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Abstract

Entropy generation for natural convection in aigarted cavity, with adiabatic horizontal
and isothermally cooled vertical walls, is studmadnerically by both a FORTRAN code and the
commercially available CFD-ACE software. Effectstbé Rayleigh number, the position of the
heated partition, and the dimensionless temperatifference on the local and average entropy
generation rate are investigated. Proper scaleysinabf the problem showed that, while fluid
friction term has nearly no contribution to entropyoduction, the heat transfer irreversibility
increases monotonically with the Nusselt numbertaedlimensionless temperature difference.
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Nomenclature

Be Bejan number

Cp specific heat at constant pressure
FFI fluid friction irreversibility

Ge Gebhart number

H cavity height

HTI heat transfer irreversibility

k fluid thermal conductivity

Ns* normalizedNs

Ns dimensionless entropy generation number
Nu Nusselt number

P* pressure

p dimensionless pressure

Pr Prandtl number=ucy/k

q" total inlet or outlet wall heat flux

Ra  Rayleigh numbemRa=gsH3(T;-To)/(aw)
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Sgen volumetric entropy generation rate
T* absolute temperature

Te the cold wall temperature

Th the plate temperature

(u*,v*) (x*,y*) velocity

u,v (u*,v¥) a/H

(x*,y*) Cartesian coordinates
(xy)  (x*.y*)H

Greek symbols

0 dimensionless temperatuf@?-To)/(Ty-Te)

u fluid viscosity

p fluid density

W dimensionless stream function

¢ dimensionless viscous dissipation functigr, H *¢*/ a®
@* viscous dissipation function

0] dimensionless vorticity

dimensionless temperature differencge TJ)/T,

1. Introduction

Free convection in partitioned spaces is of pddrcunterest in many engineering
applications as noted by [1-7]. Hence, a great demformation is available on heat and fluid flow
through such enclosures as reviewed by Bejan [8indgJa Laser Doppler Anemometer, turbulent
natural convection of air in a partitioned cavititwdifferentially heated vertical and conducting
horizontal walls was studied in [3]. On the othan#i, dealing with laminar free convection in a
differentially heated, partitioned, square cavitiedl with a heat-generating fluid, Oztop and Biige
[6] concluded that depending on the ratio of thierimal/external Rayleigh number, there are two
distinct regimes. Also they noted that the flowldigvill be adapted due to the presence of partial
dividers while heat transfer is expected to reduben thisRa ratio is from 10 to 100. Prior to that,
Bilgen and Oztop [7] have performed a numericadigton inclined partially open square cavity to
observe that heat transfer can be maximized ormmiwed by selecting appropriate parameters,

namely aperture size, position and inclination aragla giverRa. Oztop et al. [9] studied the effect
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of the position and the aspect ratio of a thin éaatlate on free convection in a cavity to findttha
Nu increases witliRa and concluded that the enhancement is more praeduior vertical plate.

Also available in the literature is an extensiveoant of work devoted to optimal design of
such systems. For example Bilgen [10] studied ffexts of a thin fin attached to the cavity wall to
realize thatNu increases/decreases witRa/the fin length and relative conductivity ratio.
Interestingly, he noted that there is always amaph fin position, which is often at the center or
near center of the cavity, which minimizes nataa@ivection heat transfer. Recently, Bar-Cohen et
al. [4] determined the most favorable fin and cl@raspect ratios for plate and pin fin arrays, the
allocation of available energy between fabrica@mal operation, and the selection of fin material,
for both natural and forced convection air-cooledthsinks.

On the other hand, when it comes to seek optimusigddeatures for a system, Entropy
Generation Minimization (EGM), as introduced by &@ej11], serves as a popular approach. This
method has already been extensively applied toetbr[d2-16] and free convection [17-25]
problems, to name a few. However, for the problemsdaered here there is no solution reported in
the literature, to the best knowledge of the awhdhis paper presents numerical solution for heat
and fluid flow of a fluid in such cavity similar tf9]. Based on our results for the first law (of
thermodynamics), second law aspects of the prollenthen investigated. Two numerical solvers
are cross-validated here being our FORTRAN codetaadommercially available software CFD-
ACE.

The considered physical geometry with related patars and coordinates are shown in
Fig. 1. The plate, of thickness OH5is supposed to be isothermal at higher tempearahan two

vertical isothermal walls while the top and botteails are insulated.

2. Governing Equations
2.1. Heat and Fluid Flow Analysis

The dimensionless vorticity transport equation is
uldw=PrQ*w- Ra?) (1)
X

where the vorticity directed indirection is defined as
w=-0%. (2)

In the above equation the dimensionless streantimis defined as
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_oy
a:; (3-a,b)
v=-2%
16)4
The thermal energy equation now takes the folloviarg
ubg=0%. (4)
The average Nusselt number, the ratio of actualtheasfer to pure conduction, is defined as
1:06(0y), 061y
Nu== + dy. 5
4-[0( ox ox )> y ©)

Note that the Nusselt number defined by Oztop .gBalis twice ourNu. Consequently, for lovka
cases, where heat is transferred mainly due toumtioch and one expects near-unity values\oy
they came up wittNu~2. However, as it can be observed later, for Rawalues, based on our
definition, Nu—1 in our work.

The problem is now to solve Egs. (1-6) subject deskip boundary condition on the walls, i.e.
u=v=0, and the following thermal boundary conditions

99 0; horizontal walls
y

0
6=0; vertical walls, (6)
=1, plate.

2.2. Second Law aspects of the problem

According to Bejan [11], one can find the volume&ntropy generation rate as

S, = HTI +FFI 7)

whereHTI is the irreversibility due to heat transfer in tieection of finite temperature gradients
andFFI is the contribution of fluid friction irreversiliy to the total generated entropy.

In terms of the primitive variableb|TI andFFI become

HTI =k(OT*.0O0T*)/ T* 2 (8-a.b)

FFI = up*| T*.

One can also define the Bejan numlige;, as

Be=HTI/(HTI+FFI). (9)

Note that aBe value more/less than 0.5 shows that the contobutif HTI to the total entropy
generation is higher/less than thatF#il. The limiting value ofBe=1 shows that the only active
entropy generation mechanismH$I while Be=0 represents ndTI contribution.

The dimensionless form of entropy generation fdsejs defined as

4
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Ns=(H/Q)?*S,,/k, (10)

one finds that

08,, , 00,,
2Ty 4+ (22
_(ax) (ay) Gep

Ns = : (11)
Q’ (Q‘1+9)2 RaQ?(Q+6)

where the dimensionless temperature differencefiaet as

Q= (Th'Tc)/ Tc (12)

The dimensionless viscous dissipation functionyesikd in Eq. (11), takes the following form
Ju ov ov  oJdu

=2+ 2= +(E—+—) 13
@ (ﬂx) (ﬂy) (ﬁX a"y) (13)

One easily verifies that, as bathand# can put on values smaller than unity, one cannglege
any of them in favor of the other as noted by Hoormaad Ejlali [26] for a forced convection
problem. Keep in mind tha® can beO(1) for special cases. Hence, one should be vemrfida
when one simply neglects eith@f* or 6 in the denominator of Eq. (11) l§y.

Here,Ge is the Gebhart number which is defined as

Ge =gpH/cp , (14)

and throughout this worlée=10° to be a real choice for most of engineering apfibms. In the
light of Nield [27, 28] one knows that the propeémdnsionless number to show the effects of
viscous dissipation in a free convection problera tavity, filled with or without a porous inseg,
the Gebhart number which, interestingly, does moitain viscosity. This was also highlighted by
Hooman [29]. Unlike the previous findings of Dagtekt al. [30], proper scaling shows that with a
fixed Ge valueFFI decreases witRa. Interestingly, bottHTl andNs increase withRa and this will

be elaborated on in the forgoing discussion.

It should also be noted that there are certain scagigere viscous dissipation effects are not
important in the thermal energy equation but casigeificant when it comes to study second law
aspects of a convection problem as outlined by B§ld] or Hooman et al. [31]. The local and
average values d@e are found to convey little information as they aegy close to unity, hence,
we did not present any graph or contourBer

AverageNs s denoted by Ms>, where the angle brackets show an average talartte area, as

< Ns>= j NsdA/ A (15)
A

where, based on the dimensionless cavity size lfbx) shown in Fig. 1, Eq. 15 reads

<Ns>= [ [ Nsdxdy (16)
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Selecting the fluid, trapped between the heatetd [@lad the cavity, as the thermodynamic system,
one observes that the amount of heat entered thrihegheated plate is equal to the one transferred
to the surroundings via the isothermal walls. MesFpone notes that the total volumetric entropy
generation rate is obtainable as

. "1 1
< Sgen >= qﬁ(f _f) a7
where, in terms ofNu, it reads

k Q°

<S _ >=4Nu— 18-
0 u H?1+Q (18-2)

Applying perturbation techniques for small valué€ sayQ<<1, one has

<SS, >=4NUQ*(1-Q)k /H? (18-b)

The dimensionless entropy generation number cabtaned as
<Ns>=4Nu/(1+Q) (29)

This analytically obtained equation is used foidation purpose as manifested in our Table 1.

3. Numerical Details

Numerical solutions to the governing equationsab®ined by finite difference methods,
using the Gauss-Seidel technique. The governingtems are discretized by applying second-
order accurate central difference schemes simildB2]. Details of the vorticity-stream-function
method, and applied boundary conditions may bedanii33] and are not repeated here.

All runs were performed on a 101x101 grid with limited to 16, Pr=0.7, andh;=0.5H.
Grid independence was verified by running differemmbinations oRa andh, (h=h*/H) on three
different grids 81x81, 101x101 and 121x121 and ofisg less than 1% difference between results
obtained on smaller grids. The convergence crite(ipaximum relative error in the values of the
dependent variables between two successive itagtio all runs was set at 10

The above procedure was done for the validatioth@fFORTRAN code and repeated for
the other solver being CFD-ACE where we used taéargmesh system with a transition factor 1.1
and the minimum cell size of 20We then changed the maximum cell size from 0.0.6d to see

that the results, based on these two differensgetke effectively the same.

4. Results and Discussions
Figs. 2-4 shows contours 6f i, andNs* (Ns*=Ns/Ns,) for Ra=10°, 1¢!, and 16, when
the position of the partition changes along thetie@r direction with h;=0.75, 0.5, and 0.25,

respectively. It is clear that increasiRg, there is more vigorous mixing and hence theresavere

6
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temperature gradients at the top (left and rigbthers. This is also confirmed bs* contours. As
the fluid flow and heat transfer aspects of thisbpgm were previously studied by Oztop et al. [9],
we will skip the details and focus on the second &spects of the problem. As seen, for any
arrangement of the partition, the active sitesnifapy production are regions close to the heated
plate where the highest heat flux can be detectedtd the presence of the heat source, i.e. the
plate. It is also clear that with higRa values the top corners are acting as active sitentropy
generation. Discussing the heatline distributiom & natural convection problem, Bejan [8]
interpreted it as ‘heat rises’. Similar argumenswat forward by Hooman and Gurgenci [34] for a
lateral heating free convection problem. Before mguo the global aspects of the problem, it
should be noted that as the results of the twoesslwere very close (the difference was in the
fourth figure) Fig. 5 is designed to indicate a pof our calculations using CFD-ACE software,
for h, =0.5 withRa=10", 10" and 10 for a qualitative comparison.

Fig. 6 showsNu and y for different Ra and h; values. It can be concluded that for
Ra=10° the heat transfer mechanism is effectively a mmeduction one adlu is very close to
unity. Commensurate with that are very small valofeg,., However, forRa>10* convective flow
patterns are strong enough to leadNte>1 and this can be called, to the first approxioratithe
critical value beyond which convective heat transgfeghances with an increaseRa. Moving the
plate from the bottom wall to the top ong., decreases as the flow region is restricted tolemal
area sandwiched between the plate and the top Tl Nusselt number acts more or less the same
while with h;=0 the problem tends to the classical Bénard prodere forh;=1 there is no flow
and the heat is transferred by pure conductionintaresting observation is the interaction between
convective flow strength and the position of thatkd plate. As seep,., decreases monotonically
with h; while Nu puts on higher values ftw=0.5 compared to that &f=0.25. It can be explained
as follows. Withh;=0.5, the flow and temperature distribution pattesire symmetrical with respect
to the plate for lowRa values as heat is mostly transferred due to cdrmmucThere are also
diagonal symmetry lines for the streamlines ondbpertical and horizontal ones. This means that
for such a case, there are two adiabatic linesawhith other values dfy, there exists just a vertical
one. Hence the heat transfer in the regions in é@mtvihese lines increase to make up for the fact
that there is no heat transfer along such liness iBtsimilar to the discussion proposed by Hooman
et al. [31] in their study of fully developed foct&onvection in a porous duct of square cross-
section. However, increasirRp the effect of symmetry becomes less importanhaswo curves,
for =0.25 and 0.5, merge together wiRa=1C". On the other hand, the slope Nfi-Ra curve

implies that for higheRa valuesNu would show similar trend as thatgf.,, i.e. decrease with.
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According to Fig. 7, an increase dhdecreases/increasedls>/ <Sg.>. This fact is in line
with the predictions of our Egns. (18-19). Thisoalmakes physical sense since,(&sT/T.-1,
higher values of2 imply a greater temperature difference (leadingigher heat transfer rates) and
consequently boostadTl values. The decrease<tiNs> should not be interpreted as a decrease in
the total entropy generation since, as noted eadiee hasﬁgen:Nsk(Q/H)2=4Nuk(Q/H)2/(1+Q).
Another point worthy of comment is thaNs> values forRa=10" are notably high; however,
among them the cade=0.75 remains very close to those of lovRa values as in this case
effective circulation zone is restricted to the wparter of the cavity and the regions beneath the
plate are effectively transferring heat due to emtidn. This point is also valid fdn,=0.75 and
Ra=10" compared td,=0.5 andRa=10",

5. Conclusion

Numerical simulation of free convection in a patied cavity, with special attention being
paid to entropy generation, is reported. Effectshef Rayleigh number, the position of the heated
partition, and the dimensionless temperature diffee on the local and average entropy generation
rate are investigated. It was theoretically indidathat the average entropy production rate
increases witlNu andQ. It was also shown and emphasized that with alf@e value,FFl is an
inverse-linear function oRa while numerical results showed that for most caséh a fixed value

for hy, HTI increases witlira and so does the total generated entropy
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Table 1 Comparison between <Ns> values predictedtdpy(19) (in the parenthesis) and those

obtained numerically.

h, | Ra] Q=002 0=0.04 0=0.06 0=0.08 Q=0.1

10° | 3.655 (3.694) 3.586 (3.623) 3.52 (3.555)  3.45498) | 3.395 (3.425)

0.25[ 107 | 4.176 (4.248)] 4.098 (4.166) 4.023 (4.088) 3.95012) | 3.881 (3.939)
10° | 6.537 (6.708) 6.416 (6.579) 6.3 (6.455 6.18836)3| 6.079 (6.22)

10° | 4.086 (4.119) 4.009 (4.04) 3.935 (3.964)  3.8689B. | 3.796 (3.82)

0.5 [ 107 | 4.373 (4.424)] 4.291 (4.339) 4.212 (4.257) 4.1367@) | 4.063 (4.102)
10° | 6.701 (6.864) 6.576 (6.732) 6.457 (6.605) 6.34288) | 6.231 (6.364)

10° | 3.69 (3.727)| 3.621(3.6559) 3.555(3.586)  3.494B.5| 3.428 (3.456)

0.75 10° | 3.82(3.857)| 3.748(3.787) 3.679 (3.711) 3.61843) | 3.549 (3.576)
10° | 5.115 (5.237) 5.02(5.136) 4.929 (5.039) 4.8494@) | 4.756 (4.856)
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Fig.1. Definition sketch.

12



International Communications in Heat and Mass Tranger 35 (2008) 492-502

oo 01 01
@ ' ‘\0.1\_j Q/_,/—

(@)
o —
(b)
| i Q
—— —— (@ =)

(©)
Fig. 2 Isotherms (left), streamlines (center), dimdensionless entropy generation rate (right) with
h,=0.75 for a) Ra=1{) b)Ra=10, and c)Ra=10
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Fig. 3 Isotherms (left), streamlines (center), dimdensionless entropy generation rate (right) with
h,=0.5 for a) Ra=1} b)Ra=10, and c)Ra=10
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Fig. 4 Isotherms (left), streamlines (center), dimdensionless entropy generation rate (right) with
h,=0.25 for a) Ra=1{) b)Ra=106, and c)Ra=10
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(a) (b)
Fig. 5 Isotherms and velocity vectors wit}¥0.5 for a)Ra=1%) b)Ra=10, and c)Ra=10
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Fig. 6 Nu andy..x vVersus Ra for different plate positions
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Fig. 7 Ns* versus for different Ra values and plate positions
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