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Abstract: An alternative SIMO system identification technique is presented in this paper, requiring only 
response measurements. The technique is based on the Mean Differential Cepstrum, but in a different 
format from the original, and has two solution formulations, which are differentiated by the use of a 
Taylor series approximation. The identification processes give both the magnitude and phase in a 
propagative manner, solving in the frequency domain from one frequency to the next. Initial values 
near zero frequency can be taken from the static stiffness properties (for fixed systems) or inertial 
properties (for free-free systems). The technique has the advantage of not requiring the assumption of 
mini mum-phase properties for the system being identified, which is successfully demonstrated on 
simulated minimum and non-minimum phase systems. A discussion on the stability of the two solution 
formulations is given, together with the results from the application to measurements from an 
experimental test rig. Since the method is limited to transient inputs, the excitations used are both 
burst random and impulsive forces in each test scenario. 
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1 Introduction 
 
The single-input multiple-output (SIMO) system identification method presented in this paper forms 
part of the completed work [1] intended for multiple-input multiple-output (MIMO) systems. The 
objective is to address the common assumption of spectrally white input in prevailing operatio nal 
modal analysis (OMA) methods [2][3].  In reality, input spectra are closer to being broadband than 
white, leading to incorrect scaling between different mode shapes in the absence of input information. 
Successful use of existing cepstral methods [4][5] in correcting these inaccuracies fuelled the pursuit 
of a cepstrum-based system identification methodology. The alternative Mean Differential Cepstrum 
(MDC) method proposed here differs from the original format [6] and has two solution formations, 
differentiated by the use of a Taylor series approximation. Each directly estimates both magnitude and 
phase of the frequency response function (FRF) in a propagative manner. It has the advantage of not 
requiring the assumption of minimum-phase characteristics for the system, hence suited for estimating 
non-minimum phase systems. 
 
2 Background 
 
The term cepstrum was first coined in 1963, and was initially developed for echo detection [7]. The 
homomorphic nature of the cepstrum gives an additive relation between the input and the system, as 
illustrated in (1), the cepstrum of the generic system equation, . 
  

   

 
(1) 

 
The Cepstrum is defined as the inverse Fourier transform of the logarithmic spectrum and the symbols 

, , ,  and  are respectively the input, output, system, frequency and quefrency. Quefrency 
has the same units as time and corresponds to the cepstral domain as does frequency to the spectral 
domain. Examples of successful cepstrum application include separation of glottal excitation and vocal 
tract impulse response in speech analysis [8][9], and separation of excitation and structural responses 
in gearboxes [10].   
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The application of a derivative led to the Differential Cepstrum (DC) [11][12], which does not require 
phase unwrapping, unlike the Cepstrum. The generalisation of DC into the Mean Differential Cepstrum 
(MDC) [6][13] introduces an averaging aspect into its application while preserving the useful 
homomorphic property. The MDC is defined as the inverse Fourier transform of the spectral 
correlation density of an output signal,  and the following shows the cepstral and spectral domain 
definition, 
 

(2) 
 

(3) 
 

where partial derivative:    is with respect to frequency,  and cyclic frequency, , 

and  for . Earlier work has seen the successful use of the MDC for non-
minimum phase system identification [6].  
 
 
2 Theoretical development 
 
The following SIMO system identification technique uses the same MDC definition presented in (3). It 
can be distinguished from earlier MDC literature [6][13] by its propagative solution sequence and the 
use of the Taylor series approximation in one of its two solution formulations. Assumptions on the 
input excitation signal are spectral whiteness and by convention it has unitary power (scale 
indeterminacy). The technique is non-iterative, non-parametric and estimates both magnitude and 
phase of the system in the frequency domain. While a parallel development for MIMO system 
identification involving the matrix version of the MDC exists [14], the development and results for the 
scalar MDC used here are presented for the first time. 
 
2.1 Propagative solution sequence 
 
Substituting  into the scalar MDC definition in (3),  
 

   
 
 
assumption of unitary input power (i.e. auto-spectrum ) gives, 
 

   
 
 

 is a purely imaginary constant, corresponding to a time displacement, which can be set to zero 
since there is no absolute time reference in response measurements. 
 
 

      (4) 



Making the derivative term the subject and defining it as a backward difference,  
 

      (5) 
 
(5) solves for the system directly in a propagative manner, from one frequency to the next. This 
original formulation, denoted by , has a Taylor series approximated version, presented in the 
next section. 
 
2.2 Taylor series approximation 
 
The multiplicative factor relating one frequency value to the next in (5) can be approximated using the 
Taylor series approximation, 
 

(6)
 

The intended use of the approximation was to preserve hermitian property of matrices in MIMO 
systems application [14]. Its extension to the current form in (6) has the advantage of a more stable 
identification outcome as will be evident in the results section.  
 
3 Results 
 
The SIMO identification method is tested on a simulated 5 DOF system (system parameters outlined 
in figure 1), the experimental set-up in figure 2 and a simulated non-minimum phase system. The 
transient input excitations used are impulsive or burst random signals. The identification outcome from 

 and  are plotted in black and blue respectively, together with the reference FRF in 
red. The plots are intentionally displaced from each other for better visual presentation. Note that the 
constant amplification factor between the input and output is unknown in the absence of input 
information. The first frequency bin value used to initiate the solution propagation can be obtained 
from system properties (mass or stiffness) or a previously known FRF. The results generated are 
based on the latter. 
 
3.1 Set-up 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             Figure 1: Simulation set-up               Figure 2: Experimental set-up 
 

 



3.2 Simulation results 
 
The magnitude and phase results in figures 3 to 6 are based on driving point measurements made at 
m2 for both simulation and experiment. 

 
Figure 3: Simulation identification outcome with Impulsive input (100 realisations) 

 

 
Figure 4: Simulation identification outcome with 4s Burst Random input  (1000 realisations) 

 
 
3.3 Experimental results 

 
Figure 5: Experiment identification outcome with Hammer Impulsive input (100 realisations) 

 

  



 
Figure 6: Experiment identification outcome with Shaker 4s Burst Random input (100 realisations) 

 
Figures 3 to 6 show the identification outcome of varying quality from both formulations,  and  

. The impulsive input simulation shows an excellent identification quality with accurate 
prediction of both poles (resonances) and zeros (anti-resonances) frequency location estimation 
(details are found in [1]), and phase prediction in Figure 3. For the burst random input simulation in 
figure 4, the estimated phases have some errors. However, they agree with the reference phase plot 
in general and better results are achievable with increased averages [1]. The slight negative slope 
distortion in the magnitude plot of  in Figure 4 indicate a  lower quality solution outcome 
compared to , which is more evident in figures 5 and 6. 
 
In the experimental results, higher solution stability is observed from the estimated magnitude plots of 

 in figures 5 and 6. Poor phase identification is observed in all experimental results despite 
reasonable estimation of pole and zero frequency locations [1]. Note that a time delay between the 
excitation time and the start of response time records manifests itself as s lope distortions in the 
estimated phases. All estimated phase plots presented in this paper have undergone a slope 
adjustment at the post-processing stage to eliminate any slope based on the low frequency region 
below the first resonance. 
 
3.4 Identification of simulated non-minimum phase system 

Figure 7: Simulated Non-Minimum phase system identification, Burst Random input(1000 realisations) 



Figure 7 shows the identification outcome of a non-minimum phase system. The estimated phase 
plots from simulation of an equivalent minimum phase syste m (by having minimum phase rather than 
maximum phase zeros) are also given (bottom of the figure) for comparison. Both formulations gave 
very good magnitude estimation, as previously seen in figure 4. Note that the estimated magnitude 
plots for the minimum phase system, that is absent from the figure, is almost identical to the presented 
magnitude plot from the non-minimum phase system. 
 
The differences between a non-minimum and a minimum phase system can be appreciated from the 
respective reference phase plots. At each zero (anti-resonance), the non-minimum phase system 
shows a decrease in phase by � radians, as opposed to an increase for the minimum phase system. 
The net effect is two very distinct sets of phase plots. All estimated phases have an error, as seen in 
figure 4. Improvement can be achieved with increased averages. The estimated phases generally 
agree with the reference phase and phase change at each pole or zero can be clearly identified 
despite the uncertainty. 
 
4 Conclusions 
 
Assessment based on both estimated magnitude and phase plots showed that the newly proposed 
MDC method is applicable for both minimum and non-minimum phase system identificat ion. It worked 
well in the simulations and gave reasonable magnitude estimation in the experiments. Comparison 
between magnitude plots indicates that a better identification outcome can be obtained from  
compared to .  This seems to reflect increased robustness against noise issues with the 
adoption of the Taylor series approximation. Future works on the method will include addressing the 
limitation of transient inputs requirement with the application of random decrement technique on a 
continuously excited response measurement. 
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