
to simple expressions for the reference enthalpy. In particular, for
airlike gases with Prandtl number not deviating too much from 0.7,
expressions for the reference enthalpy ratio applicable to laminar
and turbulent flow over flat plates are

¢*(lam) = 0.45 + 0.55¢ + 0.16r[(y — 1)/2]M?
g*(turb) = 0.5(1 + ¢) + 0.16r[(y — 1)/2]M?

Reference enthalpy—based predictions of flat plate laminar skin fric-
tion and heat transfer were compared with exact numerical solutions
of the boundary-layer equations. The proposed and Eckert formulas
predicted skin friction coefficients within 1.3 and 1.9%, respec-
tively, of the numerical solutions for both hot and cold walls up to

" Mach 6. Similar accuracy was obtained for the heat transfer coef-

ficient through use of the Reynolds analogy. Overall, the proposed
laminar formula was slightly more accurate than Eckert for the pre-

- diction of both Cy and C;,.

Predictions of the flat-plate turbulent skin friction coefficient were
compared with Van Driest II, using an incompressible correlation
based on high Reynolds number turbulent data. Once again, the
proposed formula predicted C; slightly more accurately than the
Eckert formula over a wide range of wall temperature conditions up
to Mach 6. However, the accuracy of both the proposed and Eckert
reference enthalpy formulas was less impressive than for laminar
flow, with typical discrepancies of 20% relative to Van Driest II.

The development of these reference enthalpy formulas required
no empirical dependence on numerical solutions or experimen-
tal data but followed directly from solutions of the compressible
boundary-layer equations. This work therefore provides a theoret-
ical basis for the empirical reference enthalpy formulas of Eckert
and others.
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