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Abstract

This paper presents a new mesh-free numerical method
based on MultiQuadric (MQ) Radial Basis Function Networks
(RBFNs) for the analysis of viscoelastic flows. The method
uses universal approximation RBFNs to represent the numeri-
cal solution of Partial Differential Equations (PDEs) governing
viscoelastic flows. The main advantages of the method are its
mesh-free nature and ease of implementation. The working of
the method is demonstrated in detail with the simulation of the
viscoelastic flow through straight (Poiseuille flow) and corru-
gated tubes. In the case of corrugated tube flow, the irregularly
shaped domain is extended to a regularly shaped one in order
to simplify the pre-processing. The method achieves the Weis-
senberg number of at least up to 100 for the Poiseuille flow of
UCM and Oldroyd-B fluids using a collocation density of 6 X 6
and about 4 for the corrugated tube flow of Oldroyd-B fluid us-
ing a collocation density of 13 x 25.

Introduction

The Finite Difference Method (FDM) [24, 26], the Finite Ele-
ment Method (FEM) [7, 12, 30], the Boundary Element Method
(BEM) [2, 21] and the Finite Volume Method (FVM) [13, 20]
are among the principal methods for numerical solution of prob-
lems in continuum mechanics. These methods are based on
some discretisation of the domain of analysis into a number
of elements and have underpinned enormous progress. How-
ever, mesh generation especially for 3D problems presents sig-
nificant difficulties in the analysis of engineering problems.
Considerable effort has been devoted in recent years to the
development of the so-called meshless methods. A number
of meshless methods have been developed such as Element
Free Galerkin method (EFG) [3], Reproducing Kernel Particle
Method (RKPM) [15], Finite Point Method (FPM) [19], Mesh-
less Local Petrov-Galerkin method (MLPG) [1], neural net-
work based method and several others. Neural Networks (NNs),
which are capable of univesal approximation, have found appli-
cations in many disciplines [11]. Particularly, the concept of
solving PDEs using NNs was first introduced by Kansa [14] in
the case of Radial Basis Function Networks (RBFNs) and by
Dissanayake and Phan-Thien [8] in the case of Multilayer Per-
ceptrons (MPs). Typically for a NN-based method, each vari-
able in the governing equations is represented by a NN and then
the training process is employed to make the networks satisfy
the PDEs and also boundary conditions. It should be empha-
sized that this procedure requires only a set of unstructured dis-
crete collocation points and in that sense the NN-based method
can be regarded as a mesh-less numerical method. Since these
original works, further interesting developments were reported,
including Takeuchi and Kosugi [27] in the MPs case and Kansa
[14]; Dubal [9]; Sharan et al [25]; Zerroukat et al [28] and Mai-
Duy and Tran-Cong [16, 18] in the RBFNs case. For exam-
ple, the RBF approximation schemes using MultiQuadric basis
function (MQ) were verified successfully for numerical solu-
tion of elliptic PDEs (Laplace, Poisson and biharmonic equa-
tions) by Sharan et al [25] and heat tranfer problems by Zer-
roukat et al [28]. Recently, Mai-Duy and Tran-Cong [16, 18]

1321

proposed new methods based on MQ-RBFNs for approxima-
tion of functions and numerical solution of ODEs and ellip-
tic PDEs. The so-called Direct RBEN (DRBFN) and Indirect
RBFN (IRBEN) methods were studied and it was found that
the IRBFN method yields a superior accuracy in comparison
with the DRBEN and also with other NN-based methods [16].
Furthermore, the IRBFN method has also been developed suc-
cessfully for the analysis of viscous flows [17]. In this paper,
the IRBFN method is further developed for numerical solution
of the PDEs governing viscoelastic flow problems which are
challenging due to a combination of ellipticity and hyperbol-
icity in the governing equations. The paper is organised as fol-
lows. In the second section, the governing equations for the flow
of UCM and Oldroyd-B fluids are reviewed. In the third sec-
tion, numerical formulation of viscoelastic flow problems using
IRBFNS is presented in which the IRBFN formulation for ax-
isymmetric flow problems is given in detail. The fourth section
describes numerical results obtained by the IRBFN method for
the simulation of the flow through a straight tube (test problem)
and a corrugated tube (benchmark problem). Finally, the last
section gives some concluding remarks.

Governing equations
The flow is assumed to be isothermal, creeping, and incom-
pressible for which the equations of motion are
V.o = 0,
Viu = 0,

xeV,
xeV,

ey
@

where (o) is the total stress tensor and u is the velocity vec-
tor. For the Oldroyd-B model, the total stress tensor (G) can be
written as

6 =—P1+2n,D+r, 3)

where P is the pressure, 1 is the unit tensor, 1, is the “New-
tonian contribution” viscosity, D is the rate of strain tensor and
(t) is the extra stress tensor obeying

AT
A—+1=21,D 4
A[ + np ’ ( )
in which A is the relaxation time, 1, is the “polymer contribu-
tion” viscosity and % is the upper convected derivative of T
defined by
At Ot

— = —+4u-Vti—-Vtu—t-Vu'.

Nt ot )

The constants 1, and 1, are defined by the relationships

Nn

=Mn+ , o= .
=My Nn+Mp

If n, = 0, the Oldroyd-B model reduces to the UCM model. To
get the Newtonian model we simply set A = 0.
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Numerical formulation based on radial basis function net-
works

The basic derivation of the present IRBFN method is given else-
where [16, 18]. In this section, the method is briefly summa-
rized for convenience and then developed further for the numer-
ical solution of the PDEs governing viscoelastic flows. Each
variable in the governing equations is represented by a RBFN
based on the indirect approach [16]. For example, considering
a variable y in the governing equations, the second order deriv-
atives of y with respect to x; are decomposed into radial basis
functions, followed by successive symbolic integrations to ob-
tain a closed form expression for lower order derivatives and
finally the function(s) itself as follows

m

v = Y wigl), 6)
i=1

m

i = [wsieds = Lt [¢Owax, @
Vi = [wdy

y wli) ( g(i)(x)dx~>dx~. (8)
Lo [( [z ) ax

where a superscript within parentheses, e.g. (i), is used to de-
note elements of a set under consideration, e.g. a set of RBFs;
m is the number of RBFs; {w())} | is the set of weights and

{g(i)}ﬁ.”: | is the set of radial basis functions. In this work the
chosen RBF is the Multiquadric (MQ) given by

) =gV (lx—c) = V() = V2 a2 ©)

where x is the collocation point, ¢ is the ith centre, r is the
distance between the collocation point and the ith centre and
a'?) is the ith RBF width. It should be noted that the RBF width
affects the performance of RBFNs, however no general mathe-
matical theory has been developed for determining its optimal
value [24]. In the present work the RBF width is determined
based on the following relation

a\) — Bd(i)a (10)

where P is a factor, B > 0, and d() is the distance from the
ith centre to the nearest centre. The closed form variable rep-
resentations thus obtained are then substituted into the govern-
ing equations and boundary conditions to discretise the system
via the mechanism of point collocation at {)c(")}:.’:1 where n is
the number of collocation points. Once the centres and widths
are chosen in advance, the unknowns of the system of algebraic
equations obtained contain only RBF weights. The method does
not require any kind of “finite element-type” discretisation of
the domain and its boundary. Instead, two sets of random points
distributed throughout the domain and on the boundary are re-
quired (Figure 1). The first set defines the centres of the RBFs
and the second defines the collocation points. The two sets of
points can be different, however experience shows that if the
two sets are the same better results are obtained. The applica-
tion of the method to the present problem, i.e. (1)-(5) together
with boundary conditions, results in the following sum squared
error (SSE), which is to be minimised in the sense of the general
least squares principle,

SSE — SSE1 +SSE» + SSE3, (11)

where SSE|, SSE; and SSE3 are the sums of squared errors
which are employed to ensure that the neural networks sat-
isfy the governing equations, the identity of networks associated

with each variable in governing equations (e.g. the various net-
works representing the same variable y are forced to be equal
resulting in a constraint equation) and the boundary conditions
respectively. The form of SSE3 depends on the problem to be
solved while SSE| and SSE; can be written in the general form
provided that the governing equations are given. A nonlinear
system of algebraic equations with unknowns RBF weights is
thus obtained and can be solved by using a Picard-type scheme
that consists of the following steps

e Guess the initial velocity for the first iteration (usually
zero in the present work);

e Render the non-linear terms (namely u - V1, Vt-u,7- Vu'
in the upper convected derivatives) linear by using the cur-
rent estimate of the velocity field;

e Solve the linear system obtained in the sense of the general
linear least squares principle for the new estimate of the
velocity field;

e Check for convergence. The convergence measure (CM)
at the kth iteration is defined as follows

T3 T (i (x0) — i (x0))2

CM = -
Y3y Xy (x(0)))2

(12)

The solution procedure is terminated when CM < tol,
where tol is a set tolerance;

e If not yet converged, repeat from step 2;

e If converged, stop.
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Figure 1: RBF centres and discretisation with collocation
points. Legends o: RBF centre and : collocation point. RBF
centres are regularly distributed for best results while colloca-
tion points can be random.

In the following, the working of the present IRBFN method is
demonstrated in detail with the simulation of viscoelastic flows
through straight and corrugated tubes. In the case of axisym-
metric flow problems, the SSE; and SSE; take the following
forms

se = ¥ [ef] 0 X [R) X [ES]
(i)eQ (i)eQ (i)eQ
2 a2 a2
¢ LI g
+ Y [El@]z (13)
(i)eQ
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The SSE3 will be given later as it depends on the problem to be
solved.

Numerical examples

The flow through straight and corrugated tubes is
chosen and simulated here to verify the IRBFN
method. In the following numerical examples, the
tolerance for the convergence test is set to Se — 3.
A simple test problem - Axisymmetric Poiseuille flow

The problem of axisymmetric Poiseuille flow of UCM and
Oldroyd-B (o = 1/9) fluids is considered here. Dimensionless
variables are introduced by scaling lengths with the radius of the
tube R, velocity components with the maximum speed U (on the
centreline) and stress components and pressure withnU /R. The
closed form solution is given by

e =1 =12, ttye =0, 22)

2
Tze = We(1— ) (Bgrg) ) Trze = (1 — @t )%7‘5)%:07(23)

where W, = 2AU /R = Ay is the Weissenberg number in which
¥ is the shear rate at the wall. Owing to axisymmetry, only one

half of the fluid domain with the dimension 1 x 1 is consid-
ered. At the inlet and the outlet, Dirichlet boundary conditions
for the velocity and Neumann boundary conditions for the extra
stress are imposed. No-slip conditions are enforced on the solid
boundary and symmetry conditions are specified on the centre
line. Hence, for this problem, the SSE3 takes the form

SSEy = Z{ur'}+):[“z -(1- ()2)]2

(i)el

E () £ (' £

—+

+
™
——
a
Rz
—
[

(24)

where I, O, W, C stand for Inlet, Outlet, Wall, Centreline, re-
spectively.

The fluid flow is simulated numerically by the present IRBFN
method. The quality of the solution is measured with the norm
of the error of the velocity field denoted by N.u and of the stress
field denoted by N,t. The norm of the error of the velocity field
for instance is defined as

Not — \/ 1 (D) = e (x))2 4 (u(x0) — e (x9))2]
‘ T2 (e (XD))2 1 (e (x0) 2]
(25)

As mentioned above, the RBFN solution depends on the value
of the RBF width . Two studies of the parameter f are carried
out using a uniform centre density of 6 x 6. The first is to inves-
tigate the effect of  on the quality of the solution at W, = 10.
The value of B is varied from 1 to 10 with an increment of 1.
The method is convergent for all values of B with a high accu-
racy as shown in Table 1. The second study is to investigate the
convergence behaviour with respect to the Weissenberg number.
Table 2 presents the error norms Neu and N, 7T of the solution of
Poiseuille flow at § = 9 for some Weissenberg numbers. The
present method achieves up to at least W, = 100 for both UCM
and Oldroyd-B models using very low centre density of 6 X 6.
The stress obtained at W, = 100 on the middle plane is displayed
in Figure 2 showing good agreement with the exact solution.

A benchmark problem - Corrugated tube flow

Due to the fact that the corrugated tube has converging-
diverging sections, smooth boundaries and also no inflow or
outflow boundaries, the flow in corrugated tube was suggested
as a standard test problem at the 4th2 Workshop on Numerical
Methods in Non-Newtonian Fluid Mechanics, held at Spa, Bel-
gium in 1985 [5]. The problem has been studied by several dif-
ferent numerical methods, e.g. pseudospectral finite difference
method (PSFD) and pseudospectral cylindrical finite difference
method (PCFD) by Pilitsis and Beris [22], EEME by Burdette
et al [5] and BEM by Zheng et al [29]. The radius of the undu-
lating tube along the z-axis (Figure 3a) is given by

R:R[l—acos (%)], (26)

where R is the mean radius of the tube, a is the amplitude of
the undulation and L is the corrugation wavelength. The flow is
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B 1 2 3 4 5
Neu | 8.63¢e—4 | 5.6le—4 | 2.33¢e—4 | 6.42¢—5 | 1.94e—5

B 6 7 8 9 10
Neu | 1.18¢—5 | 3.54¢e—6 | 6.97¢e—6 | 8.84¢—6 | 1.13¢—5

Table 1: Poiseuille flow, UCM model, centre density of 6 x 6, W, = 10: Effect of B on the quality of the solution (error norm N,u).

W, 1 20 40 60 80 100
Neu | 2.05e—5 | 2.66e—5 | 1.85e—4 | 4.22¢—4 | 1.43e—3 | 1.90e—3
Net | 6.08¢—6 | 1.73e—4 | 3.13e—4 | 6.52¢e—4 | 2.56e—3 | 3.38¢—3

Table 2: Poiseuille flow, UCM model, centre density of 6 x 6: Error norms of the solution of Poiseuille flow at B = 9.0 for some

Weissenberg numbers.
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Figure 2: Axisymmetric Poiseuille flow of UCM and Oldroyd-
B fluids at W, = 100 using centre density of 6 x 6: The exact
solution, computed first normal stress difference and computed
shear stress on a middle plane are denoted by {solid line, +, *}
and {dashed line, X, 0} for UCM and Oldroyd-B fluids, respec-
tively.

assumed to be axisymmetric and periodic with wavelength L, so
that only the reduced domain shown in Figure 3b is considered.
At the inlet and the outlet, the periodicity conditions for the
velocity, velocity gradient and extra stress are employed. No-
slip conditions and the symmetric conditions are imposed on
the solid boundary and the centreline respectively. The pressure
difference between the inlet and the outlet AP together with a
reference value of the pressure are also enforced. The SSE3
now becomes

ssey = Y {u;u_urm}z . {u;m_u;(n}z
(iel,(j)eo (iel,(j)eo
T SR (7 ATI) SN VR (A
(i)el.(j)eo (i)el,(j)eo
r(i r(Jj 2 r(i r(Jj
+ ¥ {uz(;)*uz(rj)} + oy {“ze’)*”z.(zj
(iYel.(j)eo (i)el.(j)eo
+ ¥ {tfﬁ”—ﬁﬁ”}ﬁ y {112’7 o/
(i)el,(j)eo ()el,(j)eo
ri 7 2 r(i r(Jj
P R () ST S e I
(i)el,(j)eo (el (j)eo
vy M;(f)} y {ugu)}z LY {u;m}z

a. Corrugated tube

b. Reduced domain of analysis

c¢. Extended domain and network centres
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Figure 3: Corrugated tube problem.
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where I, O, W, C stand for Inlet, Outlet, Wall, Centreline, re-
spectively.

The governing equations here are made dimensionless by scal-
ing lengths by R, velocity components by Q/ R? and stress com-
ponents and pressure by nQ/R? where Q is the flow rate through
the tube. Following Pilitsis and Beris [29], the importance of
elastic effects is measured by the Weissenberg number defined

as

AQ
R3”
where Q is the flow rate. The quantity of interest is the flow
resistance, fRe, defined by

W, = (28)

(29)

It can be seen that if the networks are trained to satisfy the gov-
erning equations on the extended domain Q* which contains
the original domain  and also the given boundary conditions,
the solution obtained is also the solution to the problem on the
original domain Q. Hence, in order to make the pre-processing
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more convenient, the non-rectangular original domain can be
extended into a number of rectangular subdomains provided
that these subdomains together can cover entirely the original
domain Q. For the present problem, the undulated domain is ex-
tended into a rectangular one as shown in Figure 3c. Then, a set
of centres can be easily generated using the intersection points
of the rectangular gridlines (Figure 3c) while a set of colloca-
tion points consists of two parts. The first part is the same as the
set of centres where the governing equations are enforced and
the second part where the boundary conditions are enforced can
be simply chosen as the intersection points between the curved
boundary and the rectangular gridlines through the centres.

a.a=0,R/L=05

~0.0348

Figure 6: Corrugated tube problem, Oldroyd-B fluid, W, = 2.0,
B = 8, centre density of 13 x 25: Contours of v, v; and T;.

a. Contour of v,

Figure 4: Corrugated tube problem, Newtonian fluid, = 10,
centre density of 9 x 17: Velocity vector fields corresponding to
different undulation amplitudes.

a. Contour of v,

Figure 7: Corrugated tube problem, Oldroyd-B fluid, W, = 3.0,
B = 8, centre density of 13 x 25: Contours of vy, v; and T;.

Figure 5: Corrugated tube problem, Newtonian fluid, B = 8,
centre density of 13 x 25: Contours of v, v, and T;.

The present IRBFN method for numerical solution of the corru-
gated tube flow is first verified with the Newtonian fluid. A
number of undulation amplitudes, including the special case
of straight tube, are studied. The flow resistances fRe ob-
tained by the present method using the centre density of 9 x 17
are compared with those from other methods, which shows a
good agreement. In the case of the straight tube (¢ = 0 and
R/L = 0.5), the error between the present IRBFN and the exact
solution is 2.41e — 4%. For the corrugated tube (a = [0.1,0.2]
and R/L = 0.5) the difference between the present IRBFN re-
sults and the results of PCFD [22] is within about 3% (Table 3).
The corresponding velocity vector fields are displayed in Figure
4. Attention is now focused on the flow of an Oldroyd-B fluid
(ov=0.85) through the corrugated tube (a =0.1 and R/L=0.5).
Three centre densities of 9 X 17, 11 x 21 and 13 X 25 are em-
ployed to simulate the corrugated tube flow. In the case of New-
tonian fluid, the contours of u,, u; and T,, are symmetric about
the narrowest section (Figure 5). Symmetric behaviour also ap-
plies to other variables except pressure, however for brevity they
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Geometries IRBEN | Analytical BEM PCFD | EEMM | Pertb
a=0.0,R/L=0.5 | 16.0000 16 15.9999 - - -
a=0.1,R/L=0.5 | 17.7757 - 17.73 17.75 17.71 17.85
a=02,R/L=0.5 | 23.4234 - 23.22 23.28 - 24.16

Table 3: Corrugated tube problem, Newtonian fluid, centre density of 9 x 17, B = 10: Comparison of the flow resistance fRe between
methods. Note that the results from other methods such as the Perturbation (Pertb) are extracted from the paper by Zheng et al [30].

9x17,p=10
W, =0 17.7757
W, = 1 17.6004
W, =2 17.6886
W, = 3.01 17.6366
W, =4.15 17.0392

11 x21,=9 | 13x25,=38
17.7318 17.7354
17.6969 17.7075
17.8184 17.7409
17.4296 17.7580
16.9804 17.1408

Table 4: Corrugated tube problem, Oldroyd-B fluid (o0 = 0.85), the flow resistance fRe obtained with three centre densities of 9 x 17,

11 x21 and 13 x 25.

_£0.02

Figure 8: Corrugated tube problem, Oldroyd-B fluid, W, =
4.14, B = 8, centre density of 13 x 25: Contours of v, v; and
Tyz-

are not displayed. When the elasticity component is introduced
(i.e. A > 0), the symmetry about the narrowest section is de-
stroyed. For example, the contours of t,, are clearly unsym-
metric as shown in Figures 6 - 8, where it can be seen that the
stress level increases with increasing W, number. It is observed
that the velocity vector field does not change by much in com-
parison with that of Newtonian fluid. Table 4 displays the flow
resistances fRe obtained with three centre densities, which are
a bit lower than the results of about 17.7 obtained by the PCFD
method, however the difference is still within about 3%. The
IRBEN result corresponding to the highest density (13 x 25) is
closer to the PCFD result than that of the lowest density (9 x 17)
as expected.

Conclusions remarks

This paper presents the successful development and implemen-
tation of the indirect multiquadric radial basis function net-
works method for numerical solution of viscoelastic flows. The
method requires only two sets of discrete data points (i.e. the
set of centres and the set of collocation points) to discretise
the governing equations and the boundary conditions and of-

fers the advantage of being mesh-free. Although the choice of
RBF width is still simple in the present work, numerical exam-
ples studied showed that the results obtained are close to the
exact and benchmark solutions. Since the RBF widths are non-
optimal and due to an evolution of the solution during the iter-
ative process, the RBF widths should be adaptive. A method
for determining the optimal value of RBF width in order to ex-
ploit the capability of the universal RBF approximation could
be investigated in future work.
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