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Abstract 

Entropy generation for natural convection in a partitioned cavity, with adiabatic horizontal 

and isothermally cooled vertical walls, is studied numerically by both a FORTRAN code and the 

commercially available CFD-ACE software. Effects of the Rayleigh number, the position of the 

heated partition, and the dimensionless temperature difference on the local and average entropy 

generation rate are investigated. Proper scale analysis of the problem showed that, while fluid 

friction term has nearly no contribution to entropy production, the heat transfer irreversibility 

increases monotonically with the Nusselt number and the dimensionless temperature difference. 
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Nomenclature 

Be Bejan number 

cP specific heat at constant pressure 

FFI fluid friction irreversibility 

Ge       Gebhart number 

H cavity height 

HTI heat transfer irreversibility 

k fluid thermal conductivity 

Ns*  normalized Ns 

Ns dimensionless entropy generation number 

Nu Nusselt number 

P* pressure 

p dimensionless pressure 

Pr Prandtl number, Pr=µcp/k 

q" total inlet or outlet wall heat flux 

Ra Rayleigh number, Ra=gβH3(Th-Tc)/(αυ)  
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genS&  volumetric entropy generation rate  

T* absolute temperature  

Tc  the cold wall temperature 

Th  the plate temperature 

(u*,v*) (x*,y*) velocity 

u,v (u*,v*)α/H 

(x*,y*) Cartesian coordinates 

(x,y) (x*,y*)/H 

Greek symbols 

θ dimensionless temperature, (T*-Tc)/(Th-Tc) 

µ fluid viscosity 

ρ           fluid density 

ψ dimensionless stream function 

φ  dimensionless viscous dissipation function, 4 2* /Hφ φ α=  

*φ  viscous dissipation function 

ω dimensionless vorticity 

Ω  dimensionless temperature difference (Th-Tc)/Tc 

 

1. Introduction 

Free convection in partitioned spaces is of particular interest in many engineering 

applications as noted by [1-7]. Hence, a great deal of information is available on heat and fluid flow 

through such enclosures as reviewed by Bejan [8]. Using a Laser Doppler Anemometer, turbulent 

natural convection of air in a partitioned cavity with differentially heated vertical and conducting 

horizontal walls was studied in [3]. On the other hand, dealing with laminar free convection in a 

differentially heated, partitioned, square cavity filled with a heat-generating fluid, Oztop and Bilgen 

[6] concluded that depending on the ratio of the internal/external Rayleigh number, there are two 

distinct regimes. Also they noted that the flow field will be adapted due to the presence of partial 

dividers while heat transfer is expected to reduce when this Ra ratio is from 10 to 100. Prior to that, 

Bilgen and Oztop [7] have performed a numerical study on inclined partially open square cavity to 

observe that heat transfer can be maximized or minimized by selecting appropriate parameters, 

namely aperture size, position and inclination angle at a given Ra. Oztop et al. [9] studied the effect 
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of the position and the aspect ratio of a thin heated plate on free convection in a cavity to find that 

Nu increases with Ra and concluded that the enhancement is more pronounced for vertical plate. 

Also available in the literature is an extensive amount of work devoted to optimal design of 

such systems. For example Bilgen [10] studied the effects of a thin fin attached to the cavity wall to 

realize that Nu increases/decreases with Ra/the fin length and relative conductivity ratio. 

Interestingly, he noted that there is always an optimum fin position, which is often at the center or 

near center of the cavity, which minimizes natural convection heat transfer. Recently, Bar-Cohen et 

al. [4] determined the most favorable fin and channel aspect ratios for plate and pin fin arrays, the 

allocation of available energy between fabrication and operation, and the selection of fin material, 

for both natural and forced convection air-cooled heat sinks. 

On the other hand, when it comes to seek optimum design features for a system, Entropy 

Generation Minimization (EGM), as introduced by Bejan [11], serves as a popular approach. This 

method has already been extensively applied to forced [12-16] and free convection [17-25] 

problems, to name a few. However, for the problem considered here there is no solution reported in 

the literature, to the best knowledge of the authors. This paper presents numerical solution for heat 

and fluid flow of a fluid in such cavity similar to [9]. Based on our results for the first law (of 

thermodynamics), second law aspects of the problem are then investigated. Two numerical solvers 

are cross-validated here being our FORTRAN code and the commercially available software CFD-

ACE. 

The considered physical geometry with related parameters and coordinates are shown in 

Fig. 1. The plate, of thickness 0.05H, is supposed to be isothermal at higher temperature than two 

vertical isothermal walls while the top and bottom walls are insulated. 

 

2. Governing Equations 

2.1. Heat and Fluid Flow Analysis 

The dimensionless vorticity transport equation is 

2. Pr( )u Ra
x

θω ω ∂∇ = ∇ −
∂

        (1) 

where the vorticity directed in z direction is defined as 

2ω ψ= −∇ .          (2) 

In the above equation the dimensionless stream-function is defined as 



International Communications in Heat and Mass Transfer 35 (2008) 492–502 

 

4 
 

,

v .

u
y

x

ψ

ψ

∂=
∂

∂= −
∂

                              (3-a,b) 

The thermal energy equation now takes the following form 

2.u θ θ∇ = ∇ .          (4) 

The average Nusselt number, the ratio of actual heat transfer to pure conduction, is defined as 

1

0

1 (0, ) (1, )
( ) .

4

y y
Nu dy

x x

θ θ∂ ∂= +
∂ ∂∫        (5) 

Note that the Nusselt number defined by Oztop et al. [9] is twice our Nu. Consequently, for low Ra 

cases, where heat is transferred mainly due to conduction and one expects near-unity values for Nu, 

they came up with Nu~2. However, as it can be observed later, for low Ra values, based on our 

definition, Nu→1 in our work. 

The problem is now to solve Eqs. (1-6) subject to no-slip boundary condition on the walls, i.e. 

u=v=0, and the following thermal boundary conditions 

0;  horizontal walls,

0;     vertical walls,

1;      plate.

y

θ

θ
θ

∂ =
∂

=
=

         (6) 

 

2.2. Second Law aspects of the problem 

According to Bejan [11], one can find the volumetric entropy generation rate as 

FFIHTISgen +=& ,         (7) 

where HTI is the irreversibility due to heat transfer in the direction of finite temperature gradients 

and FFI is the contribution of fluid friction irreversibility to the total generated entropy. 

In terms of the primitive variables, HTI and FFI become 

2( *. *) / * ,

* / *.

HTI k T T T

FFI Tµφ
= ∇ ∇
=

        (8-a,b) 

One can also define the Bejan number, Be, as 

Be=HTI/(HTI+FFI).            (9) 

Note that a Be value more/less than 0.5 shows that the contribution of HTI to the total entropy 

generation is higher/less than that of FFI. The limiting value of Be=1 shows that the only active 

entropy generation mechanism is HTI while Be=0 represents no HTI contribution. 

The dimensionless form of entropy generation rate, Ns, is defined as 
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2( / ) / ,genNs H S k= Ω &          (10) 

one finds that 

( ) ( )

2 2

2 2 12 1

( ) ( )
,

Gex y
Ns

Ra

θ θ
φ

θθ −−

∂ ∂+
∂ ∂= +

Ω Ω +Ω Ω +
      (11) 

where the dimensionless temperature difference is defined as 

Ω=(Th-Tc)/ Tc          (12) 

The dimensionless viscous dissipation function, addressed in Eq. (11), takes the following form 

2 2 22( ) 2( ) ( )
u v v u

x y x y

∂ ∂ ∂ ∂φ
∂ ∂ ∂ ∂

= + + +        (13) 

One easily verifies that, as both Ω and θ can put on values smaller than unity, one cannot neglect 

any of them in favor of the other as noted by Hooman and Ejlali [26] for a forced convection 

problem. Keep in mind that Ω can be O(1) for special cases. Hence, one should be very careful 

when one simply neglects either Ω-1 or θ in the denominator of Eq. (11) by Ω. 

Here, Ge is the Gebhart number which is defined as 

Ge =gβH/cP ,            (14) 

and throughout this work Ge=10-5 to be a real choice for most of engineering applications. In the 

light of Nield [27, 28] one knows that the proper dimensionless number to show the effects of 

viscous dissipation in a free convection problem in a cavity, filled with or without a porous insert, is 

the Gebhart number which, interestingly, does not contain viscosity. This was also highlighted by 

Hooman [29]. Unlike the previous findings of Dagtekin et al. [30], proper scaling shows that with a 

fixed Ge value FFI decreases with Ra. Interestingly, both HTI and Ns increase with Ra and this will 

be elaborated on in the forgoing discussion. 

It should also be noted that there are certain cases where viscous dissipation effects are not 

important in the thermal energy equation but can be significant when it comes to study second law 

aspects of a convection problem as outlined by Bejan [11] or Hooman et al. [31]. The local and 

average values of Be are found to convey little information as they are very close to unity, hence, 

we did not present any graph or contour for Be. 

Average Ns is denoted by <Ns>, where the angle brackets show an average taken over the area, as 

/
A

Ns NsdA A< >= ∫          (15) 

where, based on the dimensionless cavity size (1x1 box) shown in Fig. 1, Eq. 15 reads 

1 1

0 0
Ns Nsdxdy< >= ∫ ∫ .         (16) 
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Selecting the fluid, trapped between the heated plate and the cavity, as the thermodynamic system, 

one observes that the amount of heat entered through the heated plate is equal to the one transferred 

to the surroundings via the isothermal walls. Moreover, one notes that the total volumetric entropy 

generation rate is obtainable as 

1 1
( )gen

c H

q
S

H T T

′′
< >= −&          (17) 

where, in terms of Nu, it reads 

2

2
4

1gen

k
S Nu

H

Ω< >=
+ Ω

&          (18-a) 

Applying perturbation techniques for small values of Ω, say Ω<<1, one has 

2 24 (1 ) /genS Nu k H< >≈ Ω − Ω&         (18-b) 

The dimensionless entropy generation number can be obtained as 

<Ns>=4Nu/(1+Ω)         (19) 

This analytically obtained equation is used for validation purpose as manifested in our Table 1. 

 

3. Numerical Details 

Numerical solutions to the governing equations are obtained by finite difference methods, 

using the Gauss-Seidel technique. The governing equations are discretized by applying second-

order accurate central difference schemes similar to [32]. Details of the vorticity-stream-function 

method, and applied boundary conditions may be found in [33] and are not repeated here. 

All runs were performed on a 101x101 grid with Ra limited to 105, Pr=0.7, and h3=0.5H. 

Grid independence was verified by running different combinations of Ra and h1 (hi=hi*/H) on three 

different grids 81x81, 101x101 and 121x121 and observing less than 1% difference between results 

obtained on smaller grids. The convergence criterion (maximum relative error in the values of the 

dependent variables between two successive iterations) in all runs was set at 10-5. 

The above procedure was done for the validation of the FORTRAN code and repeated for 

the other solver being CFD-ACE where we used triangular mesh system with a transition factor 1.1 

and the minimum cell size of 10-5. We then changed the maximum cell size from 0.1 to 0.01 to see 

that the results, based on these two different grids, are effectively the same. 

 

4. Results and Discussions 

Figs. 2-4 shows contours of θ, ψ, and Ns* (Ns*=Ns/Nsmax) for Ra=103, 104, and 105, when 

the position of the partition changes along the vertical direction with h1=0.75, 0.5, and 0.25, 

respectively. It is clear that increasing Ra, there is more vigorous mixing and hence there are severe 
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temperature gradients at the top (left and right) corners. This is also confirmed by Ns* contours. As 

the fluid flow and heat transfer aspects of this problem were previously studied by Oztop et al. [9], 

we will skip the details and focus on the second law aspects of the problem. As seen, for any 

arrangement of the partition, the active sites of entropy production are regions close to the heated 

plate where the highest heat flux can be detected due to the presence of the heat source, i.e. the 

plate. It is also clear that with high Ra values the top corners are acting as active sites of entropy 

generation. Discussing the heatline distribution for a natural convection problem, Bejan [8] 

interpreted it as ‘heat rises’. Similar argument was put forward by Hooman and Gurgenci [34] for a 

lateral heating free convection problem. Before moving to the global aspects of the problem, it 

should be noted that as the results of the two solvers were very close (the difference was in the 

fourth figure) Fig. 5 is designed to indicate a sample of our calculations using CFD-ACE software, 

for h1 =0.5 with Ra=103, 104 and 105 for a qualitative comparison. 

Fig. 6 shows Nu and ψmax for different Ra and h1 values. It can be concluded that for 

Ra=103 the heat transfer mechanism is effectively a pure conduction one as Nu is very close to 

unity. Commensurate with that are very small values of ψmax. However, for Ra>104 convective flow 

patterns are strong enough to lead to Nu>1 and this can be called, to the first approximation, the 

critical value beyond which convective heat transfer enhances with an increase in Ra. Moving the 

plate from the bottom wall to the top one, ψmax decreases as the flow region is restricted to smaller 

area sandwiched between the plate and the top wall. The Nusselt number acts more or less the same 

while with h1=0 the problem tends to the classical Bénard problem where for h1=1 there is no flow 

and the heat is transferred by pure conduction. An interesting observation is the interaction between 

convective flow strength and the position of the heated plate. As seen, ψmax decreases monotonically 

with h1 while Nu puts on higher values for h1=0.5 compared to that of h1=0.25. It can be explained 

as follows. With h1=0.5, the flow and temperature distribution patterns are symmetrical with respect 

to the plate for low Ra values as heat is mostly transferred due to conduction. There are also 

diagonal symmetry lines for the streamlines on top of vertical and horizontal ones. This means that 

for such a case, there are two adiabatic lines while with other values of h1, there exists just a vertical 

one. Hence the heat transfer in the regions in between these lines increase to make up for the fact 

that there is no heat transfer along such lines. This is similar to the discussion proposed by Hooman 

et al. [31] in their study of fully developed forced convection in a porous duct of square cross-

section. However, increasing Ra the effect of symmetry becomes less important as the two curves, 

for h1=0.25 and 0.5, merge together with Ra=105. On the other hand, the slope of Nu-Ra curve 

implies that for higher Ra values Nu would show similar trend as that of ψmax, i.e. decrease with h1. 
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According to Fig. 7, an increase in Ω decreases/increases <Ns>/ <Śgen>. This fact is in line 

with the predictions of our Eqns. (18-19). This also makes physical sense since, as Ω=Th/Tc-1, 

higher values of Ω imply a greater temperature difference (leading to higher heat transfer rates) and 

consequently boosted HTI values. The decrease in <Ns> should not be interpreted as a decrease in 

the total entropy generation since, as noted earlier, one has Śgen=Nsk(Ω/H)2=4Nuk(Ω/H)2/(1+Ω). 

Another point worthy of comment is that <Ns> values for Ra=105 are notably high; however, 

among them the case h1=0.75 remains very close to those of lower Ra values as in this case 

effective circulation zone is restricted to the top quarter of the cavity and the regions beneath the 

plate are effectively transferring heat due to conduction. This point is also valid for h1=0.75 and 

Ra=104 compared to h1=0.5 and Ra=103. 

 

5. Conclusion 

Numerical simulation of free convection in a partitioned cavity, with special attention being 

paid to entropy generation, is reported. Effects of the Rayleigh number, the position of the heated 

partition, and the dimensionless temperature difference on the local and average entropy generation 

rate are investigated. It was theoretically indicated that the average entropy production rate 

increases with Nu and Ω. It was also shown and emphasized that with a fixed Ge value, FFI is an 

inverse-linear function of Ra while numerical results showed that for most cases, with a fixed value 

for h1, HTI increases with Ra and so does the total generated entropy. 
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Table 1 Comparison between <Ns> values predicted by Eq. (19) (in the parenthesis) and those 

obtained numerically. 

h1 Ra Ω=0.02 Ω=0.04 Ω=0.06 Ω=0.08 Ω=0.1 

0.25 

103 3.655 (3.694) 3.586 (3.623) 3.52 (3.555) 3.457 (3.489) 3.395 (3.425) 

104 4.176 (4.248) 4.098 (4.166) 4.023 (4.088) 3.951 (4.012) 3.881 (3.939) 

105 6.537 (6.708) 6.416 (6.579) 6.3 (6.455) 6.188 (6.335) 6.079 (6.22) 

0.5 

103 4.086 (4.119) 4.009 (4.04) 3.935 (3.964) 3.864 (3.89) 3.796 (3.82) 

104 4.373 (4.424) 4.291 (4.339) 4.212 (4.257) 4.136 (4.178) 4.063 (4.102) 

105 6.701 (6.864) 6.576 (6.732) 6.457 (6.605) 6.342 (6.482) 6.231 (6.364) 

0.75 

103 3.69 (3.727) 3.621 (3.655) 3.555 (3.586) 3.49 (3.52) 3.428 (3.456) 

104 3.82 (3.857) 3.748 (3.782) 3.679 (3.711) 3.613 (3.642) 3.549 (3.576) 

105 5.115 (5.237) 5.02 (5.136) 4.929 (5.039) 4.841 (4.946) 4.756 (4.856) 
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Fig.1. Definition sketch. 
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(c) 

Fig. 2 Isotherms (left), streamlines (center), and dimensionless entropy generation rate (right) with 

h1=0.75 for a) Ra=103, b)Ra=104, and c)Ra=105 
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(c) 

Fig. 3 Isotherms (left), streamlines (center), and dimensionless entropy generation rate (right) with 

h1=0.5 for a) Ra=103, b)Ra=104, and c)Ra=105 
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Fig. 4 Isotherms (left), streamlines (center), and dimensionless entropy generation rate (right) with 

h1=0.25 for a) Ra=103, b)Ra=104, and c)Ra=105 
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(a)    (b)    (c) 

Fig. 5 Isotherms and velocity vectors with h1=0.5 for a)Ra=103, b)Ra=104, and c)Ra=105 
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Fig. 6 Nu and ψmax versus Ra for different plate positions 
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Fig. 7 Ns* versus Ω for different Ra values and plate positions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


