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Abstract 23 

Shear bands in a volcanic conduit are modelled for crystal-rich magma flow using simplified conditions 24 

to capture the fundamental behaviour of a natural system. Our simulations begin with magma 25 

crystallinity in equilibrium with an applied pressure field and isothermal conditions. The viscosity of the 26 

magma is derived using existing empirical equations and is dependent upon temperature, water content 27 

and crystallinity. From these initial conduit conditions we utilize the Finite Element Method, using axi-28 

symmetric coordinates, to simulate shear bands via shear localisation. We use the von Mises visco-29 

plasticity model with constant magma shear strength for a first look into the effects of plasticity. The 30 

extent of shear bands in the conduit is explored with a numerical model parameterized with values 31 

appropriate for Soufrière Hills Volcano, Montserrat, although the model is generic in nature. Our model 32 

simulates shallow (up to approximately 700m) shear bands that occur within the upper conduit and 33 

probably govern the lava extrusion style due to shear boundaries. We also model the change in the over-34 

pressure field within the conduit for flow with and without shear bands. The pressure change can be as 35 

large as several MPa at shallow depths in the conduit, which generates a maximum change in the 36 

pressure gradient of 10’s of kPa/m. The formation of shear bands could therefore provide an alternative 37 

or additional mechanism for the inflation/deflation of the volcano flanks as measured by tilt-metres. 38 

Shear bands are found to have a significant effect upon the magma ascent rate due to shear-induced flow 39 

reducing conduit friction and altering the over-pressure in the upper conduit. Since we do not model 40 

frictional controlled slip, only plastic flow, our model calculates the minimum change in extrusion rate 41 

due to shear bands. However, extrusion rates can almost double due to the formation of shear bands, 42 

which may help suppress volatile loss. Due to the paucity of data and large parameter space available for 43 

the magma shear strength our model results can only allow for a qualitative comparison to a natural 44 

system at this stage. 45 
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1. Introduction 56 

Lava domes form when the extruded lava is so viscous it cannot flow freely away from the vent. Such 57 

structures can grow slowly for many weeks to years without being a threat to the surrounding 58 

population, but occasionally, a lava dome may collapse or explode. The main risk from collapse events 59 

are pyroclastic flows, concentrated dispersions of hot volcanic fragments that move rapidly down the 60 

volcano flanks in response to gravity [1]. Collapse events are a regular occurrence on Soufrière Hills 61 

Volcano (SHV), Montserrat, and can take the form of repeated destruction and reconstruction of the 62 

dome, often with the locus of new growth switching over time.  63 

 64 

Lava dome emplacement morphology ranges from near solid structures to more fluid flows, and is 65 

dominated by the degree of magma crystallisation [2, 3]. Crystal growth in intermediate composition 66 

magma occurs primarily due to the exsolution of volatiles, due to a decrease in pressure during ascent 67 

that acts to lower the liquidus temperature of the melt. Consequently, magma undergoes profound 68 

rheological stiffening during ascent, which can change the magma from a Newtonian fluid into a hot 69 

crystalline solid with only small amounts of residual melt [4]. Crystallisation is also time-dependent and 70 

for SHV, and lava domes generally, the morphology of the dome exhibits a high degree of correlation 71 

with the lava extrusion rate [2]. At the lowest extrusion rates lava is highly crystalline (85 to 95% solid 72 

fraction) within the upper conduit. During these conditions lava dome growth occurs in a predominantly 73 

extrusive (exogenous) fashion, producing crystal-rich structures such as spines and whalebacks [2]. At 74 

higher extrusion rates the magma has less time to crystallize in the conduit, resulting in more fluid-like 75 

behaviour including intrusive (endogenous) inflation and exogenous low aspect ratio flows. 76 

 77 
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During exogenous dome growth, lava is extruded directly to the free surface of the dome, implying some 78 

form of internal structure capable of channelling the magma. During emplacement the lava often 79 

extrudes in a stick-slip manner along curved structures, interpreted as ductile shear boundaries, 80 

suggesting that the conduit wall provides the main detachment surface. Spines, whalebacks and other 81 

crystal-rich exogenous structures commonly exhibit sub-parallel groves running along their length 82 

parallel with the direction of extrusion, that indicate some form of shear process [4]. Observational 83 

evidence of these structures also identifies cataclasites, suggesting the development of brittle shear 84 

bands [5]. The lava extrusion style is therefore to some degree controlled by shear bands, their presence 85 

being fundamental in crystal-rich exogenous emplacement.   86 

 87 

Three types of seismic signal are commonly observed during silicic volcanic eruptions: Volcano-88 

Tectonic (VT) events thought to be indicative of rock fracture, Long-Period (LP) events characterized 89 

by their harmonic signature and interpreted as oscillations in a fluid-filled resonator, and Hybrids which 90 

have a high-frequency onset (VT) followed by a low-frequency ringing (LP) [6, 7]. For SHV, the depth 91 

at which these seismic signals occur is anywhere between the free surface and 3000m below it [8]. VT 92 

events represent the deeper conduit system and spikes in activity have generally been linked to 93 

significant changes in eruption activity, although they are more commonly recorded during periods of 94 

dormancy [9]. Hybrid and LP events represent upper conduit and dome processes, commonly with the 95 

source location remaining relatively stable over-time [9]. For SHV LP seismicity is calculated to 96 

originate approximately 1500 m below the surface of the dome [10]. 97 

 98 

Cyclic behaviour at SHV during 1997 was observed for seismicity, deformation of the volcano flanks as 99 

recorded by tilt-meters, as well as lava dome growth. During this period cycles ranged from 4 – 36 hours 100 
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(not including the Vulcanian explosion cyclic events) [3, 11, 12]. During a typical (4 – 36 hours) cyclic 101 

period on SHV, lava dome growth would stagnate, as measured by the seismic network signifying the 102 

accompanying rockfall activity from the dome was reduced [1]. A reduction in the lava extrusion rate is 103 

indicative of crystal growth in the upper conduit, the time-scales of which are comparable to the 104 

deformation cycles, leading to the formation of an impeding dense viscous plug [11]. Pressurisation of 105 

magma and gas under the viscous plug can then result in the inflation of the volcano flanks. An 106 

acceleration in extrusion rate, observed by an increase in the amount of rockfalls from the advancing 107 

lava, signifies the formation of a new pathway for the lava and the removal of the viscous plug [2]. This 108 

permits the pressure in the upper-conduit to decrease, leading to the deflation of the volcano flanks. 109 

Typically dome growth is more pronounced at the peak of volcano flank tilt deformation and during 110 

deflation, commonly with extrusion rates approximately doubling and lava extrusion being 111 

accommodated by slip on ductile shear faults [3, 12]. The volcano flank deflations were generally more 112 

rapid than flank inflation, and hybrid earthquakes were observed to coincide with the point at which 113 

volcano flank inflation started to decelerate (the point of inflexion), suggesting that seismicity may be 114 

initiating the depressurisation process [13].  115 

 116 

The above evidence, along with additional observational data [5], has led some research groups to 117 

postulate that hybrid and LP seismic events originate from stick-slip processes along the conduit margin 118 

[10].  Shear bands, as observed at the surface of the dome during cyclic activity, could generate such 119 

stick-slip behaviour, suggesting that shear bands could penetrate to the depths where LP seismicity 120 

originates. Using an isotropically pressurised conduit model [14], an elastic half-space model [12], or 121 

shear stresses at the wall of the conduit [15], the depth of the pressure source is calculated to be less than 122 

1000 m below the surface of the dome for SHV. Since the depth of LP events is approximately 1500 m 123 
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below the surface of the dome, this means that the tilt and seismic hypocentres don’t appear to correlate, 124 

however the calculated depths are strongly model dependent.  125 

 126 

We develop a visco-plastic axi-symmetrical Finite Element Method (FEM) model to simulate the 127 

generation of shear bands, localised regions of high strain, in a conduit via shear-localization. The 128 

formation of a zone or band of localised shear along the conduit wall occurs within our conduit domain 129 

when the material enters the plastic limit, i.e. when the shear stress experienced equals the shear strength 130 

of the magma. We neglect any potential frictional slip after shear bands have been generated, 131 

considering only plastic flow and therefore the minimum change in extrusion rate. We neglect the 132 

influence that bubbles have upon the viscosity and density, which may alter the flow properties. We also 133 

neglect departures from isothermal conditions and the evolution of shear bands once they form, instead 134 

considering the slow mode components of lava rheology, making the assumption that the timescales for 135 

shear band evolution occur more rapidly than the rheology can change. Instead, we focus our attention 136 

on a magma crystallinity in equilibrium with the pressure field and the influence this has upon viscosity 137 

and shear stress, which is found to be more significant than for bubbles for this style of volcanism [16, 138 

17]. For this paper we use constant magma shear strength because it is unknown which constitutive 139 

relationship controls the mode of deformation at depth. This means that the extent of the shear bands is 140 

controlled by the magma shear stress, which is effectively governed by the viscosity. Our model is 141 

intended to be simplified to capture the fundamental behaviour of a natural system, such as changes in 142 

extrusion rate and pressure. In section 2 we briefly discuss existing models that consider shear bands in 143 

conduit flow. We follow this with the description of our conduit model in section 3, including the field 144 

equations and initial conditions used. Section 4 provides results from our model and in section 5 we 145 

discuss these results. 146 
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 147 

2. Existing Models 148 

Modelling efforts have been limited by the complexities of the magma rheology, for which no complete 149 

mathematical model currently exists [18]. Costa [17] recently developed an advanced model for the 150 

viscosity of magma containing very high solid fractions, although this model remains Newtonian. 151 

Existing numerical models have offered important insights into the fundamental characteristics of lava 152 

flow in a conduit due to gas exsolution and crystallisation and how this may promote cyclic behaviour. 153 

Melnik and Sparks [18 - 21] conduit models demonstrate that the major flow regimes depend upon the 154 

relative time scales of magma ascent and crystallisation, and that some cyclic behaviour can be 155 

attributed to the time-scales involved with crystallisation kinetics. The observation of complex 156 

oscillatory behaviour in the high-pressure extrusion of industrial polymer melts led Denlinger and 157 

Hoblitt [22] to develop a simple dynamic model for conduit flow. They model compressible magma 158 

flow though a cylindrical conduit undergoing stick-slip motion to extract characteristic oscillatory time-159 

periods, and relate this to the cyclic periods experienced by silicic volcanoes. While Wylie et al. [23] 160 

modelled volatile exsolution as magma nears the surface, the corresponding increase in magma viscosity 161 

within an elastic medium, and how this promotes oscillatory flow. In all these models the oscillatory and 162 

seismic behaviour is related to the magma flow instability. However, none of the models consider the 163 

lateral variations across the conduit which will modify the flow properties and promote the development 164 

of shear bands [24, 25].  165 

 166 

Neuberg et al. [10] combined seismological clues, field evidence and numerical modelling to suggest a 167 

trigger mechanism for LP seismicity based upon the brittle failure of magma in the glass transition. They 168 

model magma flow in a conduit using the FEM. Shear bands develop at the conduit wall where loss of 169 
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heat and gas is modelled, consequently resulting in a high viscosity gradient. Although they base their 170 

model upon the SHV, they use a very low crystallinity of 30% and this means they have to rely upon 171 

very high extrusion rates to force the generation of shear bands to appropriate depths. Gonnermann and 172 

Manga [26] use bubble growth and plastic failure to model the point at which magma fragmentation 173 

occurs within a conduit and the influence it has upon the resulting eruption style. For their model they 174 

are primarily interested in how magma melt and bubbles control viscous shearing, but do not specifically 175 

consider the depth that fragmentation (intense shear) occurs, or how it then changes the extrusion rate or 176 

pressure within the conduit. This is our motivation, and as for Neuberg et al. [10] and Gonnermann and 177 

Manga [26] we use an empirical well-studied viscosity and constant magma shear strength for a first 178 

look into the effects of plasticity. 179 

  180 

3. Conduit Model 181 

We model the conduit as a vertical cylinder of uniform radius between the magma chamber and the 182 

volcano free surface, as shown in Figure 1. The conduit is 15 metres in radius and has a length of 5km 183 

[27]. Magma ascent is driven by an over-pressure existing within the magma chamber, defined as the 184 

total pressure minus magma-static pressure, and the pressure at the free surface is atmospheric. Model 185 

equations are discussed in this section and Table 1 lists the parameters used in the model. 186 

 187 

[Location of figure 1] 188 

[Location of table 1] 189 

 190 

3.1Momentum Equations 191 
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Magma is modelled as an isotropic, incompressible viscous fluid. The relationship between the 192 

deviatoric part of the stress tensor ij  , and the symmetric part of the velocity gradient or stretching ijD , 193 

reads: 194 

 195 

ijij D  2 ,  )3,2,1(, ji ,                                                              (1) 196 

where 197 
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Here ij  are components of the stress tensor,   the viscosity, ij is the Kronecker delta and P the 199 

pressure. In general the viscosity depends on the pressure, temperature and other state variables. Here 200 

we focus on the dependency of  on the crystal content as described in sections 3.4 and 3.5. We also 201 

assume that any dilatancy effects associated with the crystallisation processes do not affect the 202 

qualitative features of the flows considered here; i.e. we assume: 203 

0 vdivD jj ,              (3) 204 

where v  is the velocity vector. The stress-equilibrium equations in axi-symmetrical coordinates, read, 205 
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 207 
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where f is the body force and r  is the radial coordinate. Insertion of equations 1 and 2 into 4 yields the 208 

equations of motion in the following form: 209 

 210 
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


       (5) 211 

 212 

3.2 Generating Shear Bands 213 

Shear bands are weak regions stressed under high strain rates that are prone to failure. Localized shear 214 

bands form if the underlying flow or deformation experiences a particular type of instability in the 215 

constitutive relationship [28]. This instability expresses itself mathematically as a change in the type of 216 

the tangential boundary value problem. In pressure-sensitive materials the instability may arise because 217 

of a mismatch between the pressure sensitivity and the dilatancy factor and/or strain softening, for 218 

example due to micro-cracking. Another important shear-band generating mechanism is related to shear 219 

heating and thermal feedback due to a strongly temperature-dependent viscosity. However, this 220 

mechanism is generally only relevant for high Péclet number flows (adiabatic shear banding) and is not 221 

likely to be important in our study due to the low flow rates experienced at SHV [25]. Model results are 222 

extremely mesh sensitive since the thickness of shear bands is undetermined in standard continuum 223 

models. Strategies to overcome this ill-posedness have been developed mainly by the engineering 224 

community [29]. Here we accept this mesh sensitivity so that the shear band width will be set by the 225 

length scale provided by the discretisation scheme, i.e. the characteristic element width, which equals 226 

the thickness of shear bands observed at SHV [4].  227 

 228 
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Magma flow rates can be highly variable due to complex feed-back processes such as time-dependent 229 

crystallisation [19]. However we need an initial crystallinity, pressure and viscosity within our conduit 230 

from which to initialise our model. The simplest starting point is to assume that the magma is initially 231 

stationary, and that the crystal content is in equilibrium with a pressure field. Stationary magma also 232 

implies that no shear bands currently exist within the conduit at the start of the simulation. From this 233 

initial magma state we need to initiate flow by changing the pressure field. Over time-scales associated 234 

with magma ascent in the conduit, magma chamber key variables such as over-pressure are likely to be 235 

approximately constant due to its large volume with respect to the lava-dome and conduit. Since our 236 

model is not transient at this stage we need to make the necessary simplification that a rapid over-237 

pressure change occurs that is large enough to force magma flow and to generate shear bands. A 238 

significant and rapid pressure change within the conduit can be achieved by removing a flow-inhibiting 239 

lava dome, existing at the conduit exit, by means of a collapse event. Therefore our model begins with a 240 

pressure field that represents a lava dome at the conduit exit, providing a resisting pressure equal to the 241 

magnitude of the over-pressure in the magma chamber. The initial pressure gradient from which to 242 

evaluate the magma properties in the conduit for one simulation thus comprises of a component from the 243 

magma-static pressure, plus a constant over-pressure from the weight of the lava dome. Mathematically 244 

we instantaneously remove the dome and set the conduit exit pressure to be equal to atmospheric 245 

pressure. The over-pressure existing within the magma chamber can then be transferred to the magma in 246 

the conduit enabling flow. The velocity and pressure fields within the conduit are then calculated 247 

iteratively, using the initialised viscosity field and conduit exit and magma chamber pressures as 248 

boundary conditions. 249 

 250 
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The largest dome recorded at SHV was approximately 1116m above sea level, and following a collapse 251 

event the deepest it excavated into the crater was approximately 700m a.s.l., resulting in a dome collapse 252 

of approximately 400m [30]. This, and the estimated maximum tensile strength of the surrounding 253 

country rocks of 20 MPa provides an upper limit for the pressure change in our model [31]. The 254 

assumption of a magma crystallinity in equilibrium with the pressure field is not likely to be appropriate 255 

during periods of sustained magma flow due to crystallisation kinetics [25]. However the largest strain-256 

rates and shear stresses are likely to be at the conduit walls due to a no-slip boundary condition. At the 257 

conduit wall, where magma is stationary, the crystal volume fraction and water content in the magma 258 

will be in equilibrium with the applied pressure. Hence the viscosity field along the conduit wall, where 259 

shear bands form, would not be expected to change much for transient flow from our unsteady model.  260 

 261 

3.3 Temperature 262 

The low thermal conductivity of magma means that the temperature will not change significantly along 263 

the length of the conduit, enabling us to assume the magma is in thermal equilibrium. The temperature 264 

of the magma and the conduit walls in our models is set to be 1123K [32] justified by assuming the 265 

eruption is long-lived, the case for SHV, and therefore the conduit walls have been pre-heated. We 266 

assume that shear bands form instantaneously so that isothermal conditions prevail. Temporal offsets 267 

that may affect the flow; i.e., shear heating can further destabilize the flow once shear bands form, but 268 

this effect will be secondary to the onset of shear bands.  269 

 270 

3.4 Physical Properties of Magma 271 

Magma contains crystals, melt and bubbles that vary in proportion during flow and ascent in the conduit. 272 

Variations in the proportions of liquid and non-liquid components will modify the viscosity. The role of 273 
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bubbles in the magma in the simulation is ignored because its influence upon the viscosity is weak, a 274 

maximum change in viscosity of approximately 75% [33] and for high viscosity dome forming eruptions 275 

this value is likely to be much lower [34]. Our model focuses upon representing the crystal volume 276 

fraction characteristics of the magma since this has by far the strongest influence upon the magnitude of 277 

the effective viscosity, potentially increasing it to over 4 orders of magnitude [2, 17, 20, 33]. By 278 

assuming the maximum crystal volume fraction possible in the magma, our model can be considered to 279 

be an end-member scenario, reflecting very slow magma ascent rates, and will generate the deepest 280 

shear bands owing to the highest viscosity within the conduit and the highest over-pressures required to 281 

force flow.  282 

 283 

For SHV the crystallinity in the magma chamber is calculated to be 35 to 45 vol. % phenocrysts and 15-284 

20 vol. % microphenocrysts [4] giving a total crystallinity between 50 and 65%. We assume an initial 285 

crystallinity of 60 vol. % at the conduit entrance (Fig. 1). The degree of crystallisation is modelled by 286 

considering the effective liquidus temperature Tliq which changes due to the progressive chemical 287 

change of the melt (Eqn. 6). 288 

 289 

,/)ln()ln()ln( 22 PPdPcPbaT TTTTliq       (6) 290 

 291 

with the coefficients TTtT dcba ,,,  as given by Melnik and Sparks [21] and listed in Table 1. The 292 

equilibrium crystallinity eq in the melt phase is given by (Eqn. 7): 293 

 294 

TPB

PTTPA liq

eq





)(

))()((
 ,         (7) 295 
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 296 

where )(PA  and )(TB  are functions of the pressure and are described by Melnik and Sparks [21] and T  297 

is the temperature. The melt viscosity of the magma is calculated using an empirical equation developed 298 

by Hess and Dingwell [18] (Eqn. 8), where the water content, the primary volatile, is Pc s  with 299 

s the solubility coefficient: 300 

 301 

 














cT

c
cm

ln25.327.195

ln23689601
ln833.0545.3log .    (8) 302 

 303 

The total viscosity is calculated using the equation presented in Melnik and Sparks [21] (Eqn 9) 304 

where eq  : 305 

 306 

  m            (9) 307 

     2/arctanlog 0
0













  308 

 309 

Equation 9 contains the coefficients   and  , and 0  is the critical crystal fraction, and the values used 310 

are given in Table 1. For our model, this gives a viscosity from 510
5
 Pa s at the magma chamber up to 311 

410
10

 Pa s at the conduit exit, depending upon the magma chamber pressure used. 312 

 313 

3.5 Magma shear strength 314 

The shear strength provides a limit to the acceptable stress states in a material. Laboratory experiments 315 

show that the critical stress at the onset of yield is a function of pressure, temperature, strain, strain-rate, 316 



Forthcoming in Earth and Planetary Science Letters 

 

 16 

porosity and sample size [36]. Therefore the physical properties of the magma are likely to affect the 317 

yield characteristics of the magma. For example, if the magma has only small amounts of crystals then 318 

the magma may yield in a ductile way as observed for metals. Whilst for cool brittle magma, 319 

deformation is localized along micro-fractures that amalgamate into a shear surface at failure [4]. Since 320 

we do not have knowledge of the yield mechanism along the conduit length we must focus on the 321 

simplest scenario, a constant magma shear strength with a magnitude obtained from the brittle-ductile 322 

criteria for glasses. For a first look into the effects of plasticity we use the von Mises visco-plastic model 323 

with the yield criterion given by equation 10, where F designates the yield function, ijij  2/1  is 324 

the equivalent shear stress and S is the magma shear strength. Prior to yielding the material deforms 325 

linearly (i.e. Newtonianly), and once the shear strength has been reached some fraction of the 326 

deformation will be permanent and non-reversible with plastic flow along a shear band. 327 

 328 

0 SF  .         (10) 329 

 330 

For an illustration how the criterion (Eqn. 10) works, consider simple shear with a prescribed 331 

monotonically increasing strain rate. At sufficiently low strain rates the shear stress is below the magma 332 

shear strength S . As the strain rate increases the shear stress will eventually reach S . It is non-physical 333 

for 0 S , that is to have a stress exceeding the magma shear strength, thus even if the strain rate is 334 

increased the shear stress will remain constant with S  . Hence, shear bands are less likely to develop 335 

as the magma shear strength increases and the driving force of the process controlling the magnitude of 336 

the shear stress remains unaltered, because higher shear stresses are required to permit the magma to 337 

enter the plastic regime. To model plastic flow we define an effective viscosity ],min[ Seff    in the 338 
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solution of the velocity-pressure problem (Eqn. 5),  is the pre-yield viscosity (Eqn. 9) and  /SS  , 339 

where   is the equivalent strain-rate, i.e. 
ijij DD2 . Since  is unknown initially the solution has to 340 

be determined iteratively. The definition of eff ensures that after enough iterations 0 S  341 

everywhere. Although the non-linear problem is solved iteratively using a secant rather a tangent 342 

method, the character and the properties of the solution is determined by the properties of the tangential 343 

problem [37]. During the iterations the plastic zone typically narrows and lengthens continuously until it 344 

is localized in a band of approximately one element size width along the conduit wall. In this particular 345 

case the plastic zone coincides with the domain occupied by the shear band.  346 

 347 

Table 2 gives values for S  from the literature. Apparent from table 2 is that the magma shear strength is 348 

not well constrained. Some of this scatter is because the physical properties of semi-molten magma are 349 

hard to measure given the technical difficulties involved in deforming samples of lava at the high 350 

temperatures, pressures and strain rates that occur within natural systems.  351 

 352 

[Location of table 2] 353 

 354 

4. Results 355 

The axi-symmetrical equations (3-5) are solved using the parallelized FEM based PDE solver eScript 356 

and the FE library Finley [38]. More details on the solution process for the velocity and pressure fields 357 

can be found in [39]. The axi-symmetric cylindrical conduit is discretised using 5000 x 15 elements with 358 

quadratic shape functions (8 nodes per element) in conjunction with 4 point Gauss integration for the 359 

element matrices.  360 

 361 
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4.1 Shear band generation 362 

Figure 2 shows results from one simulation with magma shear strength of 2x10
5
Pa and a magma 363 

chamber pressure of 132.2 MPa, which required a pressure change of 14.7MPa at the conduit exit. From 364 

left to right in figure 2 we produce plots of velocity in X3-axis, strain-rate, shear stress, and shear stress 365 

divided by the magma shear strength (effectively the plasticity). Where the shear stress divided by the 366 

magma shear strength is exactly equal to unity, shear bands will form. This results in a narrow band one 367 

element wide flush against the conduit wall, and for this simulation corresponds to a shear band length 368 

of 413.5m. In all the models presented, shear bands form a continuous band between the conduit exit 369 

and the maximum depth of the shear band directly against the conduit wall. This is due to the effective 370 

viscosity increasing towards the conduit exit (Fig. 3) and the magma shear strength having a constant 371 

value. 372 

 373 

[Location of figure 2] 374 

 375 

4.2 Shear band length. 376 

Figure 4 shows the length that shear bands penetrate into the conduit for two different magma shear 377 

strengths over a range of magma chamber pressures, from 2.4MPa to 25.4MPa. Using a magma shear 378 

strength of 10
6 

Pa the result was that no shear bands form in the conduit over the magma chamber 379 

pressures used. By reducing the magma shear strength we can force shear bands to form, because it 380 

effectively decreases the shear-stress required before the magma enters the plastic regime. For a magma 381 

shear strength of 5x10
5
Pa shear bands develop to a maximum depth of 130 metres, whilst for a magma 382 

shear strength of 2x10
5
Pa shear bands develop to a maximum depth of 703 metres. The length of the 383 

shear band within a conduit will depend upon the magma viscosity and the driving pressure. Although a 384 
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magma shear strength change from 2x10
5
Pa to 5x10

5
Pa is only small, the length that shear bands form to 385 

is significantly affected because the viscosity changes occurs most dramatically in the upper conduit. 386 

Figure 3 shows the relaxed Newtonian viscosity along the length of the conduit at the start of the 387 

simulation as well as the crystal volume fraction of the magma with depth. Figure 4 also shows that 388 

shear bands will not form within the conduit for magma chamber pressure below approximately 130MPa 389 

(an over-pressure of 12MPa) for a magma shear strength of 5x10
5
Pa, whilst for a magma shear strength 390 

of 2x10
5
Pa shear bands only form for magma chamber pressures exceeding 120MPa (i.e. an over-391 

pressure of 2MPa).  392 

 393 

 394 

[Location of figure 3] 395 

[Location of figure 4] 396 

 397 

 398 

For low magma chamber pressures, corresponding to an initially small change in pressure at the conduit 399 

exit, the viscosity in the upper conduit will be relatively large (Eqns. 7 - 9). However, due to the low 400 

extrusion rate (a consequence of the lower over-pressure), shear bands will not penetrate deep into the 401 

conduit. For increasing magma chamber pressures, i.e. increased dome retarding pressures, the viscosity 402 

in the upper conduit will decrease since crystallinity is a function of pressure. However, a higher over-403 

pressure will result in a higher extrusion rate allowing the shear band length to increase with increasing 404 

magma chamber pressure. The length that shear bands penetrate into the conduit tends towards an upper 405 

limit, most clearly shown for a magma shear strength of 5x10
5
Pa (Fig. 4), due to the viscosity decreasing 406 

with increasing depth within the conduit (Fig. 3). 407 
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 408 

4.3 Shear band influence upon extrusion rate. 409 

Shear bands are likely to effect magma ascent rates by reducing conduit friction and consequently the 410 

large over-pressures required to extrude highly crystalline silicic magmas. We calculate the extrusion 411 

rate for magma flow with no shear bands in the conduit (i.e. Hagen-Poiseuille flow), assuming the 412 

magma does not enter the plastic regime. For the same magma chamber pressure we calculate the 413 

extrusion rate for magma flow in the conduit with shear bands permitted to form. Since our model 414 

ignores a possible elastic-brittle contribution to the rheology, frictional slip can not be modelled. As a 415 

consequence we model the minimum change in extrusion rate due to plastic deformation only. 416 

 417 

[Location of figure 5] 418 

 419 

Figure 5 shows the modelled extrusion rate (a) and its relative change (b) with and without shear bands 420 

in the conduit, plotted against the pressure in the magma chamber. For a magma shear strength of 421 

510
5
Pa shear bands can penetrate to depths of 130 m, which results in a maximum change in extrusion 422 

rate of approximately 3%. Whilst for a magma shear strength of 210
5 

Pa, at the highest magma 423 

chamber pressures shear bands reach a depth of 703 m resulting in a change in the extrusion rate of 424 

almost 100%. Transitions between effusive and explosive volcanic activity are essentially controlled by 425 

volatiles. The ability of gas trapped within the magma melt, from exsolved volatiles, to expand or escape 426 

by permeable flow will determine if the ascending magma will be effusive or explosive. Slowly 427 

ascending magma has time to release this build-up of gas resulting in highly degassed effusive magma. 428 

However, magma ascending rapidly may not be able to release the build-up of gas, and this may result in 429 

explosive activity. Gonnermann and Manga [26] suggest that fragmentation at the conduit wall, from 430 

localised regions of high strain, may act to inhibit explosive behaviour due the enhanced permeability 431 
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from the fracture network that develops. However, cyclic activity in 1997 at SHV produced numerous 432 

Vulcanian explosions with each episode preceded by a large dome collapse [40]. These collapse events 433 

may have forced the generation of shear bands in the upper conduit due to a large change in pressure as 434 

shown by our models. If these shear bands form rapidly enough, instantaneously in our visco-plastic 435 

model, the enhanced extrusion rate due to shear band formation may be large enough to prevent volatiles 436 

exsolving effusively. This may result in a competition between the processes of enhanced permeability 437 

from fragmentation and reduced gas loss due to enhanced extrusion rates. Therefore deep shear bands 438 

may be more likely to promote explosive activity due to a potentially large increase in extrusion rate. 439 

 440 

The relative increase in extrusion rate due to the formation of shear bands is non-linear (Fig 5b). This is 441 

due to two processes, first the length of shear bands tends towards an upper limit due to the decrease in 442 

viscosity with depth in the upper conduit (Fig. 3). Second, at increasing depths in the conduit the 443 

viscosity is lower, which will result in a smaller decrease from Newtonian to shear viscosity, meaning 444 

that the conduit resistance change is not as significant. At low magma chamber pressures (<130MPa) the 445 

extrusion rate is at the low end of the observed range for SHV (<0.5m
3
s

-1
). Lava is commonly extruded 446 

along shear surfaces at these extrusion rates due to the high degree of crystallinity in the magma. Since 447 

the generation of shear bands at these magma chamber pressures have a relatively minor influence upon 448 

the extrusion rate (changing it by up to 40%) this suggests that shear bands forming at this extrusion rate 449 

may be relatively stable and the crystal content will not vary significantly due to crystallisation kinetics 450 

[20].  451 

 452 

 453 

4.4 Shear band influence upon the over-pressure field 454 
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Cyclic inflation and deflation of the flanks of the volcano as recorded by tilt-meters is indicative of 455 

pressurisation within the upper conduit [12]. Crystal-rich magma forms a viscous cap in the upper 456 

conduit that inhibits flow, leading to pressure build-up at shallow levels and edifice inflation [11]. The 457 

magnitude and direction of tilt of the volcano flanks can be used to infer the magnitude and depth of the 458 

pressure source. Using an isotropically pressurised model [14] or elastic half-space model [12, 41], the 459 

depth of the pressure source is always less than 1000 m below the surface of the dome for SHV. Also, 460 

the pressure source either needs to be very large or distributed over a large area [14]. Green and Neuberg 461 

[13], following research by Beauducel et al. [42], suggest that surface deformations recorded by tilt-462 

meters could instead, or in addition, be from shear stresses within the upper conduit rather than a single 463 

large pressure source. The SHV flank displacements are then consistent with the generation of shear 464 

stresses beginning within the upper 100’s metres of the conduit walls. However, Green and Neuberg 465 

[13] emphasize that the vertical extent of the pressure source is unconstrained because tilt measurements 466 

are insensitive to deep sources. Considering vertical traction along the conduit walls the location for the 467 

tilt hypocentre is calculated to be approximately 400m and 600 m a.s.l., that suggests a shear stress 468 

depth of 160 to 360m below the conduit exit, with traction values between 0.5 and 1.5MPa [13].  For 469 

vertical traction to explain the recorded tilt requires a pressure gradient of 6.7×10
4
 - 2.0×10

5
 Pa/m along 470 

an upper conduit segment 30m in diameter [13]. 471 

 472 

[Location of figure 6] 473 

 474 

We use our conduit flow model to calculate the over-pressure within the conduit with shear bands for a 475 

magma shear strength of 210
5 

Pa (Fig. 6). Figure 6a shows the over-pressure profile along the conduit 476 

length for flow in the conduit with shear bands and without shear bands (i.e. Hagen-Poiseuille flow). 477 
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The pressure difference in figure 6b corresponds to the over-pressure in the conduit for Hagen-Poiseuille 478 

flow minus the over-pressure in the conduit with shear bands for the same magma chamber pressure. 479 

Hence, what figure 6b shows is the redistribution in over-pressure along the conduit length due to the 480 

development of shear bands. A positive pressure difference corresponds to a drop in pressure and 481 

therefore flank deflation. Everywhere the pressure difference is less or equal (at the magma chamber and 482 

conduit exit) to the initial over-pressure field, but the difference is most significant in the upper part of 483 

the conduit. This is more clearly shown in figure 7 which shows the over-pressure gradient along the 484 

conduit length for flow with shear bands minus that for Hagen-Poiseuille flow. Below the depth in the 485 

conduit where shear bands exist, the over-pressure gradient increases due to an increase in extrusion rate 486 

(from the presence of shear bands) but no change in viscosity. Above the depth where shear bands form, 487 

the over-pressure gradient decreases to values of 410
4
 Pa/m. Figure 8 shows a summary of all the 488 

model results for a magma shear strength of 210
5 

Pa showing the pressure difference maximum and the 489 

depth of the maximum against magma chamber pressure. These values for the depth and magnitude of 490 

the pressure change are comparable to those inferred at SHV during cyclic activity. 491 

 492 

[Location of figure 7] 493 

 494 

[Location of figure 8] 495 

 496 

5. Discussion 497 

Shear bands are simulated using a strain-localisation model to occur when the shear-stress equals the 498 

magma shear strength of the magma. This can result in the generation of shear bands to depths of 499 

approximately 700 m for low magma shear strengths (2x10
5
Pa) and high magma chamber pressures 500 
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(142.9MPa). These shear bands may be responsible for lava effusion along shear boundaries at the free 501 

surface, because they extend directly from the conduit exit, and flank inflation/deflation. Geophysical 502 

evidence for the depth of shear bands at SHV is not well constrained other than from the pressure source 503 

responsible for the inflation and deflation of the volcano flanks. Green and Neuberg, [13] and Voight et 504 

al. [12] calculate the depth of such pressure sources to be between approximately 160 to 510 below the 505 

conduit exit, consistent with our modelled shallow shear bands depths and pressure change maximum.  506 

 507 

 508 

The over-pressure in the upper conduit is significantly affected by the formation of shear bands, due to a 509 

change in the viscosity and flow field altering the conduit resistance. Our model shows that the over-510 

pressure decreases in the upper conduit due to the formation of shear bands, corresponding to the 511 

deflation of the flanks. We model a change in over-pressure gradient of up to 4×10
4
 Pa/m in the upper 512 

conduit and a maximum pressure change of 4.5MPa at depths up to 300m; magnitudes that can be 513 

related to the change in the tilt experienced during inflation and deflation cyclic events. Enhanced 514 

degassing and ash emissions are observed during the inflation maximum and deflation cycle from cracks 515 

on the dome surface [12]. This may be due to the enhanced permeability from the formation of shear 516 

bands that generate micro-fractures. However there may be a competition between the process of 517 

enhanced permeability from fragmentation, and an enhanced extrusion rates suppressing gas-loss from 518 

shear band development. Also, an increase in extrusion rate due to the formation of shear bands may be 519 

the explanation for why the deflation period for the volcano flanks is commonly more rapid than the 520 

inflation period. Given further model constrains/improvements, an observed change in extrusion rate 521 

could be used to infer the shear strength of the magma within the conduit or the greatest depth that shear 522 

bands penetrate to. 523 
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 524 

The conduit of a volcano initially begins as a dyke connected to the magma chamber, with cylindrical 525 

conduit geometries only developing at shallow levels where the erosional capabilities of magma are 526 

higher. The radius or width of the dyke for SHV at depth is estimated to be approximately 11 to 12 m 527 

with an uncertainty of 7 m, when considering the ascent rates of hornblende [43]. Our model suggests 528 

that there may be a greatest depth at which upper shear bands can reach, and this will be the greatest 529 

depth at which significant conduit wall erosion will occur, when ignoring explosive decompression 530 

effects. Due to over-simplifications used in our model we can’t constrain this depth. But future models 531 

that couple the change in the conduit radius with depth, and the feedback it will have upon magma 532 

viscosity and extrusion rates, will allow for an estimate of the conduit plumbing at depth. 533 

 534 

For lower magma shear strength values the depth of shear bands can be expected to increase, but will 535 

only reach the depths at which LP seismicity occurs (~1500 m) for unrealistically low magma shear 536 

strengths. Thus, it is hard to reconcile LP seismic signals directly to the depth of shear bands simulated 537 

in our model. To form shear bands at the depth where LP events occur requires either a more complex 538 

magma shear strength model, the conduit to narrow at depth allowing the strain-rate to increase, or both. 539 

A magma shear strength model dependent upon pressure and magma crystallinity will be the focus of 540 

future research [44].  541 

 542 

All models have their limitations, and we make several simplifying assumptions that are likely to affect 543 

models results. First, we have to rely upon a pressure change, via a dome collapse event, to trigger flow. 544 

However, in reality the magma is extruded without any large pressure change or dome collapse event in 545 

a continuous manner. Indeed, it was during periods of rapid magma extrusion (>5m
3
s

-1
) that the cyclic 546 
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seismic and deformation was primarily observed. Thus a transient model including the temporal 547 

evolution of shear bands is required to fully understand the influence of shear bands upon magma flow, 548 

pressure and the timescales involved in cyclicity. Second, because we consider a maximum crystallinity 549 

in our models, this reflects flows at low extrusion rates. For flow at higher extrusion rates the viscosity is 550 

likely to be lower due to crystallisation growth kinetics [19, 25]. This process may suppress the 551 

development of shear bands, due to a lower viscosity, resulting in lower shear stresses at the conduit 552 

wall although the crystallinity is likely to remain approximately in equilibrium at the wall. Finally, 553 

neglecting vesicularity means that we don’t consider a variable density, which is likely to give 554 

quantitatively different results. Introducing vesicularity into the model will decrease the weight of the 555 

magma column which is likely to increase the extrusion rate and push the depth of shear bands to deeper 556 

levels within the conduit. However, simplifications were necessary for this model, but despite this model 557 

results suggest that changes in pressure and velocity fields due to shear bands could be significant, 558 

especially during tilt and seismic cycles in eruptive behaviour. 559 

 560 
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Figure captions: 713 

Figure 1: Schematic of a volcano, showing a conduit connecting the magma chamber to the free-surface, 714 

with lava dome/flow at the conduit exit (not to scale). In reality the conduit may narrow at depth but it is 715 

assumed to be a constant radius for simplicity in this model. Also shown is the approximate depth at 716 

which LP seismicity and pressurisation responsible for volcano flank tilt occurs. Shown next to the 717 

schematic is the model domain. We use axisymmetric coordinates, modelling the conduit between r = 0 718 

to the conduit wall at r = 15m. The length of the conduit is 5000m. Boundary 1 has the condition of an 719 

applied pressure, the magma chamber pressure, and Boundary 4 is at atmospheric pressure. Boundary 3 720 

has the condition of no-slip and Boundary 2 is a symmetry boundary, ensuring no flow in the radial 721 

direction. 722 

 723 

Figure 2: Results from one simulation with a magma shear strength of 2x10
5
Pa, a magma chamber 724 

pressure of 132.2 MPa requiring a pressure change of 14.7MPa at the free surface. From left to right are 725 

plots of velocity in the X3-axis, strain-rate, shear stress, and shear stress divided by the magma shear 726 

strength (effectively the plasticity) within the conduit. Shown is only half of the conduit, from the centre 727 

of the conduit at r=0 (left side of image) to the conduit wall at r=15m (right side of image). The conduit 728 

radius has been stretched in the figures by a factor of 30 to better visualise the results along the entire 729 

5km length of the conduit. Where the shear stress divided by the magma shear strength is exactly equal 730 

to unity shear bands develop. This corresponds to a shear band one element wide, flush against the 731 

conduit wall, within the red zone of the figure. For this simulation a shear band of length of 413.5m 732 

forms between the conduit exit and a depth of 413.5m. 733 

 734 
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Figure 3: A typical modelled crystal volume fraction (a) and viscosity (b) along the length of the 735 

conduit. Most of the change in viscosity and crystallinity occurs in the upper-conduit due to the pressure 736 

field. 737 

 738 

Figure 4: Modelled shear band length against pressure in the magma chamber for magma shear strength 739 

values of 210
5
Pa (filled shapes) and 510

5
Pa (unfilled shapes). For the same magma shear strength the 740 

magma chamber pressure governs the depth of the shear bands due to its influence upon the extrusion 741 

rate and viscosity.  742 

 743 

Figure 5: a) shows the extrusion rate modelled with and without shear bands against the pressure in the 744 

magma chamber. The model uses a magma shear strength of 210
5
Pa for the solid shapes and 510

5
Pa 745 

for the unfilled shapes. The initial extrusion rate for no shear bands in the conduit is given by the 746 

crosses. b) shows the modelled change in extrusion rate (given by the extrusion rate with shear bands 747 

divided by extrusion rate without shear bands) using the same symbols for the different magma shear 748 

strengths.  749 

 750 

Figure 6: a) Shows the over-pressure in the conduit with depth for flow in the conduit without shear 751 

bands (i.e. Hagen-Poiseuille flow) and with shear bands for a magma shear strength of 5x10
5
Pa (Flow 752 

with shear bands).  Both flow models have a magma chamber pressure of 132.55MPa. Also shown is the 753 

difference in pressure between the two flow regimes with depth in the conduit, a depth of zero 754 

corresponds to the conduit exit. A positive pressure difference corresponds a decrease in the over-755 

pressure along the conduit length, i.e. flank deflation. b) Difference in over-pressure along the conduit 756 
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due to the development of shear bands for different magma chamber pressures, shown in the legend, all 757 

for dome collapse events equivalent to 7MPa and a magma shear strength of 5x10
5
Pa.  758 

 759 

Figure 7: Change in over-pressure gradient for flow with shear bands minus flow without shear bands 760 

(i.e. Hagen-Poiseuille flow) along the conduit length for different magma chamber pressures, shown in 761 

the legend, for dome collapse events equal to 7MPa and a magma shear strength of 2x10
5
Pa. A positive 762 

pressure-gradient corresponds to an increase in the pressure gradient due to the presence of shear bands, 763 

whilst a negative pressure gradient corresponds to a decrease. A depth of zero corresponds to the conduit 764 

exit. 765 

 766 

Figure 8: Summary of a) over-pressure maximum (see Fig. 6) and b) the depth of the maxima (see Fig. 767 

6) against magma chamber pressure for all the model runs for a magma shear strength of 210
5
Pa. 768 

769 
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Table 1: Parameters used in the model which are appropriate for the magma from Soufrière Hills 770 

Volcano. 771 

Symbol Parameter Reference Value 

T Initial Temperature 32 1123K 

  Crystal volume fraction in chamber 4 0.6 

  Density 19 2350 kg.m
-3

 

P0 Maximum over-pressure 31 20 MPa 

  Parameter in effective viscosity function 21 8.6 

0  Parameter in effective viscosity function 21 1.4 

0  Parameter in effective viscosity function 21 0.69 

S  Solubility coefficient 19 4.11 x10
-6

 Pa
-1/2

 

Ta  Liquidus and solidus coefficients 21 1465.4 

Tb  Liquidus and solidus coefficients 21 -31.4 

Tc  Liquidus and solidus coefficients 21 -2.8 

Td  Liquidus and solidus coefficients 21 -0.41 

CR  Conduit radius 27 15 m 

CL  Conduit length 27 5000m 

g  Acceleration due to gravity  10 m.s
-2

 

 772 

Table 2: Magma shear strength values quoted in the literature for lavas that are appropriate to our study. 773 

Magma Shear Strength Reference Comments 
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76 1010  Pa 45 Experimental results from hydrous vesicular glasses. 

610 Pa 12 From estimates for the strength of lava from the height of spines 

extruded at Soufrière Hills Volcano, Montserrat. 

710 Pa 26 Used in numerical models for magma fragmentation.  

6105.15.0  Pa 15 Inferred from numerical models for the amplitude of tilt measured 

at Soufrière Hills Volcano, Montserrat. 

710 Pa 10 Used in numerical models of magma flow at Soufrière Hills 

Volcano, Montserrat. 

87 1010  Pa 5 Magma shear strength values from laboratory experiments. 

 774 

775 
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 776 

Figure1: 777 
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 780 

Figure2: 781 
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Figure 3: 784 
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Figure 4: 787 
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Figure 5a: 790 
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Figure 5b: 792 
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Figure 794 
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Figure 8a: 804 
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