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The Schrödinger-Robertson inequality generally provides a stronger bound on the product of uncertainties
for two noncommuting observables than the Heisenberg uncertainty relation, and as such it can yield a stricter
separability condition in conjunction with partial transposition. In this paper, using the Schrödinger-Robertson
uncertainty relation, the separability condition previously derived from the su�2� and su�1,1� algebra is made
stricter and refined to a form invariant with respect to local phase shifts. Furthermore, a linear optical scheme
is proposed to test this invariant separability condition.
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I. INTRODUCTION

When a quantum system is subject to measurements
corresponding to two noncommuting observables �A ,B�,
the product of uncertainties in measurement outcomes,
���A�2����B�2�, has a certain lower bound. The Heisenberg
uncertainty relation �HUR� �1�, which is most widely used,
provides the bound as

���A�2����B�2� �
1

4
	��A,B��	2. �1�

On the other hand, the Schrödinger-Robertson relation �SRR�
�2,3� in general provides a stronger bound as

���A�2����B�2� �
1

4
	��A,B��	2 + ��A�B�S

2, �2�

where the cross correlation ��A�B�S is defined in a symmet-
ric form as

��A�B�S 

1

2
��A�B + �B�A� . �3�

The SRR can be derived from the Cauchy-Schwarz inequal-
ity �f 	 f��g 	g�� ��f 	g��2, where 	f�=�A	�� and 	g�=�B	��
for a generic quantum state 	�� �4�. The HUR describes a
special case of the SRR under the condition ��A�B�S=0,
which is of course not always met.

Recently, one of the important issues in quantum infor-
matics has been to obtain conditions by which one can dis-
tinguish entangled states from separable ones. Some of the
entanglement criteria derived so far have relied on the
bounds set by various forms of uncertainty relations �5–8�,
and remarkably, for certain cases, in explicit conjunction
with partial transposition �PT� �9–11�. More precisely, sepa-
rable states can represent a certain physical state even under
PT �12� and all uncertainty relations must therefore be satis-

fied by separable states under PT. The uncertainty relations
in combination with PT can thereby provide necessary con-
ditions for separability.

For continuous variables �CVs�, earlier works were fo-
cused on Gaussian entangled states �13–15�, but considerable
attention has also been directed to non-Gaussian entangled
states �16�. Most of all, the separability conditions applicable
to non-Gaussian entangled states have recently emerged
�8–11�, and in particular Refs. �8,10,11� employed the su�2�
and su�1,1� algebra to derive such entanglement criteria. Us-
ing the HUR along with those two algebras, Nha and Kim
have in particular derived the optimal separability condition
among a certain class of inequalities �11�. This condition has
also been proposed to detect arbitrary pairwise entanglement
as a signature of multipartite inseparability of photonic W
states and has been shown to be robust against the detector
inefficiency �17�.

In this paper, it is our aim to refine the separability con-
dition in Refs. �10,11� by employing the SRR instead of the
HUR. By doing this, we obtain a stricter separability condi-
tion given by a form invariant with respect to local phase
shifts. This invariance is a very adequate attribute as en-
tanglement condition, for the entanglement property must be
invariant under any local unitary operations. Furthermore,
we propose a way to experimentally test this invariant con-
dition using linear optics, and also discuss the practical con-
nection of the previous condition in �10,11� to the present
one.

II. SEPARABILITY CONDITION

First, we briefly introduce how to derive the separability
condition via the uncertainty relations in the su�2� and
su�1,1� algebra �11�. The su�2� algebra deals with the angular
momentum operators Jx, Jy, and Jz, which obey the commu-
tation relations �Ji ,Jj�= i�ijkJk�i , j ,k=x ,y ,z�. This algebra
can be represented by two bosonic operators a and b as

Jx =
1

2
�a†b + ab†� ,
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Jy =
1

2i
�a†b − ab†� ,

Jz =
1

2
�a†a − b†b� . �4�

On the other hand, the operators Kx, Ky, and Kz in the su�1,1�
algebra can be represented by

Kx =
1

2
�a†b† + ab� ,

Ky =
1

2i
�a†b† − ab� ,

Kz =
1

2
�a†a + b†b + 1� , �5�

which results in the commutation relations �Kx ,Ky�=
−iKz , �Ky ,Kz�= iKx, and �Kz ,Kx�= iKy, different in sign from
those of the su�2� algebra.

Specifically, the commutator �Kx ,Ky�=−iKz in the su�1,1�
algebra gives the uncertainty relation via the HUR as

���Kx�2����Ky�2� �
1

4
	�Kz�	2, �6�

which must be satisfied by any quantum states. Most impor-
tantly, the inequality �6� must be satisfied under PT by every
separable state, since it can still describe a certain physical
state �12�. That is, one obtains the separability condition as

���Kx�2�PT���Ky�2�PT �
1

4
	�Kz�	PT

2 , �7�

where the subscript PT means that the quantum average is
calculated after taking the partial transposition. Using the
general relation

�a†manb†pbq��PT = �a†manb†qbp�� �8�

between the quantum average for the partially transposed
density operator �PT and that for the original density operator
� �11�, the inequality �7� can be recast to give the separability
condition expressed as

�1

4
+ ���Jx�2��1

4
+ ���Jy�2� �

1

16
�1 + �N+��2, �9�

where N+=a†a+b†b is the total excitation number. Note that
the inequality �9� is the optimal condition derived in �11�,
where the HUR was employed in a sum form to obtain a
class of separability conditions �18�.

III. STRICTER SEPARABILITY CONDITION

In this section, let us now start from the SRR for the
commutator �Kx ,Ky�=−iKz, i.e.,

���Kx�2����Ky�2� �
1

4
	�Kz�	2 + ��Kx�Ky�S

2, �10�

instead of the HUR, and then follow the same steps as below
Eq. �6�. Using the relation

��Kx�Ky�S,PT = ��Jx�Jy�S �11�

via Eq. �8�, we obtain a separability condition stricter than
the one in �9� as

�1

4
+ ���Jx�2��1

4
+ ���Jy�2� �

1

16
�1 + �N+��2 + ��Jx�Jy�S

2.

�12�

Compared with the inequality �9�, the new inequality �12�
provides a stronger condition for separability as long as the
off-diagonal covariance ��Jx�Jy�S is nonzero. As an ex-
ample, consider the two-photon entangled states of type
	��=cos �	2,0�+ i sin �	0,2�. All these states satisfy the in-
equality �9�, but violate the stricter one in �12�, regardless of
the parameter �. Therefore, only the inequality �12� can de-
tect entanglement for these two-photon states.

We next show that the inequality �12� is invariant with
respect to local phase shifts. Let us consider a 2�2 covari-
ance matrix C whose elements are defined as

Cij 

1

2
��Ji�Jj + �Jj�Ji� , �13�

where �i , j�= �x ,y�. The inequality �12� is then expressed as

Det�C� +
1

4
Tr�C� �

1

16
��N+�2 + 2�N+�� , �14�

where Det� � and Tr� � denote the determinant and the trace
of a matrix. If one takes a local phase shift for mode b as
b�=be−i�, the su�2� operators Jx and Jy are transformed into

�Jx�

Jy�
 = � cos � sin �

− sin � cos �
�Jx

Jy
 . �15�

The determinant and the trace of a matrix are unchanged
under rotation, and the total photon number �N+� is also pre-
served through passive optical elements. The inequality �14�
is therefore invariant with respect to local phase shifts. This
is an attribute very adequate as entanglement condition, for
entanglement should be invariant under local unitary opera-
tions. Note that a phase shift is the only local unitary opera-
tion that preserves the total photon number.

IV. MEASUREMENT SCHEME

We now discuss how the separability condition �12� can
be tested in experiment. In Ref. �11�, a linear optical scheme
was proposed to measure the observables Jx, Jy, and �N+� for
the inequality �9�, as depicted in Fig. 1. The mode b first
undergoes a phase shift by � and the two modes a and b
are then injected to a 50:50 beam splitter. The modes c and d
at the output are given by c= �1/�2��a+be−i�� and d
= �1/�2��−a+be−i��, respectively. One needs to measure the
photon number difference at the output, i.e.,
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N�−,�� 
 c†c − d†d = a†be−i� + ab†ei�, �16�

which becomes 2Jx �2Jy� for �=0 ��=	 /2�. �See Eq. �4�.�
The total photon number �N+� is simply given by the sum
c†c+d†d at the output.

In the present inequality �12�, in addition to Jx, Jy, and
�N+�, one also needs to measure the off-diagonal covariance
��Jx�Jy�S. Note that ��Jx�Jy�S= 1

2 �JxJy +JyJx�− �Jx��Jy�,
where

JxJy + JyJx =
1

2i
�a†2b2 − a2b†2� =

1

4
�N�−,�=	/4�

2 − N�−,�=−	/4�
2 � .

�17�

Thus, by choosing two different phase shifts �=	 /4 and
−	 /4 in Fig. 1, the quantum average �JxJy +JyJx� can be
measured in two pieces as shown in Eq. �17�. In summary,
the single experimental setup in Fig. 1 can be used to mea-
sure all the quantities necessary to test the inequality �12�.

Finally, we discuss how the inequality �9� can be regarded
as “equivalent” to the stricter inequality �12�. Using the re-
lation in Eq. �15� implemented by a local phase shift, one has
the covariance in the rotated frame as

��Jx��Jy��S =
1

2
sin 2�����Jy�2� − ���Jx�2��

+ cos 2���Jx�Jy�S. �18�

Thus, by choosing the phase shift as

tan 2� =
2��Jx�Jy�S

���Jx�2� − ���Jy�2�
, �19�

the covariance in the rotated frame can be made to vanish. In
this situation, the inequality �12� is reduced to the inequality
�9�. In other words, as long as one is allowed to perform a
local phase shift, which does not alter the entanglement
property at all, the two inequalities can be interpreted as
equivalently useful. However, this relies on the capability of
measuring all the covariances and of performing a phase
shift very accurately required by Eq. �19�. It is then of no
practical advantage to adhere to the inequality �9�: One can
simply test the inequality �12� if one is able to measure the
off-diagonal covariance ��Jx�Jy�S in addition.

V. SUMMARY

In this paper, we have derived a stricter separability con-
dition via the su�2� and the su�1,1� algebra using the
Schrödinger-Robertson inequality instead of the Heisenberg
uncertainty relation. It has been shown that this refined con-
dition is expressed in a form invariant with respect to local
phase shifts. A linear optical setup has been proposed to test
the invariant separability condition, and the practical connec-
tion of the previously obtained condition to the present one
was also discussed.

Note added in proof. Recently, the author has learned that
a similar linear optical method was proposed to measure the
same quantities as the ones in this paper, but in a different
context �19�.
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