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The Lax pairs for elliptic Cn and BC n

Ruijsenaars–Schneider models and their spectral curves
Kai Chena) and Bo-yu Houb)
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China

Wen-li Yangc)
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We study the ellipticCn andBCn Ruijsenaars–Schneider models which are elliptic
generalization of systems given in previous paper by the present authors@Chen
et al., J. Math. Phys.41, 8132 ~2000!#. The Lax pairs for these models are con-
structed by Hamiltonian reduction technology. We show that the spectral curves can
be parametrized by the involutive integrals of motion for these models. Taking
nonrelativistic limit and scaling limit, we verify that they lead to the systems
corresponding to Calogero–Moser and Toda types. ©2001 American Institute of
Physics. @DOI: 10.1063/1.1389091#

I. INTRODUCTION

The Ruijsenaars–Schneider~RS! and Calogero–Moser~CM! models, as integrable many-
body models, recently have attracted remarkable attention and have been extensively studied.
They describe one-dimensionalN-particle systems with pairwise interaction. Their importance lies
in various fields ranging from lattice models in statistics physics,1,2 to the field theory and gauge
theory,3,4 to the Seiberg–Witten theory,5 etc. In particular, the study of the RS model is of great
importance since it is the integrable relativistic generalization of the corresponding CM model.6,7

The Lax pairs for the CM models in various root systems have been constructed by Olsha-
netsky, and Perelomov8 using reduction on symmetric space, and are further given by Inozemtsev
in Ref. 9 without spectral parameter. It was almost 20 years until D’Hoker and Phong10 con-
structed the Lax pairs with a spectral parameter for each of the finite dimensional Lie algebras, and
the untwisted and twisted Calogero–Moser systems were introduced. Subsequently, Bordner
et al.11–13succeeded in giving two types of Lax pairs associated to all of the Lie algebra: the root
type and the minimal type, with and without spectral parameters. Even for all of the Coxeter
group, the construction has been obtained in Ref. 14. In Ref. 15, Hurtubise and Markman utilized
a so-called ‘‘structure group,’’ which combines a semisimple group and Weyl group, to construct
CM systems associated with the Hitchin system, which in some degree generalizes the result of
Refs. 10–14. Furthermore, the quantum version of the generalization has been developed in Refs.
16 and 17 at least for degenerate potentials of trigonometry after the works of Olshanetsky and
Perelomov.18

So far as for the RS model, only the Lax pair of theAN21 type RS model was obtained6,2,19–22

and succeeded in recovering it by applying the Hamiltonian reduction procedure on a two-
dimensional current group.23 Although the commutative operators for the RS model based on
various type Lie algebras have been given by Komori and co-workers,24,25 Diejen,26,27 and Hase-
gawaet al.,1,28 the Lax integrability~or Lax pair representation! of the other type of RS model is
still an open problem5 except for a few degenerate cases.27,30

a!Electronic mail: kai@phy.nwu.edu.cn
b!Electronic mail: byhou@phy.nwu.edu.cn
c!Electronic mail: wlyang@th.physik.uni-bonn.de
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In Refs. 29 and 30, we succeeded in constructing the Lax pair forCn andBCn RS systems
only with the degenerate case~without spectral parameters!. Ther -matrix structure for them have
been derived by Avanet al.31 In this paper, we study the Lax pair for the most generalCn andBCn

RS models—the ellipticCn andBCn RS models. We shall give the explicit forms of Lax pairs for
these systems by Hamiltonian reduction. We calculate the spectral curves for these systems, which
are shown to be parametrized by a set of involutive integrals of motion. In particular, taking their
nonrelativistic limit and scaling limit, we shall recover the systems of corresponding CM and Toda
types, respectively. The other various degenerate cases are also be discussed and the connection
between the Lax pair with a spectral parameter and the one without the spectral parameter is
commented on.

The paper is organized as follows. The basic materials of theAN21 RS model are reviewed in
Sec. II, where we propose a Lax pair associating with the Hamiltonian which has a reflection
symmetry with respect to the particles in the origin. This includes construction of a Lax pair for
theAN21 RS system together with its symmetry analysis. The main results are shown in Secs. III
and IV. In Sec. III, we present the Lax pairs for the ellipticCn andBCn RS models by reducing
theAN21 RS model. The explicit forms for the Lax pairs are given in Sec. IV. Section V is devoted
to deriving the spectral curves for these systems and their nonrelativistic counterpart, the
Calogero–Moser model and scaling limit of the Toda model. Section VI shows the various de-
generate limits: the trigonometric, hyperbolic, and rational cases. The last section is a brief sum-
mary and discussion.

II. THE A NÀ1-TYPE RUIJSENAARS–SCHNEIDER MODEL

As a relativistic-invariant generalization of theAN21-type nonrelativistic Calogero–Moser
model, theAN21-type Ruijsenaars–Schneider systems are completely integrable. The system’s
integrability was first shownd by Ruijsenaars.6,7 The Lax pair for this model has been constructed
in Refs. 6, 2, 19–22. Recent progress has shown that the compactification of higher dimension
SUSY Yang–Mills theory and Seiberg–Witten theory can be described by this model.5 Instanton
correction of the prepotential associated with thesl2 RS system has been calculated in Ref. 32.

A. Model and equations of motion

Let us briefly give the basics of this model. In terms of the canonical variablespi , xi( i , j
51,...,N) enjoying the canonical Poisson bracket

$pi ,pj%5$xi ,xj%50, $xi ,pj%5d i j , ~II.1!

the Hamiltonian of theAN21 RS system reads

HAN21
5(

i 51

N S epi )
kÞ i

f ~xi2xk!1e2pi )
kÞ i

g~xi2xk! D , ~II.2!

where

f ~x!ª
s~x2g!

s~x!
,

~II.3!
g~x!ª f ~x!ug→2g , xikªxi2xk ,

andg denotes the coupling constant. Here,s(x) is the Weierstrasss function which is an entire,
odd and quasiperiodic function with a fixed pair of the primitive quasiperiods 2v1 and 2v3 . It can
be defined as the infinite product

s~x!5x )
wPG\$0%

S 12
x

wD expF x

w
1

1

2 S x

wD 2G ,
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whereG52v1Z12v3Z is the corresponding period lattice. Defining a third dependent quasip-
eriod 2v2522v122v3 , one has

s~x12vk!52s~x!e2hk(x1vk), z~x12vk!5z~x!12 hk , k51,2,3,

where

z~x!5
s8~x!

s~x!
, `~x!52z8~x!,

andhk5z(vk) satisfyh1v32h3v15p i /2.
Notice that in Ref. 6 Ruijsenaars used another ‘‘gauge’’ of the momenta such that two are

connected by the following canonical transformation:

xi→xi , pi→pi1
1

2
ln )

j Þ i

N
f ~xi j !

g~xi j !
. ~II.4!

The Lax matrix for this model has the form~for the general elliptic case!

L~l!5 (
i , j 51

N
F~xi2xj1g,l!

F~g,l!
exp~pj !bjEi j , ~II.5!

where

F~x,l!ª
s~x1l!

s~x!s~l!
, bjª)

kÞ j
f ~xj2xk!, ~Ei j !kl5d ikd j l ~II.6!

andl is the spectral parameter. It is shown in Refs. 21, 33, 34 that the Lax operator satisfies the
quadratic fundamental Poisson bracket

$L1 ,L2%5L1 L2 a12a2 L1 L21L2 s1 L12L1 s2 L2 , ~II.7!

whereL15LAN21
^ Id,L25Id ^ LAN21

and the four matrices read

a15a1w, s15s2w,
~II.8!

a25a1s2s* 2w, s25s* 1w.

The forms ofa,s,w are

a~l,m!52z~l2m!(
k51

N

Ekk^ Ekk2(
kÞ j

F~xj2xk ,l2m!Ejk ^ Ek j ,

s~l!5z~l!(
k51

N

Ekk^ Ekk1(
kÞ j

F~xj2xk ,l!Ejk ^ Ekk , ~II.9!

w5(
kÞ j

z~xk2xj !Ekk^ Ej j .

The asterisk means

r * 5PrP with P5 (
k, j 51

N

Ek j ^ Ejk . ~II.10!
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Noticing that

L~l!21
i j 5

s~g1l!s~l1~N21!g!

s~l!s~l1Ng!
3 (

i , j 51

N
F~xi2xj2g,l1Ng!

F~2g,l1Ng!
exp~2pi !bj8Ei j ,

~II.11!

bj8ª)
kÞ j

g~xj2xk! ~II.12!

~the proof of the above-given identity is sketched in the Appendix! one can get the characteristic
polynomials ofLAN21

~Refs. 35 and 34!,

det~L~l!2v•Id !5(
j 50

N

F~g,l!2 j~2v !N2 j
H j

1

s j~g!
3

s~l1 j g!

s~l!
, ~II.13!

and that ofLAN21

21 by using formula given in Eq.~A8!,

detS s~l!s~l2Ng!

s~l2g!s~l2~N21!g!
3L~l2Ng!212v•Id D

5(
j 50

N

F~2g,l!2 j~2v !N2 j3
~H j

2!

s j~2g!

s~l2 j g!

s~l!
, ~II.14!

where (H 0
6)AN21

5(H N
6)AN21

51, and

~H i
1!AN21

5 (
J,$1,...,N%

uJu5 i

expS (
j PJ

pj D )
j PJ

kP$1,...,N%\J

f ~xj2xk!, ~II.15!

~H i
2!AN21

5 (
J,$1,...,N%

uJu5 i

expS (
j PJ

2pj D )
j PJ

kP$1,...,N%\J

g~xj2xk!. ~II.16!

Defining

~Hi !AN21
5~H i

1!AN21
1~H i

2!AN21
, ~II.17!

from the fundamental Poisson bracket Eq.~II.7!, we can verify that

$~Hi !AN21
,~Hj !AN21

%5$~H i
«!AN21

,~H j
«8!AN21

%50, «,«856, i , j 51,...,N. ~II.18!

In particular, the Hamiltonian Eq.~II.2! can be rewritten as

HAN21
[H15~H 1

1!AN21
1~H 1

2!AN21

5(
j 51

N

~epjbj1e2pjbj8!

5TrS L~l!1
s~l!s~l1Ng!

s~g1l! s~l1~N21!g!
L~l!21D . ~II.19!

It should be remarked that the set of integrals of motion Eq.~II.17! has a reflection symmetry
which is the key property for the later reduction toCn andBCn cases, i.e., if we set
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pi↔2pi , xi↔2xi , ~II.20!

then the Hamiltonians flows (Hi)AN21
are invariant with respect to this symmetry.

The canonical equations of motion associated with the Hamiltonian flowsH 1
1 in its generic

~elliptic! form read

ẍi5(
j Þ i

ẋi ẋ j~V~xi j !2V~xji !!, i 51,...,N, ~II.21!

where the potentialV(x) is given by

V~x!5z~x!2z~x1l!, ~II.22!

in which z(x)5 s8(x)/s(x). Here, xi5xi(t), pi5pi(t), and the superimposed dot denotest
differentiation.

B. The construction of Lax pair for the A NÀ1 RS model

As for theAN21 RS model, a generalized Lax pair has been given in Refs. 6, 2, and 19–22.
But there is a common character that the time evolution of the Lax matrixLAN21

is associated with

the Hamiltonian (H 1
1)AN21

. We will see in Sec. III that the Lax pair cannot reduce from that kind
of forms directly. Instead, we give a new Lax pair in which the evolution ofLAN21

is associated
with the HamiltonianHAN21

,

L̇AN21
5$LAN21

,HAN21
%5@MAN21

,LAN21
#, ~II.23!

whereMAN21
can be constructed with the help of (r ,s) matrices as follows:

M
AN21

5Tr2S ~s12a2!S 1^ S L~l!2
s~l!s~l1Ng!

s~g1l! s~l1~N21!g!
L~l!21D D D . ~II.24!

The explicit expression of entries forMAN21
is

Mi j 5F~xi j ,l!epjbj2F~xi j ,l1Ng!e2pibj8 , iÞ j , ~II.25!

Mii 5~z~l!1z~g!!epibi2~z~l1g!2z~g!!e2pibi8 ~II.26!

1(
j Þ i

~~z~xi j 1g!2z~xi j !!epjbj

1
F~xji 1g,l!

F~g,l!
F~xi j ,l1Ng!e2pibj8). ~II.27!

III. HAMILTONIAN REDUCTION OF Cn AND BC n RS MODELS FROM A NÀ1-TYPE
MODELS

Let us first mention some results about the integrability of Hamiltonian~II.2!. In Ref. 7
Ruijsenaars demonstrated that the symplectic structure of theCn- andBCn-types of RS systems
can be proved integrable by embedding their phase space to a submanifold of theA2n21 andA2n

type RS ones, respectively, while in Refs. 26, 27, and 25, Diejen and Komori, respectively, gave
a series of commuting difference operators which led to their quantum integrability. However,
there are not any results about their Lax representations so far except for the special degenerate
case.29,30 In this section, we concentrate our treatment on the exhibition of the explicit forms for
generalCn andBCn RS systems.
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For the convenience of analysis of symmetry, let us first give vector representation ofAN21

Lie algebra. Introducing anN-dimensional orthonormal basis ofRN,

ej•ek5d j ,k , j ,k51,...,N. ~III.1!

Then the sets of roots and vector weights ofAN21 type are,

D5$ej2ek : j ,k51,...,N%, ~III.2!

L5$ej : j 51,...,N%. ~III.3!

The dynamical variables are canonical coordinates$xj% and their canonical conjugate mo-
menta $pj% with the Poisson brackets of Eq.~II.1!. In a general sense, we denote them by
N-dimensional vectorsx andp,

x5~x1 ,...,xN!PRN, p5~p1 ,...,pN!PRN,

so that the scalar products ofx and p with the rootsa•x, p•b, etc., can be defined. The
Hamiltonian of Eq.~II.2! can be rewritten as

HAN21
5 (

mPL
S exp~m•p! )

D{b5m2n
f ~b•x!1exp~2m•p! )

D{b52m1n
g~b•x! D . ~III.4!

Here, the conditionD{b5m2n means that the summation is over rootsb such that for'n
PL,

m2n5bPD. ~III.5!

So does forD{b52m1n.

A. The Cn model

The set ofCn roots consists of two parts, long roots and short roots:

DCn
5DLøDS , ~III.6!

in which the roots are conveniently expressed in terms of an orthonormal basis ofRn:

DL5$62ej : j 51,...,n%,
~III.7!

DS5$6ej6ek ,: j ,k51,...,n%.

In the vector representation, vector weightsL are

LCn
5$ej ,2ej : j 51,...,n%. ~III.8!

The Hamiltonian of theCn model is given by

HCn
5

1

2 (
mPLCn

S exp~m•p! )
DCn

{b5m2n
f ~b•x!1exp~2m•p! )

DCn
{b52m1n

g~b•x!D .

~III.9!

From the above-mentioned data, we notice that either forAN21 or Cn Lie algebra, any roota
PD can be constructed in terms with vector weights asa5m2n where m,nPL. By simple
comparison of representation betweenAN21 andCn , one can find that if replacingej 1n with 2ej
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in the vector weights ofA2n21 algebra, we can obtain the vector weights ofCn algebra. This also
holds for the corresponding roots. This gives us a hint that it is possible to get theCn model by this
kind of reduction.

For theA2n21 model let us set restrictions on the vector weights with

ej 1n1ej50, for j 51,...,n, ~III.10!

which correspond to the following constraints on the phase space of theA2n21-type RS model
with

Gi[~ei 1n1ei !•x5xi1xi 1n50,
~III.11!

Gi 1n[~ei 1n1ei !•p5pi1pi 1n50, i 51,...,n.

Following Dirac’s method,36 we can show

$Gi ,HA2n21
%.0, for ; i P$1,...,2n%, ~III.12!

i.e.,HA2n21
is the first class Hamiltonian corresponding to the constraints in Eq.~III.11!. Here the

‘‘weak equal’’ symbol.represents that only after calculating the result of the left-hand side of the
identity could we use the conditions of constraints. It should be pointed out that the most neces-
sary condition ensuring Eq.~III.12! is the symmetry property of formula~II.20! for the Hamil-
tonian Eq.~II.2!. So for an arbitrary dynamical variableA, we have

Ȧ5$A,HA2n21
%D5$A,HA2n21

%2$A,Gi%D i j
21$Gj ,HA2n21

%

.$A,HA2n21
%, i , j 51,...,2n, ~III.13!

where

D i j 5$Gi ,Gj%52S 0 Id

2Id 0 D , ~III.14!

and $,%D denotes the Dirac bracket. By straightforward calculation, we have the nonzero Dirac
brackets of

$xi ,pj%D5$xi 1n ,pj 1n%D5 1
2 d i , j ,

~III.15!

$xi ,pj 1n%D5$xi 1n ,pj%D52 1
2 d i , j .

Using the above-mentioned data together with the fact thatHAN21
is the first class Hamiltonian-

@see Eq.~III.12!#, we can directly obtain a Lax representation of theCn RS model by imposing
constraintsGk on Eq.~II.23!,

$LA2n21
,HA2n21

%D5$LA2n21
,HA2n21

%uGk ,k51, . . . ,2n ,

~III.16!
5@MA2n21

,LA2n21
#uGk ,k51, . . . ,2n5@MCn

,LCn
#,

$LA2n21
,HA2n21

%D5$LCn
,HCn

%, ~III.17!

where

HCn
5 1

2HA2n21
uGk ,k51, . . . ,2n ,
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LCn
5LA2n21

uGk ,k51, . . . ,2n , ~III.18!

MCn
5MA2n21

uGk ,k51, . . . ,2n ,

so that

L̇Cn
5$LCn

,HCn
%5@MCn

,LCn
#. ~III.19!

Nevertheless, the (H 1
1)AN21

is not the first class Hamiltonian, so the Lax pair given by many
authors previously cannot reduce to theCn case directly in this way.

B. The BC n model

The BCn root system consists of three parts: long, middle, and short roots:

DBCn
5DLøDøDS , ~III.20!

in which the roots are conveniently expressed in terms of an orthonormal basis ofRn:

DL5$62ej : j 51,...,n%,

D5$6ej6ek : j ,k51,...,n%, ~III.21!

DS5$6ej : j 51,...,n%.

In the vector representation, vector weightsL can be

LBCn
5$ej ,2ej ,0: j 51,...,n%. ~III.22!

The Hamiltonian of theBCn model is given by

HBCn
5

1

2 (
mPLBCn

S exp~m•p! )
DBCn

{b5m2n
f ~b•x!1exp~2m•p! )

DBCn
{b52m1n

g~b•x!D .

~III.23!

By similar comparison of representations betweenAN21 andBCn , one can find that if replacing
ej 1n with 2ej ande2n11 with 0 in the vector weights of theA2n Lie algebra, we can obtain the
vector weights of theBCn one. The same holds for the corresponding roots. So by the same
procedure as theCn model, we could get the Lax representation of theBCn model.

For theA2n model, we set restrictions on the vector weights with

ej 1n1ej50 for j 51,...,n,
~III.24!

e2n1150,

which correspond to the following constraints on the phase space of theA2n-type RS model with

Gi8[~ei 1n1ei !•x5xi1xi 1n50,

Gi 1n8 [~ei 1n1ei !•p5pi1pi 1n50, i 51,...,n,
~III.25!

G2n118 [e2n11•x5x2n1150,

G2n128 [e2n11•p5p2n1150.
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Similarly, we can show

$Gi ,HA2n
%.0, for ; i P$1,...,2n11,2n12%, ~III.26!

i.e., HA2n
is the first class Hamiltonian corresponding to the above-mentioned constraints Eq.

~III.25!. SoLBCn
andMBCn

can be constructed as follows:

LBCn
5LA2n

uG
k8 ,k51, . . . ,2n12 ,

~III.27!
MBCn

5MA2n
uG

k8 ,k51, . . . ,2n12 ,

while HBCn
is

HBCn
5 1

2 HA2n
uGk ,k51, . . . ,2n12 , ~III.28!

due to the similar derivation of Eqs.~III.13!–~III.19!.

IV. LAX REPRESENTATIONS OF THE Cn AND BC n RS MODELS

A. The Cn model

The Hamiltonian of theCn RS system is Eq.~III.9!, so the canonical equations of motion are

ẋi5$xi ,H%5epibi2e2pibi8 , ~IV.1!

ṗi5$pi ,H%5(
j Þ i

n

~epjbj~h~xji !2h~xj1xi !!1e2pjbj8~ ĥ~xji !2ĥ~xj1xi !!!

2epibiS 2h~2xi !1(
j Þ i

n

~h~xi j !1h~xi1xj !!D
2e2pibi8S 2ĥ~2xi !1(

j Þ i

n

~ ĥ~xi j !1ĥ~xi1xj !!D , ~IV.2!

where

h~x!ª
d ln f ~x!

dx
, ĥ~x!ª

d ln g~x!

dx
,

bi5 f ~2xi ! )
kÞ i

n

~ f ~xi2xk! f ~xi1xk!!, ~IV.3!

bi85g~2xi ! )
kÞ i

n

~g~xi2xk!g~xi1xk!!.

The Lax matrix for theCn RS model can be written in the following form:

~LCn
!mn5en•pbn

F~~m2n!•x1g,l!

F~g,l!
, ~IV.4!

which is a 2n32n matrix whose indices are labeled by the vector weights, denoted bym,n
PLCn

, MCn
can be written as
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MCn
5D1Y, ~IV.5!

whereD denotes the diagonal part andY denotes the off-diagonal part

Ymn5en•pbnF~xmn ,l!1e2m•pbn8F~xmn ,l1Ng!, ~IV.6!

Dmm5~z~l!1z~g!!em•pbm2~z~l1g!2z~g!!e2m•pbm8

1 (
nÞm

S ~z~xmn1g!2z~xmn!!en•pbn1
F~xnm1g,l!

F~g,l!
F~xmn ,l1Ng!e2m•pbn8D

~IV.7!

and

bm5 )
DCn

{b5m2n
f ~b•x!,

bm8 5 )
DCn

{b5m2n
g~b•x!, ~IV.8!

xmnª~m2n!•x.

The LCn
,MCn

satisfies the Lax equation

L̇Cn
5$LCn

,HCn
%5@MCn

,LCn
#, ~IV.9!

which is equivalent to the equations of motion~IV.1! and ~IV.2!. The HamiltonianHCn
can be

rewritten as the trace ofLCn
,

HCn
5tr LCn

5
1

2 (
mPLCn

~em•pbm1e2m•pbm8 !. ~IV.10!

B. The BC n model

The Hamiltonian of theBCn model is expressed in Eq.~III.23!, so the canonical equations of
motion are

ẋi5$xi ,H%5epibi2e2pibi8 , ~IV.11!

ṗi5$pi ,H%5(
j Þ i

n

~epjbj~h~xji !2h~xj1xi !!1e2pjbj8~ ĥ~xji !2ĥ~xj1xi !!!

2epibiS h~xi !12h~2xi !1(
j Þ i

n

~h~xi j !1h~xi1xj !!D
2e2pibi8S ĥ~xi !12ĥ~2xi !1(

j Þ i

n

~ ĥ~xi j !1ĥ~xi1xj !!D 2b0~h~xi !1ĥ~xi !!,

~IV.12!

where
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bi5 f ~xi ! f ~2xi ! )
kÞ i

n

~ f ~xi2xk! f ~xi1xk!!,

bi8g~xi !g~2xi ! )
kÞ i

n

~g~xi2xk!g~xi1xk!!, ~IV.13!

b05)
i 51

n

f ~xi !g~xi !.

The Lax pair for theBCn RS model can be constructed as the form of Eqs.~IV.4!–~IV.8!
where one should replace the matrices labels withm,nPLBCn

, and roots withbPDBCn
.

The HamiltonianHBCn
can also be rewritten as the trace ofLBCn

,

HBCn
5tr LBCn

5
1

2 (
mPLBCn

~em•pbm1e2m•pbm8 !. ~IV.14!

V. SPECTRAL CURVES OF THE Cn AND BC n RS SYSTEMS

It has recently been pointed out in Refs. 4, 5, 37 and 38, that the SU(N) RS model is related
to five-dimensional gauge theories. In the context of Seiberg–Witten theory, the elliptic RS inte-
grable system can be linked with the relevant low energy effective action when a compactification
from five dimension to four dimension is imposed with all of the fields belonging to the adjoint
representation of the SU(N) gauge group.5 More evidence for this correspondence between the
SYM and RS models is depicted by calculating instanton correction of prepotential for SU~2!
Seiberg-Witten theory in Ref. 32.

As for the spectral curve and its relation to the Seiberg–Witten spectral curve, much progress
has been made in the correspondence of ‘‘Calogero-Moser integrable theories and gauge theories.’’
See the recent reviews in Refs. 39 and 40, and references therein. In the following we will give the
spectral curves forCn andBCn systems, which are shown to be parametrized by the integrals of
motion of the corresponding system. We will also see that the elliptic Calogero–Moser, Toda
~affine and nonaffine! ones are particular limits of these systems.

A. Spectral curve of the Cn RS system

Given the Lax operator with spectral parameter for the Calogero–Moser system and of the RS
system associated with Lie algebrasG, the spectral curve for the given system is defined as

G:R~v,l!5det~L~l!2v•Id ![0. ~V.1!

It is natural that the functionR(v,z) is invariant under time evolution,

d

dt
R~v,l!5$H,R~v,l!%50. ~V.2!

Thus,R(v,l) must be a function of only then independent integrals of motion, which in super-
Yang–Mills theory play the role ofmoduli, parametrizing the supersymmetric vacua of the gauge
theory. This has been confirmed in the case of the elliptic Calogero–Moser system for general Lie
algebra in Refs. 41 and 42 and in the case of the elliptic SU(N) RS system for the perturbative
limit and some nonperturbative special point.5

As for theCn RS system, the spectral curve can be generated by the Lax matrixL(l)Cn
as

follows:
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det~L~l!Cn
2v•Id !5(

j 50

2n
~s~l!!( j 21)s~l1 j g!

~s~g1l!! j ~2v !2n2 j~H j !Cn
50, ~V.3!

where (H0)Cn
5(H2n)Cn

51 and (Hi)Cn
5(H2n2 i)Cn

who Poisson commute

$~Hi !Cn
,~Hj !Cn

%50, i , j 51, . . . ,n. ~V.4!

This can be deduced by verbose but straightforward calculation to verify that the (Hi)A2n21
,

i 51, . . . ,2n is the first class Hamiltonian with respect to the constraints~III.11!, using Eqs.
~II.18!, ~III.13! and the first formula of Eq.~III.18!.

The explicit form of (Hl)Cn
is

~Hl !Cn
5 (

J,$1,...,n%, uJu< l
« j 561,j PJ

exp~p«J! F«J;Jc UJc,l 2uJu , l 51,...,n ~V.5!

with

p«J5(
j PJ

« j pj ,

F«J; K5 )
j , j 8PJ
j , j 8

f 2~« j xj1« j xj ! )
j PJkPK

f ~« j xj1xk! f ~« j xj2xk!)
j PJ

f ~2« j xj !, ~V.6!

UI ,p5 (
I 8,I

uI 8u5[ p/2]

)
j PI 8

kPI \I 8

f ~xjk! f ~xj1xk!g~xjk!g~xj1xk!H 0, ~p odd!

1, ~p even!
.

Here,@p/2# denotes the integer part ofp/2. As an example, for theC2 RS model, the independent
Hamiltonian flows (H1)C2

and (H2)C2
generated by the Lax matrixLC2

are29

~H1!C2
5HC2

5ep1f ~2x1! f ~x12! f ~x11x2!1e2p1g~2x1! g~x12!g~x11x2!

1ep2f ~2x2! f ~x21! f ~x21x1!1e2p2g~2x2! g~x21!g~x21x1!, ~V.7!

~H2!C2
5ep11p2f ~2x1! ~ f ~x11x2!!2f ~2x2!1e2p12p2g~2x1! ~g~x11x2!!2g~2x2!

1ep12p2f ~2x1! ~ f ~x12!!2f ~22x2!1ep22p1g~2x1! ~g~x12!!2g~22x2!

12 f ~x12! g~x12! f ~x11x2!g~x11x2!. ~V.8!

Similar to the form of ‘‘gauge’’ transformation of Eq.~II.4!, we can check that the involutive
Hamiltonians of Eq.~V.5! are identical to the one given by Diejen in Ref. 26 with the following
transformation

xi→xi , pi→pi1
1

2
lnS f ~2xi !

g~2xi !
)
j Þ i

n
f ~xi j ! f ~xi1xj !

g~xi j !g~xi1xj !
D . ~V.9!

B. Spectral curve of the BC n model

Similar to the calculation of theCn case, the spectral curve of theBCn RS system can be
generated by Lax matrixL(l)BCn

as follows
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det~L~l!BCn
2v•Id !50. ~V.10!

The explicit form of the spectral curve is

det~L~l!BCn
2v•Id !5 (

j 50

2n11
~s~l!!( j 21)s~l1 j g!

~s~g1l!! j ~2v !2n112 j~Hj !BCn
50, ~V.11!

where (H0)BCn
5(H2n)BCn

51 and (Hi)BCn
5(H2n112 i)BCn

Poisson commute

$~Hi !BCn
,~Hj !BCn

%50, ; i , j P$1, . . . ,n%. ~V.12!

This can be deduced similarly to theCn case to verify that (Hi)A2n
, i 51, . . . ,2n is the first class

Hamiltonian with respect to the constraints~III.25!.
The explicit forms of (Hl)BCn

are

~Hl !BCn
5 (

J,$1,...,n%, uJu< l
« j 561, j PJ

exp~p«J! F«J;JcUJc,l 2uJu , l 51,...,n ~V.13!

with

p«J5(
j PJ

« j pj ,

F«J;K5 )
j , j 8PJ
j , j 8

f 2~« j xj1« j8
xj 8! )

j PJ
kPK

f ~« j xj1xk! f ~« j xj2xk!)
j PJ

f ~2« j xj !)
j PJ

f ~« j xj !,

~V.14!

UI ,p5 (
I 8,I

uI 8u5[ p/2]

)
j PI 8

kPI\I 8

f ~xjk! f ~xj1xk!g~xjk!g~xj1xk!5 )
i PI \I 8

f ~xi !g~xi !, ~p odd!

)
i PI

f ~xi !g~xi !, ~p even!

.

It is similar to theCn case for the relation between (Hl)BCn
with the one given in Ref. 26:

xi→xi , pi→pi1
1
2 lnS f ~xi !

g~xi !

f ~2xi !

g~2xi !
)
j Þ i

n
f ~xi j ! f ~xi1xj !

g~xi j !g~xi1xj !
D . ~V.15!

Remarks:So far we have Lax matrices with the spectral parameter of Eq.~IV.4! for theCn and
BCn RS models, and the corresponding spectral curve equation of Eqs.~V.3! and ~V.11!. It is
expected that they will be useful to study the relation between the 5d SUSY gauge theory and
these integrable models which have been pointed out in Ref. 5. More exactly, it is expected that
these spectral curves would be identical to the complex curve in the context of SUSY gauge theory
associated with the corresponding gauge group. On the other hand, these nonsimple laced models
may be potential candidates which are connected with orientifold in brane theory, corresponding to
the fact that theAn21 RS model is connected with orbifold. This exact correspondence in these
directions is missed and certainly desires further investigation.
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C. Limit to the Calogero–Moser system and Toda system

The Calogero–Moser system can be achieved by taking the so-called ‘‘nonrelativistic limit.’’
The procedure is by rescalingpm°bpm , g°bg and lettingb°0, followed by making a ca-
nonical transformation

pm°pm1g (
D{h5m2n

z~h•x!. ~V.16!

Herepm5m•p, such that

L°Id1bLCM1O~b2!, ~V.17!

and

H°N12b2HCM1O~b2!, ~V.18!

whereN52n for the Cn model andN52n11 for BCn model.
LCM can be expressed as

LCM5p•H1X, ~V.19!

where

Hmn5mdmn , Xmn5gF~xmn ,l!~12dmn!. ~V.20!

The HamiltonianHCM of the CM model can be given by

HCM5
1

2
p22

g2

2 (
aPD

`~a•x!5
1

4
tr L21const, ~V.21!

where

const52
N~N21!g2

4
`~l!.

All of the above-mentioned results are identified with the results of Refs. 8, 10, 12–15 up to
a suitable choice of coupling parameters. Now the degenerate RS spectral curve reduces to

G: R~v,l!5det~L~l!CM2v•Id ![0, ~V.22!

which is exactly identified with the spectral curve analyzed in Refs. 39 and 41.
Starting from the CM system to the Toda system is more directly due to the progress that the

limit to Toda for the general Lie algebra has been studied extensively in Refs. 43–45. The main
idea is making a suitable scaling limit with the following parametrization:

v152 ip, v3PR1 , t[
v3

v1
5 iv3 /p, ~V.23!

and shifting the dynamical variablex,

x→Q22v3 d r∨, p→P,
~V.24!

l→ logZ2v3 , ZPR1 ,
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in which hG is the Coxeter number for the corresponding root systemG, r∨ the dual of the Weyl
vector defined asr∨5 1

2 SaPD1
2a/a2, andd satisfiesd<1/hG .

For convenience, we give the basics of these root systems as shown in Table I.
As for theCn model, selectingr∨5rCn

∨ , g5 im ev3d, one has the nonaffineCn Toda model

from the Hamiltonian of the CM model Eq.~V.21!,

HCn

Toda5
1

2
P21m2(

j 51

n21

eQj 2Qj 111m2 e2Qn, ~V.25!

for d,1/hCn
andCn

(1) Toda model

HC
n
(1)

Toda
5

1

2
P21m2e22Q11m2(

j 51

n21

eQj 2Qj 111m2e2Qn ~V.26!

for d51/hCn
.

The same holds for theBCn model. Selectingr∨5rBCn

∨ , g5 im ev3d, one has the nonaffine

Bn Toda model from the Hamiltonian of the CM model Eq.~V.21!,

HBn

Toda5
1

2
P21m2(

j 51

n21

eQj 2Qj 111m2 eQn ~V.27!

for d,1/hBCn
andBCn Toda model

HBCn

Toda5
1

2
P21m2e22Q11m2(

j 51

n21

eQj 2Qj 111m2eQn ~V.28!

for d51/hBCn
.

If we use the following gauge forF(x,l):46

F~x,l!→ s~x1l!

s~l!s~x!
exp~z~l!x!, ~V.29!

it does not destroy the validity45 for the Lax pair, We have the following limit forgF(a•x,l):

TABLE I. Root system ofAn21 , Cn andBCn types.

G All roots Simple rootsP hG Dual Weyl vectorr~ Vector weights

An21 6ei6ej ,
1< i , j <n,
iÞ j

ei2ei 11 ,
i 51,...,n21

n ( j 51
n (n2 j )ej ei ,

i 51,...,n

Cn 6ei6ej ,62ei ,
1< i , j <n,
iÞ j

ei2ei 11,2en ,
i 51,...,n21

2n ( j 51
n (n1

1
22 j )ej

ei ,2ei ,
i 51,...,n

BCn 6ei6ej ,62ei ,6ei

1< i , j <n,
iÞ j

ei2ei 11 ,en ,
i 51,...,n21

2n11 ( j 51
n (n112 j )ej

~define!
ei ,2ei ,0,
i 51,...,n
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gF~a•x,l!→2m expS a•Q

2 D for aPP ~d<1/hG!

→mZexpS 2
a•Q

2 D for a5ah ~d51/hG!

→0 otherwise,

gF~2a•x,l!→m expS a•Q

2 D for aPP~d<1/hG!

→2
m

Z
expS 2

a•Q

2 D , for a5ah~d51/hG!

→0 otherwise. ~V.30!

So the Lax operator now reads

LToda5P•H2 im (
aPP

expS a•Q

2 D @E~a!2E~2a!#1 im expS a0•Q

2 D @ZE~2a0!2Z21E~a0!#,

~V.31!

where E(a)mn5dm2n,a . This Lax operator holds for all the root systems ofAn21(An21
(1) ),

Cn(Cn
(1)), Bn(BCn) and coincides with the standard form given in Ref. 8. It is not difficult to find

that the parameterZ now plays the role of a spectral parameter for the affine Toda model based on
G(1). When we refer to the Toda models based on a finite Lie algebraG, we should only drop the
terms containing the affine roota0 .

So the degenerate spectral curve for the TodaAn21
(1) , Cn

(1) , and BCn(A2n
(2)) systems can be

defined

G:R~v,l!5det~L~l!Toda2v•Id ![0, ~V.32!

which is identical to the one given in Refs. 47 and 48.

VI. DEGENERATE CASES

Let us now consider the other various special degenerate cases. As is well known, if one or
both of the periods of the Weierstrass sigma functions(x) become infinite, there will occur three
degenerate cases associated with trigonometric, hyperbolic, and rational systems. The degenerate
limits of the functionsF(x,l), s(x), andz(x) will give corresponding Lax pairs which include
spectral parameter. Moreover, when the spectral parameter value is on a certain limit, the Lax pairs
without spectral parameter will be derived.

A. Trigonometric limit

The limit can be obtained by sendingv3 to i` with v15p/2 , so that

s~x!→e~1/6! x2
sinx,

~VI.1!
z~x!→cotx1 1

3 x,

and the function

F~x,l![
s~x1l!

s~x!s~l!
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reduces to

F~x,l!→~cotl2cotx!e~1/3! xu. ~VI.2!

By replacing the corresponding functionsF(x,l), s(x), andz(x) with the above-given form
for the Lax pairs, we will get the corresponding spectral parameter dependent Lax pairs. For
simplicity, we notice that the exponential part of the above-mentioned functions can be removed
by applying suitable ‘‘gauge’’ transformation of the Lax matrix on which condition the functions
can be valued as follows:

s~x!→sinx,

z~x!→cotx, ~VI.3!

F~x,l!→~cotl2cotx!.

As for the spectral parameter independent Lax pair, furthermore, we can take the limitl
→ i`, so the function

F~x,l!→ 1

sinx
, ~VI.4!

while the corresponding Lax matrix becomes

Lmn5en•pbn

sing

sin~~m2n!•x1g!
, ~VI.5!

which is exactly the same as the spectral parameter independent Lax matrix given in Ref. 30.

B. Hyperbolic limit

In this case, the periods can be chosen by sendingv1 to i` with v35p/2 , so following all
the procedures in achieving the result of the trigonometric case, we can find the hyperbolic Lax
pairs by simple replacement of the functions appearing in the trigonometric Lax pair as follows:

sinx→sinhx,

cosx→coshx, ~VI.6!

cotx→cothx.

The same as for the trigonometric case, we can get the Lax pairs with and without spectral
parameter.

C. Rational limit

As far as the form of the Lax pair for the rational-type system is concerned, we can achieve
it by making the following substitutions:

s~x!→x,

z~x!→ 1

x
, ~VI.7!

F~x,l!→ 1

x
1

1

l
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for the spectral parameter dependent Lax pair, while furthermore, taking the limitl→ i`, we can
obtain the spectral parameter independent Lax pair. The explicit form of Lax matrix without
spectral parameter is

Lmn5en•pbn

g

~m2n!•x1g
. ~VI.8!

which completely coincides with the spectral parameter independent Lax matrix given in Ref. 30.
Remark:As for the various degenerate cases for the CM and Toda systems, one can follow the

same procedure as for the RS model@please refer to Eqs.~VI.1!–~VI.8!#.

VII. CONCLUDING REMARKS

In this paper, we have proposed the Lax pairs for ellipticCn andBCn RS models. The spectral
parameter dependent and independent Lax pairs for the trigonometric, hyperbolic, and rational
systems can be derived as the degenerate limits of the elliptic potential case. The spectral curves
of these systems are given and shown depicted by the complete sets of involutive constant inte-
grals of motion. They are expected be related to the five-dimensional gauge theory4,5 and even to
brane theory, which desires further study. In the nonrelativistic limit~scaling limit!, these systems
lead to CM~Toda! systems associated with the root systems ofCn andBCn . There are still many
open problems. For example, it seems to be a challenging subject to carry out a Lax pair with as
many independent coupling constants as independent Weyl orbits in the set of roots, as done for
the Calogero–Moser systems~see Refs. 8, 11–15!. What is also interesting is to generalize the
results obtained in this paper to the systems associated with all other Lie Algebras even to those
associated with all the finite reflection groups.14 Moreover, the issue of getting ther -matrix
structure for these systems is deserved due to the success of calculating for the trigonometricBCn

RS system by Avanet al. in Ref. 31.
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APPENDIX

In this appendix we prove the identity equation~II.11! and then derive the relation between the
Lax operatorL(l) and its inverse ofL(l)21.

Using the result given in Ref. 6 of Eq.~B5!, we have the following conclusion:
Let

Ci j 5
s~qi2r j1l!

s~qi2r j1m!
, i , j 51, . . . ,N, ~A1!

then one has

det~C!5s~l2m!N21s~l1~N21!m1S!3)
i , j

s~qi2qj !s~r j2r i !)
i , j

1

s~qi2r j1m!
,

~A2!

where

S5(
i 51

N

~qi2r j !. ~A3!
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So it is straightforward to compute the inverse of matrixC,

~C21! i j 5the cofactor ofC with respect toCji

5
s~l1~N22!m1qi2qj !

s~l2m!s~l1~N21!m!s~qi2qj2m!

3
) ls~qj2ql1m!) ls~qi2ql2m!

)kÞ is~qi2qk!)kÞ js~qj2qk!
. ~A4!

From Eq.~II.5!, we have

L~l!5 (
i , j 51

N
F~xi j 1g,l!

F~g,l!
exp~pj !bjEi j

5
1

F~g,l! (
i , j 51

N
s~xi j 1g1l!

s~xi j 1g!s~l!
exp~pj !bj

5
1

F~g,l! (
i , j 51

N

Gi j exp~pj !bj , ~A5!

where

Gi jªF~xi j 1g,l!5
s~xi j 1g1l!

s~xi j 1g!s~l!
,

with the help of Eq.~A4!, one has

~G21! i j 5
s~l1~N21!g1xi j !

s~l1Ng!s~xi j 2g!
3

)ks~xjk1g!)ks~xik2g!

)kÞ is~xik!)kÞ js~xjk!
, ~A6!

so that

L~l!21
i j 5F~g,l!~G21! i j bj

21 exp~2pi !)Ei j

5
2s~g!2 s~l1g!s~l1~N21!g1xi j !

s~l!s~g!s~l1Ng!s~xi j 2g!
3exp~2pi !)

kÞ j

s~xjk1g!

s~xjk!

5
s~g1l! s~l1~N21!g!

s~l!s~l1Ng!
3

F~xi j 2g,l1Ng!

F~2g,l1Ng!
exp~2pi !bj8Ei j .

~A7!

By comparing the forms ofL(l) andL(l)21
i j , we findL(l)21

i j can be expressed withL(l) as

L~l!21
i j 5L~l! i j ug→2g,l→l1Ng3

s~g1l! s~l1~N21!g!

s~l!s~l1Ng!
exp~2pi2pj !. ~A8!
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