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S U M M A R Y
Tidal deformation of the Earth is normally calculated using the analytical solution with some
simplified assumptions, such as the Earth is a perfect sphere of continuous media. This paper
proposes an alternative way, in which the Earth crust is discontinuous along its boundaries, to
calculate the tidal deformation using a finite element method. An in-house finite element code
is firstly introduced in brief and then extended here to calculate the tidal deformation. The
tidal deformation of the Earth due to the Moon was calculated for an geophysical earth model
with the discontinuous outer layer and compared with the continuous case. The preliminary
results indicate that the discontinuity could have different effects on the tidal deformation in
the local zone around the fault, but almost no effects on both the locations far from the fault and
the global deformation amplitude of the Earth. The localized deformation amplitude seems
to depend much on the relative orientation between the fault strike direction and the loading
direction (i.e. the location of the Moon) and the physical property of the fault.
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1 I N T RO D U C T I O N

Tidal deformation/stress of the Earth results from the combination
of the gravitational forces mostly from the Sun and the Moon and
the inertial acceleration of the centre of mass of our planet in its rev-
olution around the Sun and around the centre of mass of the Earth–
Moon system. In a Keplerian rotation, this acceleration is constant
inside the Earth body and one can demonstrate that the gravita-
tional attraction and the inertial acceleration cancel each other at
the mass centre of the Earth. The deformation of the Earth due to
extraterrestrial forces is an important topic in geophysics, which is
highly required for research on Earth deformation, earthquake trig-
gering mechanisms, high precision work using GPS as well as tidal
heating, etc. (e.g. Ross & Schubert 1987). In earlier time, it was
mainly due to lack of high computing power that we had to resort to
simple models. The geophysical earth models have advanced from
the simplest Gutenberg–Bullen Model to the more complex (yet
coarse) Preliminary Reference Earth Model (PREM) until recently
when a few 3-D models have been introduced. However, in the ex-
isting computations of the tidal deformation, only 1-D models are
used. They mostly share the common nature of being purely elastic,
isotropic, homogeneous, continuous and spherically symmetrically
layered (e.g. Melchior 1978). In recent models, inelasticity of the
Earth mantle and discontinuities inside the Earth are introduced
with specific conditions, but the discontinuous outer layer of the
Earth is not modelled (Dehant 1987; Dehant et al. 1999; Mathews

et al. 2002). So, measuring purely by the complexity of approach,
computation of earth tides has fallen behind the geophysical earth
model development.

The existing knowledge about the tidal deformation maybe de-
viates little from the reality when dealing with the deformation of
deeper structure of the Earth. But when we are investigating phe-
nomena occurred in the lithosphere, which is mostly relevant to our
life, we cannot consider the crust as continuous media. In fact, the
Earth is not a homogeneously continuous media due to multiple
plates, thousands of faults, etc. To date, no results on comprehen-
sive or qualitative estimation of the global distribution of the tidal
deformation in the crust and evaluation of the related effects consid-
ering the above factors are available. The current understanding of
crustal deformation is far from being able to solve the complexity of
tectonic plate movement, earthquakes, etc. Sooner or later, discon-
tinuous Earth modelling has to be applied. The existing calculations
of tidal deformation are based on Love Numbers, which are related
to the rheological properties of the Earth (e.g. Munk & MacDonald
1960). The Love Numbers are given for continuous media depending
on the earth models employed. Since the lithosphere is discontinu-
ous, the actual Love Numbers may be measurably different from the
results using continuous assumption at the surface. Also, we don’t
know how much the discontinuity affects the tidal deformation.

The finite element methods (FEM) are now widely applied to
certain science and engineering problems and provide a way to sim-
ulate the discontinuity-related system changes. Some researchers
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962 H. L. Xing, J. Zhang and C. Yin

have applied it to the analysis of the ground movement and earth-
quakes (e.g. Bird 1978; Golke et al. 1996; Huang et al. 1997; Bao
& Bielak 1998; Cai et al. 2000; Jimenez-Munt et al. 2001; Xing &
Makinouchi 2002a; Xing et al. 2004b, 2006; Xing & Mora 2006).
Among them, Xing et al. developed a robust and efficient finite ele-
ment model capable of simulating the frictional behaviour of rocks
and faulting, displacement/velocity and stress evolution of an inter-
acting fault system in both the experimental and practical site scale
(e.g. Xing & Makinouchi 2002a,b, 2003; Xing et al. 2004b, 2006;
Xing & Mora 2006). Thus, with the improvement of hardware and
software, it becomes possible to calculate the tidal deformation of
a discontinuous Earth. The above model developed by Xing et al.
(e.g. Xing & Makinouchi 2002a,b, 2003; Xing et al. 2004b, 2006;
Xing & Mora 2006) is extended and applied here to the analysis of
the tidal deformation of the entire Earth using the parallel super-
computing. This paper focuses on the investigation of the effect of
discontinuous media (i.e. the fault/plate boundary) on the tidal de-
formation, including the comparison with results from a continuous
earth model.

2 F E M G OV E R N I N G A L G O R I T H M S
A N D E Q UAT I O N S

A three-dimension R-minimum strategy based finite-element com-
putational algorithm for modelling frictional contact behaviours be-
tween multiple deformable bodies with the arbitrarily shaped con-
tact element strategy was proposed and developed by Xing et al. and
successfully applied in a wide field, the part of which related with
the crustal dynamics is briefly summarized as follows.

2.1 Finite-element formulation

The updated Lagrangian rate formulation is employed to describe the
non-linear contact problem. The rate type equilibrium equation and
the boundary at the current configuration are equivalently expressed
by a principle of virtual velocity of the form (e.g. Xing et al. 1998;
Xing & Makinouchi 2000, 2003)∫

V

(
τ ◦

i j − Dikσk j + σik L jk − σik Dkj

)
δLi j dV =

∫
SF

Ḟiδvi d S

+
∫

Sc1

ḟ 1
i δvi d S +

∫
Sc2

ḟ 2
i δvi d S (1)

where V and S denote, respectively, the domains occupied by the
total deformable body B and its boundary at time t; SF is a part of
the boundary of S on which the rate of traction Ḟi is prescribed;
v is the virtual velocity field which satisfies the condition δv = 0
on the velocity boundary; τ ◦

i j is the Jaumann rate of Cauchy stress;
L is the velocity gradient tensor, L = ∂v/∂x; D and W are the
symmetric and antisymmetric parts of L, respectively; ḟ

α
is the rate

of contact stress on contact interface Scof the body α and calculated
as follows.

2.2 Frictional contact

A unified constitutive equation of frictional contact has been pro-
posed and implemented in the code by Xing et al. (2006). It is
summarized as follows. The penalty parameter method is chosen to
satisfy the normal impenetrability condition when contact occurs,
thus the normal contact stress fn can be calculated as

fn = f · n = En gn (�= 0 only for gn < 0), (2)

here gn is the penetration (gap) in the normal direction; En is the
penalty parameter to penalize the penetration (gap) in the normal
direction, we take En = ℘ K A2

V , where A and V are, respectively, the
contact surface area and the volume of a solid element (a eight-node
hexahedron element is used here); K is the bulk modulus; ℘ is the
prescribed parameter.

As for the frictional slip, an increment decomposition of the stick-
ing and the slipping is assumed. A standard Coulomb friction model
is applied in an analogous way to the flow plasticity rule to govern
the slipping behaviour. Thus, the frictional stress can be described
as follows (Xing & Makinouchi 2002a, 2003; Xing et al. 2006) (a
variable with tilde (∼) denotes a relative component between slave
and master bodies, and l, m = 1, 2; i , j , k = 1, 2, 3 in this paper if
not otherwise specified):

fl = Et ũ
e
l = Et

∑
�ũe

l , d fl = Et dũl (in the sticking state)

(3)

d fl = F Et√
f e
m f e

m

(δlm − ηlηm) dũm + ηlµ

(
d fn + ∂µ

∂ fn
d fn

)

+ηl fn

(
∂µ

∂ ˙̃usl
eq

d ˙̃usl
eq + ∂µ

∂ϕ
dϕ

)
(in the slipping state).

(4)

Here µ is the friction coefficient, it may depend on the normal
contact pressure fn, the equivalent tangential velocity ˙̃usl

eq , the state
variable ϕ, that is, µ = µ( ˙̃usl

eq , fn, ϕ). (e.g. Dieterich 1979; Ruina
1983; Scholz 1998).

In summary, from eqs (2)–(4), the contact stress acting on a slave
node can be described as (denote ḟ 3 = ḟ n)

ḟ i = Gi j
˙̃u j , (5)

where G is the frictional contact matrix for both the stick and the
slip state (Xing et al. 2006).

2.3 Arbitrarily shaped contact element strategy

A node-to-point contact element strategy was proposed to handle the
frictional contact problems between deformable bodies (Xing et al.
1998; Xing & Makinouchi 2000, 2002a,b) and is briefly introduced
here. Assume a slave node s has contacted with point c on a surface
element (master segment)E ′, and the surface element E ′ consists of
γ nodes (γ = 4 in this paper if without special notation), thus the
term related with contact in eq. (1) can be described as [α = 1, (γ
+ 1), β = 1, (γ + 1)]

ḟ i (δusi − δuci ) = δu̇sciβ

[
K f ik

]
βα

u̇sckα, (6)

where[
K f ik

]
βα

= Rβei · {Ghk Rαeh

+(
Hjm ê j

((
Cll Rα,m − Cml Rα,l

)
ek · x̃

+Rα

(
Cll êm − Cml êl

) · ek

))}
(h = 1, 2, 3, l �= m and no sumon l), (7)

here Cml = Cml − gnn · êm,l , Cml = êm · êl , ℘ = C11C22 −
C12C21, x̃ = xs − xc,Ei jm = êi,m · ê j , Hjm = f̂ i Ei jm/℘,
R = [ 1 −N1 −N2 . . . −Nγ ]T , Np(p = 1, γ ) is the shape function
value of the point c on the surface element E ′, êi and ei are, respec-
tively, the base vectors of the local natural and the local Cartesian
coordinate systems on the master segment.
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A finite element analysis of tidal deformation 963

2.4 Time integration algorithm

The time integration method is one of key issues to formulate a
nonlinear FEM. It is well known that the fully implicit method often
suffers from bad convergence for the non-linear problems, such as
due to changes of contact and friction states. In order to avoid this,
we employ an explicit time integration procedure as follows. It is
assumed that under a sufficiently small time increment all rates in
eq. (1) can be considered constant within the increment from t to t
+ �t as long as there are no drastic changes of state takes place.
The R-minimum method is used to limit the step size in order to
avoid such a drastic change in state within an incremental step (e.g.
Xing & Makinouchi 2002b).

Thus all the rate quantities used to derive eq. (1) are simply re-
placed by incremental quantities as

�u = v�t = u̇�t, (8)

�τ = ◦
τ �t. (9)

Finally, in combination with the above equations, eq. (1) can be
rewritten as

(K + K f )�u = �F + �Ff , (10)

here K and �F are, respectively, the stiffness matrices and force
increment terms corresponding to the various time integration al-
gorithms; K f and �F f are the stiffness matrices and the force
increments of all the contact elements among the contact pairs. As
for the details on how to solve the above equations for large scale
problems, please refer to Xing et al. (1998) and Xing & Makinouchi
(2002a).

A 3-D finite element software PANDAS has been developed us-
ing the above algorithm and tested with various applications in me-
chanical/materials engineering (e.g. Xing et al. 1998, 2004a; Xing
& Makinouchi 2001) and geo-science and engineering, such as the
so-called sandwich fault model (Xing & Makinouchi 2002c), single
fault bend model including both the interplate (Xing & Makinouchi
2003) and the intraplate cases (Xing et al. 2003, 2004b)), multiple
fault bends model (Xing et al. 2006), the practical interacting fault
systems (such as the South Australia fault system) (Xing & Mora
2006). It will be extended here to simulate the tidal deformation.

3 T I DA L D E F O R M AT I O N F O R M A L I S M

According to Newton’s law of universal gravitation, the force of
gravity between two point masses, m1 and m2, separated by a

distance r is attractive and of magnitude

F = G
m1m2

r 2
, (11)

where G is the Newtonian constant of gravitation, G = 6.67 × 10−11

N m2 kg–2 (NIST 2002).
Since the purpose of this paper is to assess the effect of discontinu-

ous outer layer (crust) on the tidal deformation, and the Moon–Earth
gravitational forces are twice those of the Sun–Earth, only the inter-
action between the Earth and the Moon is examined while the force
of the Sun is omitted. The tidal deformation of the Earth results
from the combination of the gravitational forces between the Earth
and the Moon and centrifugal force in the Earth. As deduced by
Newton in his famous Mathematical Principles of Natural Philoso-
phy (Newton 1729), the gravitational force between the Moon with
mass m and an arbitrary mass point Pi within the Earth with mass
mi is equivalent to the force exerted on the mass point miby a point
mass m positioned at the centre of the Moon (Fig. 1). Therefore, the
intensity Fi of the gravitational force between the Moon with mass
m and an arbitrary mass point Pi can be written as,

Fi = G
mi m

r 2
i

, (12)

where the force acts towards the Moon centre as shown on Fig. 1;
m = 7.3483 × 1022 kg (NASA 2007) and ri is the distance between
the centre of the Moon and point Pi.

Since gravitational attraction is a function of the distance between
two separate masses (as in eqs 11 and 12), the lunar attraction force
on the Earth is not uniform. Some parts of the Earth are more strongly
attracted to the Moon than the others. Tidal deformation increases
as an astronomical object moves closer to the body it orbits. As
described in the Introduction section, in a Keplerian rotation, one
can demonstrate that the gravitational attraction and the inertial
acceleration cancel each other at the mass centre of the Earth. We
can thus compute the tidal forces as the difference between the
gravitational attraction of a celestial body (i.e. the Moon) at any
location inside the Earth and the gravitational attraction at the centre
of the Earth. Therefore, the tidal force FTi on the point Pi, which
governs the tidal deformation, can be described as,

FT i = Fi − F0i , (13)

where F0i is the reference attraction force on the point Pi acting at
the centre point P of the Earth; from eq. (11), its magnitude can be
described as

ir

R

iF

F0i

TiF

Earth 

ii mP

P O  m 

Moon 

Figure 1. The related forces between the Moon and the Earth. The tidal force FT i at any location Pi inside the Earth is computed as the difference between
the gravitational attraction force F i of a celestial body (i.e. the Moon) at the point Pi and the gravitational attraction forceF0i at the centre of the Earth.
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964 H. L. Xing, J. Zhang and C. Yin

Figure 2. The entire geophysical earth model to be analysed. It is composed of four layers (from the inside to the outside): the inner core, the outer core, the
mantle and most outer layer (crust), and each layer consists of six groups (see Table 1).

F0i = G
mi m

R2
, (14)

where R is the distance between the central points P and O of the
Earth and the Moon; see Fig. 1.

The above eqs (12)–(14) are implemented to our finite element
code as introduced above, which is similar to what was done for the
hydraulic loading case by Xing & Makinouchi (2001).

4 C O M P U TAT I O N R E S U LT S

4.1 The whole earth modelling for tidal
deformation computation

Because the purpose of this paper is to assess the effect of discon-
tinuity on tidal deformation, only a four-layered geophysical earth
model is used, which is composed of the inner core, the outer core,
the mantle and the outer layer (including the crust and the transition
zone), Fig. 2. The property of each layer is taken from the PREM
model (Dziewonski & Anderson 1981). The software MSC Patran
(Patran 2004) is used for the mesh generation. For convenience, the
group technique of Patran is applied here. Each layer of the above
whole earth model consists of six groups, thus 24 groups are gen-
erated in the whole earth model (Table 1 and Fig. 2), the model
construction and mesh generation are much more simplified. The
whole earth is discretized into 44 602 nodes and 43 008 hexahe-
dron elements for the continuous case, Fig. 2. For simplicity, the
same material parameters in each layer (but varying amongst the

Table 1. Definition of the different groups in the mesh generation using
MSC Patran software.

Top Left Bottom Right Front Back

Inner core g 4 g 4 1 g 4 2 g 4 3 g 4 4 g 4 5
Outer core g 3 g 3 1 g 3 2 g 3 3 g 3 4 g 3 5
Mantle g 2 g 2 1 g 2 2 g 2 3 g 2 4 g 2 5
Out layer g 1 g 1 1 g 1 2 g 1 3 g 1 4 g 1 5

different layers) are used here, and all the materials are assumed to
be non-compressively elastic. Table 2 lists the material parameters
used.

4.2 Tidal deformation

To investigate the effects of the seismic faults/plate boundary (i.e.
the discontinuous outer layer of the Earth) on the tidal deformation,
the following cases were investigated, where no tension force is
permitted along the normal direction of the fault. All the following
results are shown in the normal scale except those specially noted
using the exaggerated scale.

4.2.1 The continuous geophysical earth model

The continuous geophysical earth model (i.e. no faulting) is initially
computed with the Moon positioned at the X axis, that is, the
(1 0 0) direction, see Figs 2 and 3. Both the total displacement and its
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A finite element analysis of tidal deformation 965

Table 2. Physical properties of the different layers as used in the analysis (all calculated from Dziewonski & Anderson 1981).

Radius range (km) Density (103 kg m–3) Bulk module (MPa) Poisson’s ratio

Inner core 0–1300 13.01009 1405 300 0.4900
Outer core 1300–3500 11.29298 1015 800 0.4800
Mantle 3500–5730 5.00299 476 600 0.2898
Out layer 5730–6400 3.48951 163 000 0.2952

Figure 3. The total displacement distribution for the continuous geophysical
earth model when the Moon is located at the positive direction of the X axis,
that is, the (1 0 0) direction (unit: mm) (a) at the outside surface in the XY
plane; (b) at the outside surface in the XY plane with the exaggerated scale;
(c) at the outside surface in the XYZ space with the exaggerated scale and (d)
at the different layers in the XYZ space. The blue grids in (b) and (c) represent
a part of the original configuration of the Earth before tidal deformation.

Figure 3 (Continued.)

components are distributed smoothly and continuously as indicated
by Figs 3 and 4, respectively. Also, comparing with the calculation
results of displacement with the analytical solution as described in
Yin (2006), both distribute continuously and smoothly (i.e. neither
has singular points/zones appearing for the displacement distribu-
tion); the maximum displacement occurs along the central line of
the Earth–Moon in both cases; and their values reasonably agree
with each other. For the analytical one, the maximum displacement
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966 H. L. Xing, J. Zhang and C. Yin

Figure 4. The displacement component distribution for the continuous geo-
physical earth model in the XY plane when the Moon is located at the positive
direction of the X -axis, that is, the (1 0 0) direction (unit: mm): (a) the com-
ponent along the X -axis and (b) the component along the Y -axis or the Z-axis

value is 254 mm and they are the same at both sides; for the FEM
case, the maximum displacement values are different at the both
sides, they are 260 mm at the side closer to the Moon and 256 mm
at the other side.

4.2.2 The discontinuous geophysical earth model

An idealized case, that is, a simple representation of a fault at the
outer layer of the four layered earth model subjected to the Moon–

Earth gravitational force, is applied as follows to investigate the
effect of discontinuous media on the tidal deformation. Assume
that a fault (i.e. a discontinuous seismogenic interface) exists in the
outer layer between the groups g 1 and g 1 3 as shown on Figs
2 and 5(a, b and e), where g 1 and g 1 3 groups are according
to Table 1. Both the tidal force subjected to the Earth (eq. (13))
and the relative orientation between the fault strike and the tidal
force loading direction vary with the change in the location of the
Moon. The following two cases are investigated here: the Moon
positions at the positive directions of the X and the Z axis, that is, the
(1 0 0) and the (0 0 1) direction. For simplicity, we denote them as
the cases A and B, respectively. Figs 5(a–h) and 6(a–e) show the

Figure 5. A fault is located between the group g 1 and g 1 3 at the crust
layer. When the Moon is located at the positive direction of the X axis, that
is, the (1 0 0) direction, it is denoted as the case A. The total displacement
distribution viewed at the different spaces (unit: mm) : (a) in the XY plane;
(b) in the YZ plane; (c) in the XZ plane; (d) in the XZ plane after the removal
of the group g 1 and (e) in the XYZ space. The individual displacement
component distribution for the case A viewed at the different spaces: the
component along the Y -axis viewed in the XY plane (f); the component
along the Z-axis viewed (g) in the ZY plane and (h) in the YZ plane.
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A finite element analysis of tidal deformation 967

Figure 5 (Continued.)

results of the displacement distribution calculations for the cases
A and B (℘ = 0), respectively. Comparing with the continuous
model (as shown on Figs 3 and 4), the fault appears to affect the
deformation in the localized zone around the fault for both the total
displacement (as shown on Figs 5a–e and 6a–c) and its components
distribution (as shown on Figs 5f–h and 6d and e). The fault (i.e. the
discontinuous outer layer) destroys the continuity of the deformation
(i.e. the displacement and its components distribution), which makes
it different from the continuous geophysical earth model. However,
the fault does not seem to affect the other part of the Earth farther
from the fault (as shown on Figs 5a–e and 6a–c) and its components
distribution (as shown on Figs 5f–h and 6d and e), as well as the
maximum deformation amplitude of the Earth for the current cases
studied as shown on Figs 3(b), 5(e) and 6(b).

For the above calculations, the parameter En input for the fault
does not appear to affect the calculated results for the case A, how-

Figure 5 (Continued.)

ever the situation reverses for the case B. Because the relative loca-
tions of the Moon with respect to the fault for the cases A and B are
different, this makes the loading force directions around the fault
different—it is in the tension state for the case A, but in the compres-
sion state for the case B. For the case B, if the penalty parameter En

along the fault is taken big enough (such as ℘ = 100), there is no dif-
ference found for the calculated results from the above continuous
model as shown on Figs 3(b) and 7. However, when the parameter is
taken to be small (such as ℘ = 0.001), the discontinuous distribution
of the calculated results around the fault (i.e. the displacement and
its components) becomes obvious; and the smaller the parameter is,
the more obvious the difference from the continuous model is (as
shown on Figs 6a–e and 7). Here, Figs. 6(a)–(e) show the results
when ℘ = 0, which correspond to the very weak materials existing
around the fault or a gap existing along the fault. All the above also
demonstrate that the amplitudes of effect from the fault are quite
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968 H. L. Xing, J. Zhang and C. Yin

Figure 5 (Continued.)

different, depending on the relative orientation between the fault
strike direction and the loading direction (i.e. the location of the
Moon) for the cases A and B as shown on Figs 5(a)–(h) and 6(a)–
(e), as well as on the fault properties (fault strike direction, fault
strength and state, for example, for the case B, as shown on Figs
6(a)–(c) and 7 for ℘ = 0 and 100, respectively).

5 D I S C U S S I O N A N D C O N C L U S I O N S

The FEM has been applied to calculate the tidal deformation of the
Earth as an alternative way to currently used analytical approaches
which require the specified assumptions. The tidal deformation of
the entire Earth with the discontinuous outer layer has been inves-
tigated and compared with the continuous model. The preliminary
results demonstrate that the discontinuity (fault/plate boundary) can
affect the tidal deformation in the localized zone around the fault,
which cannot be stated for the zone farther from the fault or for the
global deformation amplitude of the Earth for the case studied. The
localized deformation distribution depends much on the relative ori-

Figure 6. A fault is located between the group g 1 and g 1 3 at the crust
layer. When the Moon is located at the positive direction of the Z-axis, that
is, the (0 0 1) direction, it is denoted as the case B. The total displacement
distribution (unit: mm) viewed at the following different space (with ℘ =
0) (a) in the YZ plane; (b) in the XYZ space; (c) in the XYZ space after the
removal of the groups g 1 and g 2. The individual displacement component
distribution for the case B viewed at the different space: the component along
the X -axis viewed (d) in the ZX plane and (e) in the XZ plane.

entation between the fault strike direction and the loading direction
(i.e. the location of the Moon) as shown on Figs 5 and 6, as well as
on the fault properties (i.e. the different ℘ values as shown on Figs
6(a)–(e) and 7 for the case B).

Earthquakes are widely regarded as stick-slip instabilities along
the complicated plate/fault boundaries due to overwhelming stress
concentration (e.g. Brace & Byerlee 1966; Scholz 1998). Scien-
tists have been theorizing about the possibility of tidal triggering of
earthquakes for many years, however, tidal triggering has been very
difficult to prove. The argument whether there might be a correla-
tion between earthquakes and the tides seems to remain unresolved
based on the statistical analysis of specific cases (Rydelek et al.
1988; Ambeth & Fairhead 1991; Cochran et al. 2004; Stein 2004).
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Figure 6 (Continued.)

The computations presented here demonstrate that the discontinuity
of the most outer layer seems to affect somehow the tidal deforma-
tion in the localized zone. The localized deformation distribution
seems to depend much on the relative orientation between the fault
strike direction and the tidal force loading direction (i.e. the location
of the Moon), thus all previous arguments involving tidal deforma-
tion may need reinvestigation because the basis for such discussion
could be incorrect.

The computed results show that FEM provides a useful approach
for studying the Earth’s tidal deformation on the global scale in-
volving discontinuity effect. It may be extended for the related
research on tidal deformation with the more practical and com-
plex conditions as well as different timescales. In addition, the
contribution of tidal deformation to the instability of focal media
depends on frictional and other material properties—by incorporat-
ing their updated values with other rheological data as those become
available, and by varying these properties we hope to discover a more
decisive relationship between tidal deformation and earthquakes.

Figure 6 (Continued.)

Figure 7. The displacement distribution for the case B with ℘ = 100
(unit:mm).
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