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Abstract

Entropy generation for thermally developing foraashvection in a porous medium bounded
by two isothermal parallel plates is investigatealgtically on the basis of the Darcy flow
model where the viscous dissipation effects had béen taken into account. A parametric
study showed that decreasing the group parametértte Péclet number increases the
entropy generation while for the Brinkman numbee thonverse is true. Heatline
visualization technique is applied with an emphasiBr<0 case where there is somewhere
that heat transfer changes direction at some swessarlocationto the wall instead of its

original direction, i.efromthe wall.

1 Introduction

Minimization of entropy generation in any thermodymc system leads to efficient use of
exergy which is always destroyed partially or tgtals a consequence of the second law of
thermodynamics. The entropy generation is relatedfltid flow and heat transfer
irreversibility. The contributions of various meciiesm and design features on the different
irreversibility terms often compete with one anotise that one may seek an optimized
design to minimize the amount of entropy generatvbich leads to minimal lost work [1].
Bejan [2] has investigated the problem in detailfeat and fluid flow problems in clear fluid
(of solid material) case and developed the worth&oporous counterparts. Being relevant to
a lot of industrial application, entropy generati@sulting from heat and fluid flow through
porous medium became a popular field of investigatsee for instance [3-14]. However,
some moot points of the previous papers have brgntighted for a better understanding of
the issue [15-17].

To the best knowledge of the authors, there existpublished article dealing analytically
with the case of second law analysis of thermadlyaloping forced convection neither in a
porous medium nor in a clear fluid case. The ainthi$ paper is to fill this gap in the
literature. Since the problem is a forced convectine with the Darcy flow model employed,

the velocity field is already prescribed and is\wndo be a slug one so that one may obtain
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the temperature distribution by solving the conuuctike energy equation. However, one
has to cope with the entropy generation in term&est transfer irreversibility (HTI) and
fluid flow irreversibility (FFI) to find the sourseof entropy generation locally and also to

investigate the total entropy generation alongoiingt.

2. Analysis
Assuming the hydrodynamically fully developed flothiere exists a unidirectional flow in

the streamwise direction while, at the same time,flow is thermally developing; as shown

in figure 1.
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Fig. 1 Definition Sketch
Heat and fluid flow analysis
The Darcy flow model assumes that
~Eur4p=0 )
K

where u* is the filtration velocityy is the fluid viscosity, K is the permeability, aRdis the
applied pressure gradient.

The thermal energy equation in the absence of dggeeity, anisotropy, axial conduction,
and, property variation becomes
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whereKk is the porous medium thermal conductivityjs the fluid density, and Qs the
specific heat at constant pressure.

The energy equation in its dimensionless form bexom
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with the following definitions
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The Brinkman number is defined as
2 2
Br = & (5)
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The appropriate boundary conditions to solve trerggnequation are

6(0,y) =1,

96(x.0) _ o (6-a,b,)

oy
6(x,1)=0.

Using the method of separation of variables, & straight forward task to find the solution to

equation (3) subject to the aforementioned boundanglitions as
8(x,y) =Y _b,cos@,y)exp-A2x) + 05Br(1-y?). (7)

where the constants lmay be found as

Br
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®

with A=(2n+1)y/2.
Having found the velocity distribution (based ore tharcy momentum equation) and the

temperature distribution by equation (7), one ryagtarts the second law analysis.

Entropy generation analysis
It is known that entropy is generated through haad fluid flow and the amount of
volumetric entropy generation may be found in teofldTI and FFI as follows

Sy = HTI +FFI 9)

where HTI may be found as

2 2 2
HTI = k(_DTj :L(( il j +( ot J J (10)
T T2 ox* ay*

and also FFI can be obtained by

*2
Fr =44 (11)

In dimensionless form HTI becomes
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For dimensionless FFI one obtains
FE| = kQ? j78; 2H 2 sz Br
H? KkQ(T, -T,)(1+Q6)  H? Q(1+Q6)

(13)

Consequently the dimensionless entropy generagonrbes

2 2
Sgen = LZ (a_ej iz + 6_9 + E (l+ Qg) (14)
H2(1+Q@)’ |\ox) Pe® (dy) Q

Wherein the Peclet number is definedPas pc,HU/k with U being the inlet velocity.

In particular from equations (12-14) the entropge@ation becomes
2
(ZAﬁbnPe'lcos(ﬁny)exp(—/lﬁx)) +
n=0

2
(Z A.b, cos(A, y)exp(-A2x) + Bryj

(Zr +Br >’ b,cos(A,y)exp(-A2x) + 0.5Br ?(1 - yZ)J
n=0

S
== 5 (15)
kQ L+QY _b,cos(d,y)exp(-A2x) + 05BrQ(1- y?))
H 2
The dimensionless temperature difference is cajleaip parameter (GP for short) in our

work and is defined as

T, -T
Q=—— 16
T (16)

w
The reader's attention is drawn to the point that definition is different from those
previously addressed group parameter a§2Br/

For large values of x, the temperature shows noghawith x and the temperature
distribution reduces to a parabolic one (for itSesepart vanishes). For the fully developed

region the entropy generation becomes

_ 2k G+y?

TEN AR 17
gen H 2 (G _ y2)2 ( )
with G being defined as
G=1+ 2 (18)
QBr

A modified Brinkman number, Br*, may be defined as
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2 2
Br* = QBr = % (19)

This modified Brinkman number shows the heat gdrdras a result of viscous dissipation
divided by the maximum wall heat transfer. Onenete T, in the denominator of Br* as a
temperature difference, (T-0), measured in Kelvin wherékis supposed as the minimum
temperature in engineering applications so that thinperature difference is the maximum

one that may happen for a system gthere the duct wall.

Heatline visualization
The concept of heatfunction introduced by Bejan §Bpws the heat transfer details in a
convection problem, i.e. to enable a conveniersijali representation of heat flow in a two-
dimension convection (forced or natural) problenaassult of both diffusion and advection.
As Bejan [2] argues, isotherms are as informative iconvection heat transfer problem as
constant-pressure lines in a momentum transferlgmolso that there is a need for a new
definition like heatfunction to satisfy the energguation intrinsically. At the same time,

heatlines are lines along which heat flows. Théofaihg set of equations are applied in this

problem

oH _06

0 0

al)—(l y (20)
— =6-Brx

dy
Solving the above set of equations one finds that

b, . » 1 y°
H(x,y) = ano/]—sm(ﬁny)exp(—ﬁnx) +Br > XY (21)

Note that according to Bejan [2], one should chabselowest temperature of the system as
the reference temperature for more informative Ilmesatdistribution, see [18] for example.
This means thdi in equation (20) should be replacedtb;,, when T,<T,.

3. Results and Discussion

A channel length to width ratio of 5 is found tolbege enough for the flow to become fully
developed. Half of the domain is presented dueh& adhannel symmetry in figures 2-5.
Figure 2 shows the heatlines and energy flux vedtege Hooman et al. [19]) for Br=1, and

Pe=1. Observe that energy flux vectors are tangematlines, as expected.
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Figure 2 The heatlines and energy flux vector$Bierl, Pe=1.

Moving from the heatlines to entropy generatiogufe 3-a is presented to show the local
dimensionless entropy generation contours. It dewstood that the highest rate of entropy
generation takes place just after the flow enteesdhannel and in this zone the maximum
entropy generation happens in a region adjacahietavall. This conclusion is inline with that
of [9]. Fig 3-b is presented to show this zoomegiae. These two figures are found for the
case Br=1, and Pe=1. It may be concluded the fopdener of the channel is the place where
the most exergy is destroyed for the incoming flaida uniform temperature,Tcontacts the
wall at a different temperature,,Tand this results in an increased HTI compared to

downstream regions.
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Figure 3-a The local entropy generation Figure 3-b The local entropy generation

in the whole domain in the zoomed region

Figure 4 shows the area-weighted average of themngeneration in the duct. This average
is calculated by integrating the local entropy gatien over the cross-section. It seems that
effects of Pe and group parameter are somehowasiraiid, at the same time, opposed to
those of Br. Increasing Pe implies a shrink intiermal conductivity for a fixed mass flow

rate. This reduced thermal conductivity plungesahiopy generation rate for being linearly
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related to it. Besides, an increase in the grouprpater results in a fall in the dimensionless
entropy generation rate as a result of lower FFlti@ contrary, increasing Br enhances HTI
and, as a result, boosts the total entropy geoer gdite.
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Figure 4 Average entropy generation versus Br.

Figure 5 shows the developing Nusselt number faresgalues of Br. It is observed that the
fully developed Nu is independent of Br while fdret developing Nu the situation is
somehow different in such a way that higher Br Iteda higher developing Nu similar to the

previous reports on similar cases, see [20-22¢fample.
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Figure 5 Nusselt number versus x for some valu&r of

A challenging problem is the negative Br case whbee wall is to be cooled while the
internal heat generation is an opposing effectuteig shows the Nusselt number versus x for
two different Br values.
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Figure 6 The Nusselt number versus x for a) Br=H).Br=-5

A jump is observed in both of the above figures @atarly with lower Br the jump occurs
closer to the duct entrance similar to what regbity Hooman et al. [23]. Note that the
smaller absolute value of Br is, the longer theyetdngth is. Larger Br will help viscous
dissipation to defeat over wall flux (heating ooking) sooner and the fully developed region
will be reached in a much smaller value of x. Exesmall amount of viscous dissipation
(nonzero Br) leads to a jump in the fully developéd to a value which is then independent
of Br. A difference between the effect of positiBe and the effect of negative Br is
ostentatious. The case Br>0 corresponds to incorfling being heated at the walls. The
viscous dissipation produces a distribution of fpasiheat sources, and this reinforces the
heating effect as the fluid moves downstream. Acreases the value of the Nusselt number
passes through a minimum. For very large valueBrdhe value of Nu changes only slowly
with x and when Br is large enough the curve wilt axperience a minimum. The case Br<0
corresponds to incoming fluid being cooled at thalsy and this cooling at the walls is
opposed by the heating due to viscous dissipatidhé bulk of the fluid. This was previously
reported in some articles but in none of the abasteles a visual representation of the
problem was possible.

Presentation of heatlines has the advantage thatobeerves something that could not be
shown by means of just isotherms. Mainly for tldgason, heatlines are presented in figure 7.
A region, at the entrance, is remarkable whereliheatare stretched from the wall to the
bulk. Moving downstream, one observes a changbardirection of the heatlines from bulk
to wall.
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Figure 7 Heatlines and energy flux vectors for Par8 a) Br=-0.1 b,c) Br=-5.

Figures 7-a,b shows the heatlines in the whole dorfa two different Br values while
figure 7-c shows the heatlines in a zoomed redigrtife jump location for Br=-5, Pe=5). It is
clearly observed that passing through the jumporggihe heat transfer direction changes
from wall to bulk of the flow to a completely inv&r direction.

For the fully developed region the solution to temperature distribution is a parabolic one
corresponds to the viscous dissipation effects simge the wall heat flux decays downstream

and the local entropy generation is indicatedgurfé 8.
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Fig. 8 Entropy generation in the fully developedioa

One observes that the plots corresponding to hiBhetand over those of smaller Br and for
a fixed Br the curves for low group parameter stawdr those of high counterparts, as
expected from the linear dependence of the fullyetgped temperature distribution on Br.
Close to the walls, the entropy generation rateem®es for higher HTI in this region (as

opposed to zero heat flux in the duct centerline ttu symmetry). At the duct centerline,
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unlike the clear fluid case, entropy generatiod wilt vanish as a result of non-zero FFI. A
uniform velocity distribution, due to slug flow assption, in the duct cross-section allows
FFI to vary only with the local temperature (iniaxerse-linear fashion).

4. Conclusion

Thermally developing forced convection in the emtearegion of a parallel plate channel,
with the effects of viscous dissipation includes,imvestigated analytically based on the
Darcy flow model. Heatlines and energy flux vectare also presented for a more
comprehensive study of the problem. The secondfathvermodynamics showed that Pe, Br,
and Q are parameters affecting the entropy generatiorihab one should use a proper
combination of the aforementioned parameters tagdea system with the least exergy

destruction.
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