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Abstract: A half-car model is used to investigate the dynamic response of cars with uncertainty under 
random road input excitations in this paper. The mass of the vehicle body, mass moment of inertia of 
the vehicle body, masses of the front/rear wheels, damping coefficients and spring stiffness of 
front/rear suspensions, distances of the front/rear suspension locations to the centre of gravity of the 
vehicle body and the stiffness of front/rear tires are considered as random variables. The road 
irregularity is considered a Gaussian random process and modeled by means of a simple exponential 
power spectral density. The mean value and standard deviation of the vehicle�s natural frequencies 
and mean square value of vehicle�s random response are obtained by using the Monte-Carlo 
simulation method. The influences of the randomness of the vehicle�s parameters on the vehicle�s 
dynamic characteristic and response are investigated in detail using a practical example. 
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1 Introduction 
The vibration of an on-road vehicle is predominantly excited by the unevenness of the road surface on 
which the vehicle travels. Vehicle dynamic analysis  has been a hot research topic for many years due 
to its important role in ride comfort, vehicle safety and overall vehicle performance. Numerous papers 
about the theoretical and experimental investigation on the dynamic behaviour of passively and 
actively suspended road vehicles have been published [1-3]. The quarter-car model [4], half-car model 
[5] and full-vehicle model [6] have been developed with researches related to the dynamic behaviour 
of vehicle and its vibration control.  

      Although mathematical modelling tools for analysis/computation have experienced a tremendous 
growth, most research in vehicle dynamics was based on the assumption that all parameters of 
vehicle systems are deterministic. Actually, the spring stiffness and damping rate may vary with 
respect to the nominal value due to production tolerances and/or wear, ageing... etc. The vehicle body 
mass and the tyre radial stiffness can have stochastic variations due to the variety of possible vehicle 
loading conditions and to the uncertainty of the inflating pressure of poorly maintained tyres [7]. In cars 
and buses, weight and placements of passengers often exhibit significant variability. In addition, even 
same brand and type vehicles leaving the production line may have uncertainties in size, mass and 
performance and so on. Hence, the problem of vehicle vibration subject to uncertain parameters is of 
great significance in realistic engineering applications. 

      In this paper, a four-degree-of-freedom half car model is used to investigate the vibration response 
of cars with uncertainty under random road input excitations. The vehicle�s parameters are considered 
as random variables and the road unevenness is considered a Gaussian random process and 
modelled by means of a simple exponential power spectral density (PSD), the so-called �one slope 
PSD�. The first two statistical moments of the dynamic characteristic and response are obtained by 
using conventional Monte-Carlo simulation method. A practical example is used to investigate the 
influences of the uncertainty of the vehicle�s parameters on the vehicle�s dynamic behaviour. 

2 Vehicle model and dynamic analysis 
Consider the model of a passenger car subjected to irregular excitation from a road surface as shown 
in Figure 1. The equations of motion for the vehicle body and the front/rear wheels are given by  

0)()()()( 222111222111 =−+−+−+−+ ussussussussss xxkxxkxxcxxcxm &&&&&&                                                         (1) 

0))()(())()(( 22222221111111 =−+−−−+−+ ussussussussss xxkxxclxxkxxclI &&&&&&θ                                                 (2) 

0)()()( 11111111111 =−+−−−− rutussussuu xxkxxkxxcxm &&&&                                                                                (3) 
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0)()()( 22222222222 =−+−−−− rutussussuu xxkxxkxxcxm &&&&                                                                           (4) 

and the constraints are given by [8] 

lxlxlx sss )( 2112 +=                                                                                                                                 (5) 

lxx sss )( 21 −=θ                                                                                                                                     (6) 

where sm  is the mass for the vehicle body, sI  is the mass moment of inertia for the vehicle body, 1um  
and 2um  are the masses of the front/rear wheels respectively, 1sc  and 2sc  are the damping coefficients 
of front/rear suspensions respectively, 1sk  and 2sk  are the spring stiffness of f ront/rear suspensions 
respectively, 1tk  and 2tk  are the stiffness of front/rear tires respectively. sx  is the vertical displacement 
of the vehicle body at the centre of gravity, sθ  is the rotary angle of the vehicle body at the centre of 
gravity, 1ux  and 2ux  are the vertical displacements of the front/rear wheels, 1rx  and 2rx  are the 
irregular excitations from the road surface, 1sx  and 2sx  are the vertical displacements of the vehicle 
body at the front/rear suspension locations, 1l  and 2l  are the distances of the front/rear suspension 
locations, with reference to the centre of gravity of the vehicle body, and lll =+ 21 . 

 
Figure 1. The half-car model of the vehicle. 

 

      Equations (1) to (4) can be rewritten as 

[ ]{ } [ ]{ } [ ]{ } { }PXKXCXM =++ &&&                                                                                                                  (7) 

where 
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      The displacement 1rx  and 2rx   may be represented by a random variable defined by a stationary 
and ergodic stochastic process with zero mean value. The power spectral density of the process may 
be determined on the basis of experimental measurements and in the literature there are many 
different formulations for it. In this paper for sake of simplicity, the following spectrum [7] is considered 
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      From equations (8) and (9), the power spectral density matrix [ ])(ωPS  of }{P  can be obtained 
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      Equation (7) presents a set of coupled differential equations. If the vehicle is initially considered at 
rest, then its solution can be obtained in terms of the decoupling transform and Duhamel integral [9] 

}{ [ ][ ][ ] }{∫ −=
t

T dPthtu
0

)()()( ττφτφ                                                                                                           (11) 

where [ ]φ  is the normal modal matrix of the vehicle. [ ])(th  is the impulse response function matrix of 
the vehicle, and can be expressed as 

[ ] { })()( thdiagth j= ,  







<

≥−
=

0
0

0

sin)exp(1
)(

t
ttt

th jdjj
jdj

ωωζ
ω ,                                    4,3,2,1=j           (12) 

where jω  and jζ  are respectively the jth natural frequency and modal damping of the vehicle, and 
212 )1( jjjd ζωω −= .  

      Using Rayleigh�s quotient, the jth natural frequency can be expressed as 

{ } [ ]{ } { } [ ]{ })()(2
j

T
jj

T
jj MK φφφφω =                                                                                                          (13) 

jζ  can be obtained from the following equation [10] 

{ } [ ]{ } { } [ ]{ })2( j
T
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T
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      From equation (11), the correlation function matrix of the displacement response of the vehicle 
[ ])(εuR  can be obtained 

[ ] }{ }{ ))()(()( T
u tutuER εε += = [ ][ ][ ] [ ][ ][ ] [ ]∫ ∫ +−
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0 0
111 )()()( ττφτφεττφτφ                                     (15) 

where [ ])( 1 εττ +−PR  is the correlation function matrix of the }{ )(tP . By performing a [ ])(εuR  Fourier 
transformation, the power spectral density matrix of the displacement response [ ])(ωuS  is 

[ ] [ ][ ][ ] [ ][ ][ ][ ]T
P

T
u HSHS φωφωφωφω )()()()( ∗=                                                                                          (16) 

where [ ])(ω∗H  is the conjugate matrix of [ ])(ωH , [ ])(ωH  is the frequency response function matrix of 
the vehicle and can be expressed as 
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       Integrating [ ])(ωuS  within the frequency domain, the mean square value matrix of the vehicle�s 
displacement response, that is, [ ]2

uψ  can be obtained 
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uψ is a 44 × matrix and can be expressed as 
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      From equations (5), (6) and (18), the mean square values of sm and sθ can be respectively 
obtained as follows 
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3 random response analysis of vehicle with uncertain parameters 
The vehicle�s parameters corresponding to sm , sI , 1um , 2um , 1sc , 2sc , 1sk , 2sk , 1tk , 2tk , 1l and 2l   are 
simultaneously considered as random variables. The randomness of vehicle�s parameters will result in 
randomness of the matrices [ ]M  and [ ]K  and [ ]C , and consequently the natural frequencies jω , 
mode matrix [ ]φ  and modal damping jζ . The random variables are each given a mean value ( µ ) and 
standard deviation (σ ), for example, 

ss mmsm σµ ±= . A further parameter used in this paper is the 

variation coefficient ν , defined by the ratio of the standard deviation to the mean value, that is 
µσν /= . 

      In the MCSM, N samples of the random variables are generated in given ranges. The 
implementation of the method consists in the numerical simulation of these samples associated to the 
random quantities of the physical problem, the procedure used for a deterministic analysis is repeated 
for each sample of the simulation process, obtaining then N responses that are computed to get the 
first two statistical moments of the response. For the four-degree-freedom system, the computational 
effort is acceptable for analysis of the mean value and standard deviation of vehicle�s dynamic 
characteristics and random response.  

4 Numerical examples 
The mean values of vehicle�s parameters for this study are given in Table 1 [11]. In the following 
simulations, )(54.1 meAb −=  and )/(50 smv = are taken into consideration. In order to investigate the 
effect of the uncertainty of random variables sm , sI , 1um , 2um , 1sc , 2sc , 1sk , 2sk , 1tk , 2tk , 1l  and 2l  on 
the vehicle�s dynamic characteristics and responses, the values of their variation coefficients 

smν , 
sIν , 

1umν , 
2umν , 

1scν , 
2scν , 

1skν ,  
2skν , 

1tkν , 
2tkν , 

1l
ν  and 

2l
ν  are respectively taken as different groups. The 

computational results of natural frequencies and mean square responses are respectively given in 
Tables 2 and 3, in which 10000 simulations are used. In these tables, sy mbol ν  denotes 
ν =

smν =
sIν =

1umν =
2umν =

1scν =
2scν =

1skν =
2skν =

1tkν =
2tkν =

1l
ν =

2l
ν . 

  
Table 1. The mean values of vehicle system parameters for the half-car model 
Parameters Mean values Parameters Mean values 

sm  1794.4 kg 1sk  66824.4 N/m 

sI  3443.05 kgm2 2sk  18615.0 N/m 

1um  87.15 kg 1sc  1190 Ns/m 

2um  140.4 kg 2sc  1000 Ns/m 

  1l  1.271 m 1tk  101115.0 N/m 

2l  1.716 m 2tk  101115.0 N/m 
 



 

 

Table 2. The computational results of natural frequencies (unit: rad/s) 
Model 

1ωµ  
1ωσ  

2ωµ  
2ωσ  

3ωµ  
3ωσ  

4ωµ  
4ωσ  

ν =0 4.6806 0 6.3951 0 29.2741 0 44.2143 0 
 

smν =0.1  4.4124 1.5346 6.4156 0.1570 29.2744 0.0030 44.2159 0.0181 

sIν =0.1  4.5001 1.2705 6.4191 0.1757 29.2746 0.0046 44.2158 0.0153 
 

1umν =0.1  4.6806 1.7761e-5 6.3951 0.0046 29.2741 1.4463e6 44.3664 2.2328 
 

2umν =0.1  4.6806 0.0011 6.3951 3.0496e-5 29.3760 1.4738 44.2143 4.3299e-7 

1skν =0.1 4.6804 0.0015 6.3863 0.1854 29.2741 1.9989e-7 44.2132 0.9091 

2skν =0.1  4.6745 0.1929 6.3953 0.0027 29.2753 0.2373 44.2143 2.2220e-6 

1tkν =0.1 4.6805 0.0010 6.3851 0.1336 29.2741 1.9962e-6 44.1889 1.2904 

2tkν =0.1 4.6768 0.0394 6.3951 5.5457e-4 29.2400 1.2322 44.2143 1.4359e-7 

1l
ν =0.1 4.3879 1.5790 6.4118 0.3002 29.2741 1.3219e-5 44.2162 0.0294 

2l
ν =0.1 4.3393 1.7091 6.4089 0.0377 29.2746 0.0091 44.2143 3.9161e-5 
ν =0.1 4.0998 2.3417 6.4495 0.4498 29.3639 2.0153 44.3473 2.7629 

 
Table 3. The computational results of random responses  

Model 
2

smψ
µ  
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m2 

2
smψ

σ  

 
m2 

2
Sθψ
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1umψ
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310×  
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σ  

 
  m2 

2
2umψ

µ

210×  
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2umψ
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m2 

ν =0 2.7531 0 61.2658 0 1.0414 0 8.7759 0 

smν =0.1 2.7873 73.6973 61.7905 4.9045 1.0245 133.1999 8.7487 112.4368 

sIν =0.1 2.7309 41.9330 61.8825 2.8877 1.0242 126.1182 8.7191 55.0714 

1umν =0.1 2.7508 7.4168 61.2414 2.2477 1.0405 16.5686 8.7733 5.3070 

2umν =0.1 2.7454 18.4273 61.2085 4.9764 1.0371 46.5648 8.7515 29.8518 

1scν =0.1 2.7531 0.1774 61.2657 0.0353 1.0414 1.4590 8.7758 1.5383 

2scν =0.1 2.7542 4.4651 61.2821 0.9915 1.0430 34.9298 8.7874 28.9713 

1skν =0.1 2.7830 21.5635 60.3418 6.6719 1.0294 98.9414 8.7456 16.8911 

2skν =0.1 2.7690 10.0367 61.5951 1.4093 1.0403 19.9863 8.7749 26.9630 

1tkν =0.1 2.7814 10.8305 61.8612 1.0039 1.0606 146.0841 8.8048 78.4056 

2tkν =0.1 2.7536 19.7375 61.2539 5.6703 1.0405 86.6988 8.8639 89.0602 

1l
ν =0.1 2.6483 23.2473 61.6481 11.0713 1.0239 160.8900 8.6768 62.6106 

2l
ν =0.1 2.9052 84.4541 62.7997 10.5128 1.0301 105.0050 8.8633 42.9070 
ν =0.1 3.1133 237.3606 55.4829 36.7227 1.0395 940.1963 8.8847 516.9753 

 
      From Table 2 and 3, it can be obtained that the uncertainty of the vehicle�s natural frequencies is 
dependent on the uncertainty of vehicle�s parameters. The randomness of the distances of the 
rear/front suspension locations to the centre of gravity of the vehicle body, that is geometric 
parameters 2l  and 1l , respectively produce the greatest effect on the vehicle�s first and second natural 
frequency. However, the change of masses of the rear/front wheels, that is 2um  and 1um , respectively 
produce the greatest effect on the vehicle�s third and fourth natural frequency. The uncertainty 
geometric parameter 2l  and vehicle body�s mass sm  produce greatest effect on the mean square 
displacement of vehicle body and real wheel, respectively. The randomness of geometric parameter 1l  
produces notable effect on vehicle�s random responses, especially for rotary angle of the vehicle body 
and front wheel. Comparing with the case that only one of the uncertainty of vehicle�s parameters is 



 

 

taken into account, the change of the vehicle�s dynamic characteristics and response are greater 
when their uncertainty are considered simultaneously.  

It should be noted that when the randomness of all vehicle�s parameters are considered, the 
standard deviations of vehicle�s random response are too big as given in Table 3. Therefore, the 
probabilistic method seems not applicable and interval analytic methods are more suitable to find the 
change range (lower and upper bounds) of vehicle�s responses.   

4 Conclusions 
In this paper, a stochastic half-car model is used to investigate the dynamic response of cars with 
uncertainty. The effect of uncertainty in the vehicle�s parameters on the randomness of the natural 
frequencies and vehicle�s random responses are presented by using the MCSM. The dynamic 
characteristics and random response of stochastic vehicles are obtained expediently. This method will 
also be applied to the dynamic analysis of random vehicles by using stochastic full-car models. 
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