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Abstract: In this paper the finite element flexibility-based formulation for a reinforced concrete frame 
element is discussed. The formulation takes account of material non-linearity on the basis of the one-
dimensional stress-strain relationships akin to the traditional fibre element. However, the fibres in this 
method are replaced by transverse integration points to improve the efficiency of the method. The 
compatibility of strain in each section is satisfied by adopting the Navier-Bernoulli hypothesis and 
effect of shear tractions on the nonlinear response of the material is neglected. Two different iterative 
solution strategies based on secant and tangent stiffness, consistent with the flexibility formulation are 
employed for solving the governing equation. The accuracy of  assumptions and performance of the 
solution schemes are studied by a numerical example.  
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1 Introduction 
Among existing finite element models (i.e. global, discrete and microscopic models) discrete models 
are a good compromise between accuracy and simplicity which is the focus of this study. 

Nonlinearity of a discrete frame element can be formulated in the framework of a lumped or distributed 
model, where lumped models consist of a frame element with two nonlinear rotational/translational 
springs (nodes) at each end [1-3] . Despite their usefulness, nonlinear lumped models typically suffer 
three main problems, zero length of plastic hinges, priori assumptions for determining model 
parameters and ample diversity of these parameters required for calibration of model. While, 
introducing a plastic hinge length obtained from an empirical relationship may alleviate the first 
problem, this technique for members experiencing extensive damage or plasticity, such as a beam-
column with high axial force, is not adequate [4]. Thus, the idea of distributed nonlinearity was 
proposed to overcome the inherent deficiencies in the lumped approach.  

The first elements with distributed nonlinearity took advantage of the classical stiffness method based 
on a predefined Hermitian displacement shape function [5, 6] . The assumption of cubic Hermitian 
displacement interpolation results in a linear curvature distribution, hence, the abrupt change of 
curvature over the inelastic hinge zone can not be captured accurately unless mesh refinement is 
carried out over the inelastic zone. Obviously, mesh refinement and application of higher order 
displacement shape functions will increase the accuracy but also increases the analysis time.  

Generally, the stiffness and flexibility method have the same degree of approximations. However, in 
frames, adopting some kinematic assumptions with the flexibility formulation uncouples the equilibrium 
equations from compatibility and they can be satisfied exactly. In such a case the efficiency of the 
formulation is improved without increasing the number of degrees of freedom per element. The first 
application of flexibility dependent shape functions that are updated continuously dates back to the 
early 1980s [7]. Since then the flexibility formulation has been used for static/cyclic or dynamic 
analysis of frames, including different type of material and geometrical nonlinearities [8-11]. In parallel 
with flexibility-based elements, appropriate solution schemes consistent with flexibility have been 
developed. These solution strategies mostly comprise two loops, one for iteration at element level and 
a second for iteration at the structure level [11, 12].  

In this paper the efficiency of the flexibility method is improved by employing a numerical integration at 
section level rather than fibre discretization. Two different solution strategies based on tangent and 
secant stiffness are employed for solving the governing equation and the influence of numerical 
integration order and solution scheme on the formulation accuracy and efficiency is examined. 
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2 Flexibility formulation of the beam-column element 
In this study a cantilever clamped end configuration is used for deriving the element stiffness 
(flexibility) matrixes (Figure 1a). 

2.1 Equilibrium equations at element and section level 
Figure 1b depicts a 2-node frame element AB  with six degrees of freedom at each node (three 
translations and three rotations) subjected to the distributed loads )(xyw  and .)(xzw  If the torsional 

DOFs are neglected in the element formulation, then equilibrium for configuration Ax (Figure 1b) gives 
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where, [ ]T
A QQQQQ 54321=Q and [ ]T

yz xMxMxNx )()()()( =D denote the vector of element 

generalized forces at end A and section generalized force, )(xb is the force interpolation matrix and 

)(* xD  is sectional internal force vector solely due to the distributed loads )(xyw  and )(xzw . 
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Figure 1 (a) Cantilever configuration used for deriving the flexibility equations (b) 3D 
frame element and corresponding DOF. 

Removing the term )(* xD  from (1) does not violate the generality of the formulation and, hence 

Axx QbD )()( =   (4)  

If σ  represents the stress at a transverse integration point on the section, then equilibrium of internal 
stresses and section internal tractions gives 
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In (5) to (7), the stress is replaced by stress increment, ,σ∆  the section internal forces are replaced by 
their increment ),,( zy MMN ∆∆∆ and the incremental form of the section equilibrium is obtained. 



 

 

2.2 Compatibility equations 
Adopting the Navier-Bernoulli hypothesis, the compatibility requirement is obtained as  

)()()()( xzxyxx yzr κκεε −−=   (8)  

where, )(xε  denotes the total axial strain of the fibre or integration point and the increment of this axial 
strain is, .)()()()( xzxyxx yzr κκεε ∆−∆−∆=∆  

2.3 Constitutive law and section stiffness matrix 
The constitutive law of material can be expressed using the total stress-strain relationship (Figure 2a) 

)( peE εεσ −=   (9)  

or in a  linearized incremental form (Figure 2b)  

εσ ∆=∆ .tE   (10)  

where tE  and eE  are material tangent and secant modulus, respectively.  
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Figure 2 Constitutive law (a) linear Incremental (b) total Stress-strain relationship. 

Substituting the compatibility equation and constitutive law in (5) to (7) yields [13] 
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where, )()( xs
te k and )()( xs

te f  are section stiffness and flexibility matrixes ,respectively, and )(xpD  

denotes the residual plastic force vector for the section. The left superscript e  and t denote the secant 
and tangent counterpart of quantities (equations), correspondingly. 

If the stiffness matrix of the element AB  is denoted by e
te K)(   and τk  represent the torsional stiffness 

of the element,  adopting the torsions as independent of the other tractions gives [13] 
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Using the principle of virtual work for the cantilever configuration AB clamped at end B and subjected 
to a virtual load vector )( AA QQ ∆  at end A  (Figure 1a), together with (4), (11) and (12)  gives [13] 
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where pq  is nodal generalised plastic displacements vector at end ,A  and it is related to element 
internal nodal plastic force vector ,pQ  by 
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Repeating the same procedure for a cantilever clamped at end A  and subjected to a virtual load 
vector )( BB QQ ∆  at end B  gives the stiffness sub-matrices (i.e. BB

te
AB

te
AA

te KKK )()()( ,, ) 
interrelationship which is condensed as follows 
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3 Solution strategies 
Two different solution strategies correspond with tangent and secant stiffness approach is used in this 
study. The first one is based on the modified nested iterative algorithm which employs the tangent 
stiffness [12]. The second scheme is a nested iterative algorithm that takes advantage of direct 
iteration in accompany with secant stiffness [13]. A convergence criterion based on the infinite norm of 
displacements is used at the structure level with a tolerance of .%05.0  

4 Numerical example 
Figure 3 shows the geometry and loading of a simply supported beam tested by Burns and Siess [14]. 
The measured material properties for the specimen were MPa310=yf  (yield stress of steel bars), 

MPa1003.2 5×=sE (steel modulus of elasticity), MPa33=cpf  (concrete compressive strength), 



 

 

MPa1062.2 4×=cE  (concrete modulus of elasticity), and the tensile strength is taken 

as MPa.3.24.0 == cpt ff   
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Figure 2 Simple span beam and section geometry along with idealized FE model. 

One half of the beam is modelled by a single flexibi lity-based element (Figure 3). Different integration 
schemes with different numbers of longitudinal integration points are used to analyse the beam while a 
composite Simpson�s method with 19 transverse integration points taken through the section height is 
used (Figure 4). The Results are compared with the 2D SBETA finite element membrane model of 
ATENA using a rotating crack with variable shear retention factor and element size of mm.25   
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    (a)                                                                (b)  

Figure 4 Load versus mid-span deflection obtained from (a) composite Simpson (b) 
Gauss-Lobatto scheme within different number of longitudinal integration points. 

In Figure 4, the results of tangent and secant stiffness approaches have not been depicted separately 
as they are the same up to 4 digits. Tables 1 and Table 2 show the number of iterations required for 
convergence at different load steps together with the total time of analysis on a notebook computer 
with a 1.6 MHz Intel Pentium M processor, within various integration points and solution schemes. The 
load steps are not equal and time of analysis denotes the total processing time spent for the entire 
load-deformation path to be constructed with the convergence criterion satisfied for all load steps. 

Table 1 Number of iterations and time of analysis for tangent stiffness approach. 
 No. of Iterations for 

Convergence 
 

Integration 
Scheme 

No. of Longitudinal 
Integration points 

S
tep 
2 

S
tep 
4 

S
tep 
6 

S
tep 
8 

S
tep 
10 

S
tep 
12 

Analysis 
Time (Sec) 

Gauss-Lobatto 4 3 9 4 7 3 4 0.015 
Gauss-Lobatto 6 3 8 4 3 4 4 0.015 
Gauss-Lobatto 8 3 9 8 4 8 5 0.015 

Composite-Simpson 5 3 10 4 9 3 4 0.015 
Composite-Simpson 11 3 8 8 4 8 5 0.031 
Composite-Simpson 17 3 9 9 9 4 4 0.031 



 

 

Table 2 Number of iterations and time of analysis for secant stiffness approach. 
 No. of Iterations for 

Convergence 
 

Integration 
Scheme 

No. of Longitudinal 
Integration points 

S
tep 
2 

S
tep 
4 

S
tep 
6 

S
tep 
8 

S
tep 
10 

S
tep 
12 

Analysis 
Time (Sec) 

Gauss-Lobatto 4 5 11 5 6 29 24 0.015 
Gauss-Lobatto 6 5 9 5 5 34 30 0.015 
Gauss-Lobatto 8 5 10 7 5 43 41 0.031 

Composite-Simpson 5 5 10 4 8 29 24 0.015 
Composite-Simpson 11 5 9 7 5 45 34 0.047 
Composite-Simpson 17 5 9 9 8 41 38 0.062 

The speed of solution as highlighted in Table 1 and 2 demonstrate the efficiency of the approach while 
maintaining accuracy. 

5 Conclusions and recommendations 
The general form of the flexibility method is derived by using the clamped cantilever configuration. The 
traditional concept of the fibre element at section level is replaced by a numerical integration to 
improve the formulation efficiency. The flexibility formulation in the framework of the tangent and 
secant stiffness is outlined and efficiency of the corresponding solution schemes has been 
demonstrated. Further work is currently being undertaken to include dynamic and impact loading.  
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