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Qubit loss and gate failure are significant problems for the development of scalable quantum computing.
Recently, various schemes have been proposed for tolerating qubit loss and gate failure. These include schemes
based on cluster and parity states. We show that by designing such schemes specifically to tolerate these error
types we cause an exponential blowout in depolarizing noise. We discuss several examples and propose
techniques for minimizing this problem. In general, this introduces a tradeoff with other undesirable effects. In
some cases this is physical resource requirements, while in others it is noise rates.
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Quantum computing holds great promise for solving com-
putational problems intractable on classical computers. A
major obstacle facing all quantum computing architectures is
the introduction of errors. In particular, qubit loss and gate
failure are significant problems in some architectures. Most
notably this affects photonic schemes, such as linear optics
quantum computing �1,2�. Here these types of errors arise
through the physical loss of photonic qubits, the inefficiency
of photon sources and detectors, and the nondeterminism of
multiqubit gates.

Recently there have been several proposals for tolerating
qubit loss, including ones based on cluster �3� and parity �4�
states. There have also been proposals for tolerating gate
failure �5,6�. These schemes achieve loss or failure tolerance
through redundant encoding. This allows multiple attempts at
performing measurement or gate operations, suppressing loss
or failure rates. However, redundancy also introduces addi-
tional opportunities for other types of noise to be introduced,
increasing effective error rates. We demonstrate that in gen-
eral this results in an exponential blowout in depolarizing
noise.

In a variety of contexts this can be a serious problem.
When embedded into a fault-tolerant quantum computing ar-
chitecture it could strongly reduce the effective fault-tolerant
threshold. In a loss-tolerant quantum memory it could
quickly reduce the memory to a dephasing �i.e., classical�
channel. In the context of state preparation strategies, which
have applications beyond quantum computing, it could result
in the preparation of highly mixed states.

We go on to show that in general these problems can be
significantly reduced with appropriate modifications to the
schemes. However, doing so introduces a tradeoff between
loss or failure tolerance and other undesirable effects—in
some cases physical resource requirements, and in others dif-
ferent error types. This fundamentally limits the loss or fail-
ure tolerance of these schemes.

We begin by introducing the notion of error teleportation,
sometimes referred to as error propagation. This occurs when
qubits in an entangled state are subject to noise and subse-

quently measured, causing the noise to be teleported onto the
other qubits. Error teleportation is the physical basis for un-
desirable error scaling in the schemes we discuss. We then
apply this principle to two examples: a gate-failure-tolerant
state preparation scheme, and a loss-tolerant quantum com-
puting scheme. Both these examples rely on the cluster-state
model for quantum computing. We do not review cluster
states here and suggest the unfamiliar reader refer to Refs.
�7–9�.

The first example we consider is a gate-failure-tolerant
scheme for constructing cluster states, which are a resource
for universal quantum computation. We show that while this
scheme is tolerant against gate failure, it exponentially mag-
nifies the effects of depolarizing noise. We describe a modi-
fication to the scheme, which minimizes this problem. How-
ever, this introduces a tradeoff between failure tolerance and
physical resource requirements. We also provide a more gen-
eral discussion of state preparation strategies in the context
of error propagation.

The second example is a scheme for tolerating qubit loss
in the cluster-state model for quantum computing. We dem-
onstrate that the loss tolerance of this scheme also causes an
exponential blowout in error rates. Again we suggest a modi-
fication to the protocol to overcome this problem. Doing so
presents a tradeoff between loss- and error-tolerance and sig-
nificantly reduces the otherwise very high loss-tolerance
promised by the scheme.

Our results suggest that specialized loss or failure-tolerant
protocols will be limited to dealing with comparatively mod-
est levels of loss or failure, and in realistic scenarios will be
unable to achieve their otherwise very high thresholds.

We now describe the principle of error teleportation. Con-
sider an n qubit, maximally entangled state. If any single
qubit is measured, the state of the remaining qubits is pro-
jected into a smaller pure state. Now suppose the measured
qubit was first depolarized. This decorrelates the qubit from
the remaining qubits and the measurement outcome will
have no correlation with the remaining state. Thus, depolar-
ization followed by measurement is equivalent to tracing a
qubit out. This leaves the remaining state in the completely
mixed state—the noise has been teleported onto the other
qubits.

Next we consider how error teleportation scales in a situ-
ation where multiple qubits are measured. We assume an
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independent depolarizing noise model, which is applied post-
state-preparation. We let each qubit be subject to a depolar-

izing channel of the form E��̂�= �1− perror��̂+ perrorÎ /2, where
p is the error rate. When any n−1 qubits are measured, the
remaining qubit will be depolarized if any of the original
qubits were depolarized. The effective error rate on the re-
maining qubit is therefore peff=1− �1− perror�n. In the regime
of small perror, peff scales roughly linearly with n. For larger
perror, peff exhibits asymptotic behavior, approaching 1 for
large n.

We now turn our attention to our first example, a scheme
for implementing scalable quantum computing using proba-
bilistic entangling gates �5,6�. This scheme is very general
and applicable to architectures where there is negligible qu-
bit loss, but entangling operations have nonzero failure prob-
ability �1− pgate�. By exploiting the properties of cluster
states it is shown that scalable quantum computing is pos-
sible for any nonzero pgate, at the expense of a polynomial
resource overhead.

The scheme describes how to efficiently construct square-
lattice-cluster states. Efficient scaling is achieved using a re-
source of “�” clusters. These have “arms” of redundant qu-
bits, which allow multiple attempts at applying entangling
gates. The protocol is described in Fig. 1.

After successfully bonding two arms we are left with an
irregular lattice cluster that contains leftover arm qubits. The
final step in the protocol is to reduce the cluster to a square
lattice by measuring out these leftover qubits. This reduction
stage is very similar to the multiqubit error teleportation sce-
nario described previously �19�. Consider the case where the
first bonding attempt between two �-clusters succeeds. We
have two central node qubits with 2nl redundant arm qubits
remaining between them, which must all be measured out.
Whenever one of these qubits suffers a phase flip an error
will be teleported onto the root qubit. Following the reduc-
tion of all redundant arm qubits, an error will remain on the
prepared cluster qubit if an odd number of Z errors occurred
on the measured arm qubits. This probability scales exponen-
tially with nl, which is inversely proportional to pgate. There-

fore, for a given effective error rate, the tolerable physical
error rate scales down exponentially with pgate. Thus, while
the scheme can tolerate arbitrary pgate in principle, in practice
it is fundamentally limited.

Other related proposals, such as Nielsen’s �10� microclus-
ter approach to efficiently constructing cluster states using
nondeterministic gates, ought to exhibit similar characteris-
tics since they also rely on reducing clusters by measuring
out redundant qubits. Both these schemes are variations of
the ‘divide-and-conquer’ approach to state preparation. This
is a common trick to overcoming exponential reduction in
success probability in the presence of loss or gate failure and
has applications beyond quantum computing. Our results po-
tentially have broad implications for state preparation proto-
cols. For example, Kieling et al. �11� recently investigated
optimal strategies for constructing cluster states using non-
deterministic gates. Their analysis was entirely classical, and
attempted to optimize physical resource requirements. Our
results suggest that such analyses ought to be reevaluated to
consider error propagation properties.

Let us substantiate this further by considering a simple
comparison of two state preparation strategies: a “single-
shot,” and a divide-and-conquer approach. Divide-and-
conquer is clearly superior from a physical resource perspec-
tive since it exhibits polynomial resource scaling compared
to the exponential scaling of the single-shot approach. How-
ever, from a fault-tolerance perspective things are quite dif-
ferent. Divide-and-conquer necessarily requires the reduction
of redundant qubits, which propagates errors. Single-shot on
the other hand does not. In this simple comparison it is evi-
dent that resource and error scaling are competing param-
eters.

This observation suggests an approach for minimizing er-
ror accumulation effects in divide-and-conquer based ap-
proaches. Consider the protocol discussed previously. Refer-
ring to Fig. 2, we begin with a resource of clusters of the
form shown in �a�, which we fuse together to form clusters of
form �b�. Similarly, two �b� clusters can be used to construct
a cluster of form �c�. Suppose the initial resource of
�-clusters is produced using a single-shot approach. Thus,
the initial resource states do not suffer from accumulated
errors. Ordinarily a �b� cluster suffers error accumulation as-
sociated with the measurement of redundant arm qubits. This
can obviously be avoided by instead beginning with a re-
source of �b� clusters, prepared using a single-shot approach.
This avoids the measurement of the interstitial redundant qu-
bits. In general, error accumulation can be further suppressed
by beginning with larger resource states.

FIG. 1. Gate-failure-tolerant approach to constructing cluster
states. The fundamental building block is the �-cluster. This has a
central node �shown in gray�, which will ultimately belong to the
constructed square lattice. The central node is bonded to four linear
chain clusters, each of length nl. These arms provide redundancy,
allowing multiple bonding attempts. To grow a cluster, rather than
bond two cluster qubits together directly, we utilize �-clusters and
attempt bonding starting at the ends of the arms �a�. If this fails we
lose two qubits from the respective arms, but can recover the re-
mainder of the cluster by measuring the neighboring qubits in the Z
eigenbasis. We can keep reattempting the gate until there are no
qubits remaining in the arms. When bonding succeeds we have the
two desired cluster nodes with some remaining arm qubits left be-
tween them. These are removed by measuring them in the X eigen-
basis �b�.

FIG. 2. Examples of different resource states that can be em-
ployed in the scalable construction of cluster states using nondeter-
ministic gates.
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This technique effectively allows us to tailor a strategy
that presents an arbitrary trade-off between the single-shot
and divide-and-conquer strategies. The trade-off between
competing resources is clear. For a given bound on the ef-
fective error rate, using larger resource states allows us to
tolerate higher local error rates, since error accumulation is
reduced. However, because they are prepared using a single-
shot approach, this requires physical resources growing ex-
ponentially with their size, and polynomially with gate fail-
ure rate. This places fundamental limitations on practically
tolerable gate failure rates.

A simple numerical example is illustrative. From Ref. �6�,
constructing a 100 qubit cluster state with 10% success prob-
ability, using Controlled-PHASE �CPHASE� gates operating
with 99% success probability requires a resource of
�-clusters with arm length nl�11. Suppose we construct the
resource states using single shot. The preparation of each
�-cluster succeeds with the probability psuccess= pgate

4nl �0.64.
Next we join two �-clusters together to form a cluster of
type �b�. With a physical depolarizing rate of perror=10−3,
after the measurement of redundant qubits, the effective de-
polarizing rate is peff�1.1�10−2, an order of magnitude in-
crease. Alternately, we could produce type-�b� clusters
directly. Now the single-shot success probability is psuccess
= pgate

6nl+1�0.51. However, there are no accumulated errors as-
sociated with joining the �-clusters, so the effective error
rate is just the physical error rate of 10−3.

While this example exhibits a significant reduction in ef-
fective error rates, it is clear that we are limited to a high
pgate regime. For lower values of pgate, we lose our ability to
directly prepare type-�b� clusters, and single shot can only be
used to construct smaller states. While this approach is lim-
ited, this example illustrates the benefits of shifting as much
of state preparation into single shot as possible.

As a second example we consider the Varnava et al. �3�
approach to tolerating qubit loss in cluster states. This
scheme relies on the principle of indirect measurement,
where the measurement outcome of a lost qubit can be in-
ferred by measuring correlated qubits.

The important feature of cluster states, from which indi-
rect measurement properties follow, is their stabilizer repre-
sentation. Associated with every qubit i in a cluster state is a

stabilizer of the form Ŝi= X̂i� j�v�i�Ẑj, where v�i� is the set of
qubits neighboring i. The stabilizers define correlations in
measurement outcomes. Indirect measurement exploits these
correlations to infer the measurement result of a lost qubit
using only the measurement results of correlated qubits.

In this scheme each cluster qubit is replaced with a “tree”
cluster, with its root node planted in place of the cluster
qubit. The tree structure facilitates multiple attempts at indi-
rect measurement of a lost root qubit, suppressing effective
loss rates. This is described in Fig. 3.

Indirect measurement exhibits similar error teleportation
properties to the previous example—an error will propagate
onto the lost root qubit if an odd number of measurement
results were incorrect. Based on results from Ref. �3�,
achieving an effective loss rate of �eff�10−3 given a physical
loss rate of �loss=0.2, requires tree clusters with roughly
Q�1000 qubits. Suppose an indirect measurement requires

measuring half the tree on average. This will magnify a
physical error rate of perror�10−3 to an effective error rate on
the indirectly measured qubit of peff�0.32, an increase of
more than two orders of magnitude.

This scheme can also be modified to overcome exponen-
tial error scaling through a minor adjustment to the protocol.
Referring to Fig. 3, we have multiple attempts at a given
indirect measurement, one for each branch in the tree. While
in principle only one indirect measurement is required to
measure a lost qubit, by utilizing all available branches we
can exploit the fact that all indirect measurement outcomes
ought to be consistent and implement a majority vote. This
was first recognized by Browne, Rudolph, and Varnava �12�.
If indirect measurement is performed in parallel via b1 �20�
branches, the probability of an error propagating into the
measurement outcome scales as peff=exp−1�b1� with psingle,
the probability of any single indirect measurement being in-
correct. On the other hand, psingle scales as psingle
=exp�poly�b2 , . . . ,bd�� with perror, where poly represents
some polynomial function of its parameters. Therefore, for
an appropriate choice of branching parameters �bi�, one ex-
pects that exponential error scaling can be eliminated.

Loss rates determine the effective value of b1. Thus,
higher loss rates imply lower confidence in the majority vote,
increasing error rates. This undermines the otherwise very
high loss thresholds promised by this scheme. To illustrate
this, we performed a numerical analysis of a simple two-
level tree structure with branching parameters b1=b2=3.
This structure improves the effective loss rate �i.e.,
�eff��loss� for �loss�0.195. Under the original scheme, this
loss rate would increase an error rate of perror=10−3 to an
effective error rate of peff�4�10−3. With the introduction of
majority voting this reduces to peff�1.7�10−3. Further-
more, there is a “break-even” point on �loss, below which
there is no degradation in error rates �i.e., peff� perror�. In this
example this occurs at �loss�0.1, roughly half the in-
principle loss tolerance rate. Thus, if the scheme is to be
operated in a regime where error rates do not suffer, the loss
threshold is significantly reduced.

Other loss-tolerant architectures ought to exhibit similar
properties to those presented here for loss-tolerant cluster
states. For example, in the loss-tolerant scheme of Ralph et
al. �4� logical qubits are encoded into maximally entangled

FIG. 3. Using a tree cluster to perform indirect Z measurement
of a lost qubit. The qubit below the lost qubit is measured in the X
eigenbasis, and each of the qubits below that in the Z eigenbasis. If
the X measurement fails, we can make another attempt on the next
branch. If any of the Z measurements fail, they can be indirectly
measured by moving further down the tree.
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parity states. One of the fundamental operations in this
scheme is reencoding, where new qubits are “grafted” onto
an existing parity state and all the old ones measured out.
This provides a situation completely analogous to the multi-
qubit teleportation scenario and exhibits identical exponen-
tial error-scaling properties.

Recent proposals for loss and failure tolerance have been
constructed to deal with a specific and very limited error
model. Consequently, they often promise extremely high loss
or failure thresholds. While effective within this limited con-
text, their disadvantage is that the effects of other error types
are magnified exponentially. This arises from the introduc-
tion of redundant qubits, which provide new opportunities
for errors to occur. This fundamentally limits the extent to
which such schemes can be used and undermines their loss
or failure tolerance.

For the examples cited we discussed techniques to mini-
mize the error-scaling problem. In the case of the failure-
tolerant scheme, while beneficial in terms of noise tolerance,
the discussed solution presented a direct tradeoff against
physical and temporal resource requirements. The solution
for the loss-tolerant scheme resulted in significantly reduced
loss thresholds. Our results suggest that, despite their limita-
tions, these schemes may be useful for dealing with modest
loss rates.

An important point is that our discussion is in a non-fault-
tolerant context. We assume a resource of perfect resource
states and that noise acts locally on these states after con-
struction. In practice, state preparation introduces a plethora
of new opportunities for errors to be introduced, including
correlated errors, which none of the presented solutions can
deal with effectively. Such effects will further reduce the loss
or failure tolerance of these schemes. A comparison with
fault-tolerant schemes is illustrative. Fault-tolerant thresh-

olds for joint depolarizing and photon loss errors in the clus-
ter state model were recently studied by Dawson et al. �13�.
The loss threshold was estimated to be on the order of
3�10−3, two orders of magnitude less than that achievable
using the loss-tolerant schemes discussed here.

While we have demonstrated the concept of error scaling
by example of several well-known protocols, we believe our
results have broad implications for loss- and failure-tolerant
protocols, state preparation strategies, and potentially other
schemes that make use of redundant encoding or ancillary
states. The central message is the following: any fault-
tolerant protocol must tolerate a general class of errors. In-
evitably, codes tailored to a specific error type will be more
sensitive to others. Significant work has been put into devel-
oping codes protecting against depolarizing noise �14–17�.
One might question whether such codes suffer because they
do not explicitly accommodate for loss errors. This is not the
case since qubit loss can always be trivially mapped to a
depolarizing error, because qubit loss is a located error. How-
ever, because they are unlocated �18�, depolarizing errors
cannot be mapped to loss. It is this distinction that makes
considerations in the construction of loss-specific codes in-
herently different from depolarization specific codes. A de-
tailed analysis of the discussed solutions to error scaling will
be presented in a supplementary paper.
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