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Acronyms and Initialisms

This section collects the main acronyms and initialisms used in this document.
Glossary The most important of these terms are also given a definition from the Com-
mon Criteria online documentation. Except where otherwise indicated, these defini-
tions are from CC 3.1 Part 1 [4], Section 4 Terms and definitions.

CC Common Criteria

CEM Common Evaluation Methodology

DSD Defence Signals Directorate

EAL Evaluation Assurance Level

HLD High-Level Design

OSP Organizational Security Policy
– a set of security rules, procedures, or guidelines imposed (or presumed to be
imposed) now and/or in the future by an actual or hypothetical organisation in
the operational environment.

PIC Peripheral Interface Controller

PP Protection Profile

SAR Security Assurance Requirement

SFP Security Function Policy
–a set of rules describing specific security behaviour enforced by the TSF and
expressible as a set of SFRs.

SFR Security Functional Requirement
– The SFRs define the rules by which the TOE governs access to and use of its
resources, and thus information and services controlled by the TOE. (CC 3.1 Part
2 [5], Section 6 Functional requirements paradigm)

SPM Security Policy Model

ST Security Target
– an implementation-dependent statement of security needs for a specific identi-
fied TOE.

TDS TSF Design Documentation

TOE Target of Evaluation
– target of evaluation (TOE) a set of software, firmware and/or hardware possibly
accompanied by guidance.

TSF TOE Security Functionality
– a set consisting of all hardware, software, and firmware of the TOE that must
be relied upon for the correct enforcement of the SFRs.
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TSFI TSF interface
– a means by which external entities (or subjects in the TOE but outside of the
TSF) supply data to the TSF, receive data from the TSF and invoke services from
the TSF.

TSP TOE Security Policy

B symbols

Logical:
A or B A ∨ B

C and D C ∧D

P implies Q P ⇒ Q

For all x such that S ∀ x • S

There exists a y such that T ∃ y • T

a equal b a = b

c not equal d c 6= d

Sets:
a is a member of X a ∈ X

b is not a member of Y b 6∈ Y

The empty set ∅

S intersect T S ∩ T

S subset of T S ⊆ T

S proper subset of T S ⊂ T

The set of integers from m to n m..n

The natural numbers N

A finite set of natural numbers F

The power sets of set S P(S )
The non-zero natural numbers (etc.) N1 etc.
Functions:
f is a total function from X to Y f : X → Y

f is a partial function from X to Y f : X 7→ Y

The relation R restricted to domain D D C R

Assignments:
Assign X the value V X := V

Assign X some value in the set S X :∈ S

Perform assignments I and J in parallel I ‖ J

Sequences:
x is of type: finite sequence of t x ∈ seq(t)
The prefix of sequence s upto index i s ↓ i

The suffix of sequence t from index j t ↑ j

Sequence s with element p prepended p → s

Sequence t with element q appended t ← q

The reverse of a sequence s rev(s)



Chapter 1

Introduction

1.1 Summary

The Common Criteria (CC) is an international standard for the evaluation of security
products. It provides a framework within which the security aspects of products can be
described, and within which such claims can be evaluated in a rigorous manner.

As is common with schemes for evaluating and certifying information technology
(IT) systems for safety or security purposes, the Common Criteria uses a system of
assurance levels. CC assurance levels are called EALs (Evaluation Assurance Levels).
The EAL describes the degree of confidence that can be placed in a positive evaluation
of the CC claims for a product. EALs range from 1 to 7, where EAL7 is the highest
level.

The Australian Defence Signals Directorate (DSD) administers the Australian In-
formation Security Evaluation Program. This involves oversight of CC evaluation.
However, evaluation at the highest levels (EAL6 and EAL7) is rarely attempted. This
report is part of an investigation into the practical issues of applying the Common Cri-
teria at these high levels.

This report deals with EAL7 (CC version 3.1) Rev 1. 2006), which requires formal
descriptions and proofs for some components. Specifically the report investigates the
process of developing the formal support documents that are required by the evaluator.
The report describes the experience of applying one applicable formal method to an
actual device, which was developed in prototype by the DSD as a subject for exercises
of this kind.

In summary, this report describes the formal development of a Trusted Filter de-
sign from formal specification to high-level design. This was done using the Event-B
Method. The formal security policy of the trusted filter is also supplied. Formal proofs
were completed that show that the formal specification and the high-level design satisfy
the security policy and that the high-level design satisfies the formal specification. This
document also describes how the formal parts above correspond to documents required
by the CC.

The trusted filter design is based on a prototype design supplied by DSD. Several

7
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design faults were discovered in the prototype design and so some aspects of the design
were adjusted in order to allow a formal verification to be completed.

1.1.1 Document Overview

The structure of this document is as follows.

• The rest of this chapter contains the following.

– A description of the prototype device – the Trusted Filter.
– A more detailed description of the Common Criteria evaluation. process,

and its requirements for formality at EAL7.
– A brief overview of the B method.

• The following three chapters discuss in detail the application of the CC to the
Trusted Filter for those parts that require formal methods to be applied.

– Chapter 2 describes the development of a formal security policy.
– Chapter 3 describes the development of formal security functional require-

ments.
– Chapter 4 describes the development of a formal high level design.

• Finally, Chapter 5 discusses the lessons learned from the exercise.

1.2 The Trusted Filter

A trusted filter is a device which checks command data being sent from a secure to
a non-secure environment and only allows a specific set of commands to pass. It is a
filter because it is designed to block non-designated commands, and it is a trusted filter
because the filtering is done for security purposes.

The Trusted Filter that is the object of this report is a test device built by DSD espe-
cially for the investigation of high-level evaluation procedures. The initial description
of the device was as follows. [12]

1 INTRODUCTION
The trusted filter demonstration device was developed to provide a model
for research into fault analysis automation. The trusted filter has been de-
signed to interface between a high security classification host and a device
on a low security classification network. Unlike more complex commer-
cial trusted filters, micro controllers or processors do not control this de-
vice. All core functionality is provided via hardware logic and clocking.
It is expected that the trusted filter will be more secure and have a higher
fault tolerance because of its hardware implementation.
2 FUNCTIONALITY
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A trusted filter is used for unidirectional data transfer between two systems
of varying classification levels. The filter in such a scenario acts as a con-
trol point between the two systems determining the traffic flow between
the two levels. The most common implementation of a trusted filter is be-
tween a higher classified system and a lower classified system in which
traffic flow from low to high is blocked whilst traffic from high to low is
allowed to flow. The trusted filter has been designed to connect to both
systems via a serial RS-232 interface. This interface is handled by PIC
micro-controllers whose function is to control the input and output of data
into the trusted filter core in an appropriate format.

Further details can be found in the DSD design document [12]. Note that:

• The Trusted Filter has a single channel.

• The device is unidirectional. Responses from the insecure side do not pass
through the filter.

• The command set is loaded at the time of manufacture, and there is no function-
ality for its replacement or update.

For our investigation we were supplied with a number of design documents, plus
the VHDL description of the device (from the Protel tool). However, the implementa-
tion of the prototype evolved during the project and we were given successive VHDL
models as changes were made. In consequence the design documentation did not match
the final product. The discussion in this report is based on the final implementation.
So, for instance, the detailed High-level Design in Chapter 4 is based on the ‘reverse
engineering’ the implementation rather than the supplied high-level design (which was
inconsistent with the final design).

1.3 The Common Criteria

The International Common Criteria for Information Technology Security Evaluation,
usually known as the Common Criteria (CC), is an international standard (ISO/IEC
15408) for the evaluation of security products. It provides a framework within which
the security aspects of products can be described, and within which such claims can be
evaluated in a rigorous manner. Authorities which adopt the CC framework establish a
mechanism for evaluating claims made under the CC and publishing the results.

The CC was developed by an international collaboration between Canada, France,
Germany, the Netherlands, the United Kingdom and the United States. Each country
has its own evaluation and certification scheme to support the CC standard. The current
version of the Common Criteria is version 3.1 Rev. 1, 2006 [2]. It is this version that
is used throughout this report.

1.3.1 The Common Criteria Process

A basic concept of the CC framework is that of a Target of Evaluation (TOE). A TOE
is “a set of software, firmware and/or hardware possibly accompanied by guidance”
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[4], which is the artifact that is the subject of the evaluation process. In the evaluation
process the evaluating authority is provided with an example of the TOE, a statement of
the security claims that are being made about the TOE, and supporting documentation
as specified by the CC criteria for the desired evaluation level.

The primary focus of the evaluation of a TOE is described in the following extract
from CC Part 2 sect 6, Functional requirements paradigm [5].

TOE evaluation is concerned primarily with ensuring that a defined set
of security functional requirements (SFRs) is enforced over the TOE re-
sources. The SFRs define the rules by which the TOE governs access to
and use of its resources, and thus information and services controlled by
the TOE.
The SFRs may, in turn, include multiple Security Function Policies (SFPs).
Each SFP has a scope of control, that defines the subjects, objects, re-
sources or information, and operations controlled under the SFP. All SFPs
are implemented by the TSF (see below), whose mechanisms enforce the
rules defined in the SFRs and provide necessary capabilities.
Those portions of a TOE that must be relied on for the correct enforcement
of the SFRs are collectively referred to as the TOE Security Functionality
(TSF). The TSF consists of all hardware, software, and firmware of a TOE
that is either directly or indirectly relied upon for security enforcement.

In some cases there is a generic Protection Profile (PP) covering the TOE. A PP
a document that has itself been certified under the Common Criteria by an approved
certification body. It describes a class of devices. There is currently no PP that covers
Trusted Filters.

Since there is no applicable PP, an implementation-specific Security Target (ST)
must be defined for the filter. The aim of a ST is to define what claims are to be eval-
uated. One function of a ST is to define the security problem that the TOE addresses.
The security problem is defined as consisting of threats, Organisational Security Poli-
cies (OSPs) and assumptions. The ST also describes the solution provided by the TOE.
This is done in terms of security objectives. Each security objective has one or more
Security Functional Requirements (SFRs) identified for it. The SFRs must be shown to
achieve their associated objectives.

A security objectives rationale is also provided that shows that if all security objec-
tives are achieved, the security problem is solved: all threats are countered, all OSPs are
enforced, and all assumptions are upheld. The relationship between the components of
a ST is shown in Figure 1.1.

1.3.2 The CC Documents

The Common Criteria are described in four documents. These documents are as fol-
lows ([4, section 6.2.5]).

Part 1 – Introduction and general model [4] This is the introduction to the CC. It
defines the general concepts and principles of IT security evaluation and presents
a general model of evaluation.
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Part 2 – Security functional components [5] Part 2 establishes a set of functional
components that serve as standard templates upon which to base functional re-
quirements for TOEs. CC Part 2 catalogues the set of functional components and
organises them in families and classes.

Part 3 – Security assurance components [6] Establishes a set of assurance compo-
nents that serve as standard templates upon which to base assurance requirements
for TOEs. CC Part 3 catalogues the set of assurance components and organises
them into families and classes. CC Part 3 also defines evaluation criteria for PPs
and STs and presents seven pre-defined assurance packages which are called the
Evaluation Assurance Levels (EALs).

Evaluation methodology [3] Describes the evaluation process for an evaluator.

1.3.3 Component Naming

Parts 2 and 3 define functional and assurance components respectively. Functional
components are used in the Security Target to describe the functionality claimed for the
TOE. The assurance components defined in CC Part 3 are used to assist the evaluator
make a decision on these claims.

The documentation of CC components uses a four level hierarchical system.

• Classes, consisting of

• Families, consisting of

Figure 1.1: Parts of a Security Target
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• Components, consisting of

• Elements.

For instance, Part 3 of the CC describes 10 Assurance Classes (see Figure 1.2).
The development documentation, with which most of this report is concerned, is part
of the Development class ADV. A typical element of this class is ADV TDS.6.8 which
is identified as follows.

— Class ADV – Development

— Family TDS – TOE Development

— Component 6 – Complete semi-formal modular design with formal
high-level design presentation.
— Element 8 – The formal specification of the TOE Security Func-

tion (TSF) subsystems shall describe the TSF using a formal style,
supported by informal, explanatory text where appropriate.

1.3.4 EAL7

When submitting a device such as the Trusted Filter for Common criteria evaluation,
supporting documents must be tendered to demonstrate that the Security Target has
been met. The documents required are determined by the assurance level being sought.
This level also determines the level of formality required of the documents.

The assurance sought level is determined by the degree of confidence in the eval-
uation that is required for the device being evaluated. Assurance level EAL7 is the
highest level, and is the only one that requires extensive formal descriptions and proofs
(although a formal security policy is required for EAL5 and EAL6 as well). The CC
describes the applicability of EAL7 as follows.

EAL7 is applicable to the development of security TOEs for application
in extremely high risk situations and/or where the high value of the assets
justifies the higher costs. Practical application of EAL7 is currently limited
to TOEs with tightly focused security functionality that is amenable to
extensive formal analysis.

EAL7 requires the use of formal methods for the definition and verification of some
parts of the design and implementation, and this document focuses on those tasks,
since they are mostly novel to EAL7. The aim of the document is to demonstrate one
way in which the formal requirements of a CC Security Target at EAL7 for the Trusted
Filter could be met.

Note that besides formal analysis, EAL7 also requires a higher general standard
of assurance than other levels, for instance a more rigorous standard of testing (which
must also be independent). However, this report is only concerned with the application
of formal methods in the CC process.

The formal requirements at level EAL7 are highlighted in Figure 1.2, and are as
follows.
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Assurance Class Assurance components

ADV: Development

ADV ARC.1 Security architecture description
ADV FSP.6 Complete semi-formal functional
specification with additional formal specification
ADV IMP.2 Implementation of the TSF
ADV INT.3 Minimally complex internals
ADV SPM.1 Formal TOE security policy model
ADV TDS.6 Complete semi formal modular de-
sign with formal high-level design presentation

AGD: Guidance documents . . .

ALC: Life-cycle support . . .

ASE: Security Target evaluation . . .

ATE: Tests . . .

. . .

AVA: Vulnerability assessment . . .

Figure 1.2: Requirements for EAL7 Evaluation (formal requirements highlighted).
CC part 3 [6] - Section 8.9, Table 8

• TOE Security Policy Model (ADV SPM.1)

• Formal Functional Specification (ADV FSP.6)

• Formal High Level Design (ADV TDS.6)

These three formal requirements are discussed in more detail in Chapters 2, 3 and 4.

1.4 The B Method

The B method [7, 1] is a well established formal program development method that
was originally devised by J-R Abrial. It is one of the formal methods mentioned in the
Common Criteria itself. The choice of the B method is discussed further in Section
5.2.

B has excellent tool support. There are a number of tool sets available. For this
report we used the B4free system [10]. This is a toolset for academic use which is
derived from Atelier-B [9] system that has been highly successful in industrial applica-
tions. B4free has an interactive proof management system called Click-n-Prove [10].

B has a well founded mathematical basis, but from a practical point of view it
is based on the concept of a B machine. A machine looks rather like a module in
an imperative program language, and its syntax is deliberately cast in the program
language mould. (The mathematical theory has a different syntax.) The format of a B
machine can be seen by examining the examples in Appendix A. Machines can declare
variables, and define operations which have assignments, conditionals, case statements
etc.
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For the Trusted Filter we in fact used the Event B [8] formalism. This is an ex-
tension of the original B method, and was also developed by J-R Abrial. Event B
allows one to model distributed systems and to verify the correctness of functional-
ity distributed between different components. Event B is supported by the standard B
toolset.

An Event-B model is made up of a context containing necessary definitions and
constants, a list of variables that may be used in the model, an invariant which de-
scribes the types of the variables and any other properties of the filter that must be
maintained, some theorems that may be derived from the invariant, an initialization
that describes the initial values of the model variables, and a set of events.

The B method enables a developer to specify a system at a high abstract level and
develop this down to actual code, all within the same framework, using the same tools,
and broadly within the same language. B machines are arranged in a hierarchy at three
different abstraction levels. The development proceeds from abstract specification to
final implementation by a process of formal refinement. In this report we are only
concerned with formalizing specifications and designs, so we do not use the imple-
mentation levels of the B method.

At each level the B tools can check the machines for consistency and type correct-
ness. Consistency is checked by generating and proving a number of proof obligations.
Many of these are trivial, and most can be proven automatically by the B proof tool.
In addition the B tool can check the validity of the refinement of one B machine by
another.

Since formal proof is such a key part of the B method there are extensive facilities,
and a rich language, for expressing properties of machines in a formal way. B expresses
such properties as logical predicates over mathematical theories. As with all formal
methods the symbols used for this purpose can be intimidating to the non-expert. Some
of the symbols most commonly used in the machines comprising the Trusted Filter
development are listed on page 6.



Chapter 2

Security Policy Model

The Security Policy Model is defined in component ADV SPM.1 of the Development
assurance class ADV. The component items are itemized below, they refer back to
the Security Functional Requirements (SFRs) of the Security Target, and to the TOE
Security Functions (TSFs). The TSFs are the hardware and software mechanisms that
enforce the security policy – in the case of a simple device like the Trusted Filter, the
TOE and TSF are the same.

ADV SPM.1.1D The developer shall provide a formal security policy model for the
policies that are formally modelled. They should identify the relevant portions
of the statement of SFRs that comprise each of the modelled policies.

ADV SPM.1.2D The developer shall provide a formal proof of correspondence be-
tween the model and any formal functional specification.

ADV SPM.1.3D The developer shall provide a demonstration of correspondence be-
tween the model and the functional specification.

ADV SPM.1.1C The model shall be in a formal style, supported by explanatory text
as required, and identify the security policies of the TSF that are modelled.

ADV SPM.1.2C For all policies that are modelled, the model shall define security for
the TOE and provide a formal proof that the TOE cannot reach a state that is not
secure.

ADV SPM.1.3C The correspondence between the model and the functional specifi-
cation shall be at the correct level of formality.

ADV SPM.1.4C The correspondence shall show that the functional specification is
consistent and complete with respect to the model.

ADV SPM.1.5C The demonstration of correspondence shall show that the interfaces
in the functional specification are consistent and complete with respect to the
policies in the ADV SPM.1.1D assignment.

15
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In CC Part 3 [6] a CC Security Policy Model is described in the following terms.
“[It equates] to whatever SFRs are being claimed. Therefore, the formal security policy
model is merely a formal representation of the set of SFRs being claimed.”

2.1 Security Function Policy

The Security Function Policy requirement for the Trusted Filter device in the Security
Target is the following.

Only commands in the authorized dictionary are transmitted through the
link passing to the insecure side.

This informal presentation of the policy is adequate for most uses of the filter. However,
it does not address some important exceptional cases. These cases are due to the fact
that the trusted filter may be interrupted at any time due to power interruption and may
also be reset at an arbitrary point in its operation by the reset switch. This interruption
or reset may even occur while a command is being transmitted. In these cases we
cannot guarantee that a complete command will be transmitted. Therefore we must
re-express the security policy as follows.

Only commands in the authorized dictionary, or prefixes of commands in
the authorized dictionary, are transmitted through the link passing to the
insecure side.

2.2 Formal Security Policy Model

The Security Target defines the Security Policy informally in a way that is is applicable
at any EAL level. Evaluation at EAL7 requires that we provide a formal Security Policy
for the implementation. To formalize this we need to make a number of decisions.

First we need to decide on the formal language to use. Since we are using the
Event B language for formal modelling of the device design, we also specify the Formal
Security Policy Model in B notation. The B-Method [7, 1] is mentioned in part 3 of the
Common Criteria, as an example of applicable methods [6, § 603].

Next we need to decide at what level we should define the policy, this may be called
the granularity of the policy. The policy talks about the “transmission of commands”.
However, because of the fact that the Trusted Filter actually sends and receives charac-
ters, and because of the fact that the trusted filter may be subject to arbitrary use of the
reset switch or power interruption in between character events, a security policy which
only makes reference to commands is impossible to implement because it is possible
that only part of a command is output. Therefore we formalise the policy in terms of
the sequence of characters that it may output.

In an effort to make the final formal security policy easier to understand we will de-
fine the policy in two steps. In the first step we will give an approximation to the policy
that only considers complete commands and which therefore ignores the possibility of
arbitrary resets or interruption. In the second step we will consider the possibility of
partial commands and rephrase the policy as required.
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2.2.1 Complete words

We now ignore the possibility of partial commands for the moment.
For any formal description we need to make definitions for the names and symbols

that we will use. Let the set W (word) represent all possible words that may be input
into the filter. The set of proper words PW is a non-empty subset of W.

PW ∈ P
1
(W)

PW represents all words that satisfy the input restrictions of the filter. I.e. that they must
be of a restricted size and that they must only contain certain characters. The dictionary
D is a predefined finite set of proper words.

D ∈ F
1
(PW)

This models the set of proper words that may be output by the filter.
In addition, we model the sequence of commands that are received by the device as

win (or words in),

win ∈ seq(PW)

Note that this sequence is represented mathematically as a set of pairs of natural num-
bers and proper words. E.g., {(1,w1), (2,w2), (3,w3)} represents the se-
quence of length 3 with w1 in the first position and w2 in the second position and w3
in the third position.

The commands that are output by the device are modelled by wout.

wout ∈ N1 7→ PW

The type of wout is a partial function from Natural numbers (but starting from 1) to
proper words. It is like a sequence in that the words are ordered, but unlike a sequence,
it allows gaps to appear in the output. E.g., {(1,w1), (3,w3)}. This models the
fact that some input words will be filtered out but also preserves the indexes of the input
words.

Using these definitions we can state the first approximation to the formal security
policy as follows.

wout ∈ N1 7→ D ∧
wout ⊆ win

I.e., that the output only contains dictionary words and the output is made up of input
words in the order in which they are input. Notice that we interpret the informal text
transmit through the device in the second conjunct by saying that the output is a sub-
set of the input. This means that all ordered pairs appearing in the output must have
appeared in the input.

2.2.2 Dealing with partial words

The possibility of interruption and resets leads to the possibility of partial words being
output from the filter and it also leads to the possibility of partial words being input into
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the filter. A partial word may be output if a reset occurs during character-by-character
output. A partial word may be input if a reset occurs during character-by-character
input and the filter (re-) starts reading characters part-way through a word. If the part
word input also matches a dictionary command then this leads to the possibility that an
unintended command is output by the filter. This is a design problem with the original
filter and ultimately this makes it impossible to prove an adequate security property.
Therefore we have adapted the design to make an adequate security property possible.

The word-level model of the filter is not adequate because its level of granularity
is too coarse. In order to address the possibility of partial words we must model the
input and output at the character level. Characters are defined in the model Char in
Appendix A as a set C. Rather than using words W and proper words PW we will use
sequences of characters seq(C) (or strings) and proper strings PS.

In order to correctly distinguish complete words from partial words some structure
needs to be added to strings. That is, a string is bracketed in begin and end word
characters (bwc, ewc). These characters are defined in the model Char presented in
Appendix A.

bwc ∈ C ∧
ewc ∈ C ∧
bwc 6= ewc

By bracketing strings with these characters, partial words can be recognised on the
input by looking for properly bracketed words. Similarly, partial words may be recog-
nised by any receiver of words downstream from the filter.

The model PString of Appendix A defines the structure of a proper string PS as
sequences bracketed by begin and end characters:

PS = {s | s ∈ seq(C) ∧ size(s) ≤ maxsize ∧
∃ t.(t ∈ seq

1
(callow) ∧ s = bwc→t←ewc)}

where callow is some set of pre-defined allowed characters disjoint from the begin
and end word characters,

callow ∈ P
1
(C) ∧

{bwc,ewc} ∩ callow = ∅

and maxsize is some pre-defined maximum size that must be greater than 3 in order
for PS to contains some non-empty content.

maxsize ∈ N1 ∧
3 ≤ maxsize

The model CDict describes the dictionary as a set of proper strings.

CD ∈ F
1
(PS)

Let us now consider the input to the filter to be the infinite stream of characters
present and future. We choose an infinite stream of inputs because we now model the
filter being started, stopped, reset, restarted etc, on and on for its complete lifetime.
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cin ∈ N1 → C

As the stream is infinite we model by a total function from the Natural numbers (but
starting from 1), which by the way of being total (defined for every natural number
greater or equal to 1) must be contiguous.

The output of the filter will be some resultant stream of characters.

cout ∈ N1 7→ C

Given this model of the filter we may now express the security property as follows.
First, as before, any complete word that appears in the output must be a dictionary
word.

∀ (i,j).(j ∈ N1 ∧ i ∈ 1 . . j ∧
squash(i . . jCcout)∈ PS ⇒ squash(i . . jCcout)∈ CD)

Where squash(i . . jCcout) is the subsequence from i upto j and squash
compacts a substring with possible gaps into a sequence starting from 1.

This predicate allows any downstream user of the output to trust any complete
commands that it finds, however, it does not say anything about incomplete commands
(a possible covert channel). Therefore we require that the output is formed only from
nonempty prefixes or complete commands of the dictionary.

∀ j.(j ∈ 1 . . size(cout)⇒ ∃ (i,cd).(i ∈ 0. . j-1 ∧
cd ∈ CD∧ squash(i . . jCcout)⊆ cd))

Where by the fact that both squash(i . . jCcout) and cd are sequences, ( ⊆ )
implies that the first is a prefix of the second. This is because they both must start at 1.
The previous property, that complete words in the output must be dictionary words, is a
consequence of considering just those j such that cout(j ) = ewc in this more general
property (the last character of a proper word is always ewc).

Finally, the output is a subset of the input.

cout ⊆ cin

2.2.3 Discussion

The Formal Security Policy given above is deliberately a general one. For instance, it
does not say that, where an input command is valid, then it has to be transmitted. Since
it is general, it can be implemented in a number of ways. For instance, the TOE under
consideration implements a restrictive policy, whereby any invalid command causes
the device to shutdown and await a reset. However we consider this an implementation
issue rather than a part of the security policy.

In addition, in order to address the problem of partial words correctly we have had
to make a minor change to the TOE. That is, the original TOE only separated input
commands using the RTN character. However, this protocol is not sufficient for users
of the protocol to tell the difference between part-commands and complete commands.
An implementable security policy required that partial commands be distinguishable
from complete ones, and to effect this the protocol was extended to include both start
and end word markers.
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Functional Specification

The Functional Specification (FSP) defines the functional behaviour required of the
device in order to fulfil the Security Policy. The Functional Specification at EAL7 is
defined using component ADV FSP.6 of assurance class ADV (see Figure 1.2). The
elements that require formal specification are as follows.

ADV FSP.6.2D The developer shall provide a formal presentation of the functional
specification of the TSF.

ADV FSP.6.2C The functional specification shall describe the TSF interface (TSFI)
using a formal style.
( The TSFI is the means by which external entities supply data to the TSF, receive
data from the TSF and invoke services from the TSF. )

ADV FSP.6.9C The formal presentation of the functional specification of the TSF
shall describe the TSFI using a formal style, supported by informal, explanatory
text where appropriate.

The Security Target must define the functional requirements for the FSP using the
components set out in CC Part 2 [5]. The primary component invoked is FDP IFC.2 -
complete information flow. ( FDP is the class User Data Protection.)

The elements of FDP IFC.2 are as follows. [5, page 66]

1. The TSF shall enforce the information flow control SFP on the subjects and
information items and all operations that cause that information to flow to and
from subjects covered by the SFP.

2. The TSF shall ensure that all operations that cause any information in the TOE
to flow to and from any subject in the TOE are covered by an information flow
control SFP.

We apply component FDP IFC.2 to the Trusted Filter to ensure that the security
policy defined in Chapter 2 is met. To satisfy the assurance component ADV FSP.6,
which is required at EAL7, we must provide a formal presentation of this functional
specification. We define this in the Event B language [7, 8].

20
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3.1 Formal Functional Specification

As discussed in the previous chapter, the functional specification is described at the
character-processing level. A listing of this specification in the form of the Event-B
model CFilterR is given on the following pages. An Event-B model is made up of
a context containing necessary definitions and constants, a list of variables that may
be used in the model, an invariant which describes the types of the variables and any
other properties of the filter that must be maintained, some theorems that may be de-
rived from the invariant, an initialization that describes the initial values of the model
variables, and a set of events.

CFilterR has character variables ic into which characters are which read (from the
secure side) and oc from which characters are written (to the insecure side). This is
done by the operations sendc and recvc respectively. These events are commented as
being external since they belong to the environment. CFilterR has the property that the
transmission of a valid command by sendc can occur in parallel with reading the next
word.

CFilterR also has the two operations readc and writec which are the internal cor-
relates of sendc and recvc. The internal and external read and write operations are
synchronised by the pairs of counters ci /cr (characters input by sendc / read internally
by readc) and co/cw (characters output/written by recvd /writec).

CFilterR has four other operations which describe processing at the word level.
These describe the acceptance of a new command (input), the checking of this com-
mand against the next in the dictionary (chkc), the successful location of the com-
mand in the dictionary (release), and the successful transmission of the command
(output). These operations are controlled by the four variables p, r , t and s . which
represent the number of commands being parsed, received, tested and sent (transmit-
ted) respectively.
The invariant constrains p, r , s and t by the following condition.

p ∈ r . . . r + 1 ∧ p ∈ t . . . t + 1 ∧
r ∈ t . . . t + 1 ∧ r ∈ s . . . s + 1 ∧
t ∈ s . . . s + 1

This allows three distinct states:

• p = r = t > s

• p > r = t = s

• p = r > t = s

The first condition is the condition for new input to be parsed, and output to be sent,
which may occur concurrently. The second is the conditions for the input event. The
third is the condition for the release event.

There are many invariant conjuncts in the model. Most are simple in that just
describe the type of a variable. Others are more complex, for instance,

rev(ib) ⊆ rev(cin↑cr)
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Expresses the property that the input buffer is always either empty or contains the last
few characters read in from the buffer. (cr is the position of the last character read in
from the buffer.) This is expressed using the function reverse (rev) which makes the
reverse of a sequence. I.e. the reverse of the buffer is a prefix of the reverse of the input
characters cin upto cr. All the invariant properties must be proved to be maintained
by the events.

The events of the specification are now described in more detail.

readc Readc parses the input character stream until the buffer contains a proper string.
This event must occur before input (p=r). This model includes a scanning mode
that allows input characters to be scanned without parsing up until a bwc is found.
This is needed after initialization or after a reset because the bwc character may
not be the next character in these states. For instance, after a reset, a part word
may be left in the input.

input When readc has finished parsing and the input buffer contains a proper string
and the output event has finished sending input sets the abstract variable iw to
the input buffer and increments r (thus changing the state).

chkc This event serves as an anticipating event for the electronic part of the filter,
which is required to check that the input buffer is in the dictionary and also set
the output buffer to the input buffer if it is in the dictionary.

release This event has the condition t 6= r ∧ ib ∈ CD ∧ ob = ib. Thus when the
device is in the state t 6= r (i.e. after an input), release is only enabled if the
input command ib is in the dictionary and the output buffer ob also contains the
contents of the input buffer. If a release does occur, it sets the abstract output
word ow to iw , and changes state by incrementing t .
However, if ib 6∈ CD then release is not enabled. This is a deadlocked situation
(in that no other events are enabled except reset) in which the device shuts down,
a state that can only be escaped by a reset event.

writec This event writes out the output buffer (using the index o) if it has been released
(t > s).

output After the output buffer has been written it changes state by incrementing s .

Finally there is the operation reset. This is always enabled, and can thus occur
after any other event. For instance, it can occur mid-way through either receiving a
command (by a sequence of sendcs) or transmitting a word (by a sequence of recvcs).
REFINEMENT

CFilterR
REFINES

CFilter1
SEES

CDict, Char, PString, SeqSimp, PStringSimp1, PStringSimp2, PStringSimp3
VARIABLES

ib,ob,r,t,s,o,p,scan, /* internal */
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ic,oc,ci,cr,cw,co /* external */
INVARIANT

o ∈ 0 .. maxsize ∧
(s/=t ⇒ cout\|/size(cout)-o = ob/|\o) ∧
o ≤ cw ∧
(t/=r ⇒ o=0) ∧
(s=t ⇒ o=0) ∧
(ib 6= <> ⇒ scan = F) ∧
(ib = <> ⇒ scan = T)

THEOREMS
(∃ ps.(ps:PS ∧ ib<-ic ⊆ ps) ∧ ib = <> ⇒ ic = bwc) ∧
(∃ ps.(ps:PS ∧ ib<-ic ⊆ ps) ∧ ic 6= bwc ⇒ ib 6= <>) ∧
cin/|\cr+1 = cin/|\cr<-cin(cr+1) ∧
rev([bwc]) ⊆ rev(cin/|\cr ← bwc)

INITIALISATION
p,r,t,s,o := 0,0,0,0,0 ‖ ib,ob := <>,<> ‖ scan := T ‖
ci,cr,co,cw := 0,0,0,0 ‖ ic :∈ C ‖ oc :∈ C

EVENTS
/* internal */
readc = WHEN r = t ∧ cr 6= ci ∧

((p=r ∧ ic = bwc) ∨ ∃ ps.(ps:PS ∧ ib<-ic ⊆ ps) ∨ scan = T )
THEN

IF ∃ ps.(ps:PS ∧ ib<-ic ⊆ ps) THEN
ib,scan := ib ← ic, F

ELSIF ic = bwc THEN
ib,scan := [bwc], F

ELSIF scan = T THEN
ib := <>

END ‖
cr := cr+1 ‖
IF p=r THEN p:= p+1 END

END;
input = WHEN p 6= r ∧ s = r ∧ ib ∈ PS THEN

r := r+1
END;

chkc = WHEN t 6= r THEN
ob : | (ob ∈ seq(C) ∧ ∃ d.(d:CD ∧ ob ⊆ d))

END;
release = WHEN t 6= r ∧ ib ∈ CD ∧ ob = ib THEN

t := t+1
END;

writec = WHEN s 6= t ∧ cw = co ∧ o < size(ob)THEN
oc,o,cw := ob(o+1),o+1,cw+1

END;
output = WHEN s 6= t ∧ o = size(ob) THEN

s := s+1 ‖ o := 0
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END;
reset = BEGIN

o,ib,ob,p,s,t,cr,co,scan := 0,<>,<>,r,r,r,ci,cw,T

END;
/*external*/
sendc = WHEN cr = ci THEN

ic := cin(ci+1) ‖ ci := ci+1
END;

recvc = WHEN cw 6= co THEN
co := co +1

END
END

3.2 Proof of correspondence with security policy

The functional specification has been proved to satisfy the following security policies
using the Click-n-Prove interface to the Altelier-B prover.

∀ (i,j).(i ∈ 0 . . cw ∧ j ∈ 0 . . cw ∧ i ≤ j ∧ cout↑j↓i ∈ PS ⇒
cout↑j↓i ∈ CD) ∧

∀ j.(j ∈ 0 . . cw ⇒
∃ (i,cd).(i∈0 . . j ∧ cd ∈ CD ∧ cout↑j↓i ⊆ cd))

∀ i.(i ∈ 0 . . cw ∧ cout↓i ∈ PS ⇒
∃ j.(j∈0 . . ci ∧ rev(cout↓i) ⊆ rev(cin↑j))) ∧

These are not expressed exactly the same as the formal policy expressed earlier.
This is largely due to lack of time. However, the policy actually proved is very close
to the one prescribed and is almost as strong. The main difference being that cout
is a sequence rather than a partial function. This enables us to remove the necessity
for the function squash. However it complicates the last security property which was
expressed more simply earlier as cout⊆cin. Instead we prove that the end of cout
is a prefix of cin if it is a proper string.
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High Level Design

Assurance level EAL7 requires a formal High-Level Design (see Figure 1.2). Although
we were supplied with a number of design documents, as noted in Chapter 1, these did
not match the final implementation. Also, as identified in Chapter 2, the actual imple-
mentation allows interruption at arbitrary points, resulting in the transmission of partial
words. Thus the formal specification and design is based on the actual implementation
and not the design documents supplied.

The implementation was supplied as a VHDL file generated by the Protel tool from
the implementation design. Protel allows a high-level block design to be derived from
this low-level VHDL. This block design is a useful starting point for understanding the
structure at the high level, provided that the physical layout is constructed to correspond
to the functional components. This was the case with the Trusted Filter.

The informal Protel high level design of the Trusted Filter is shown in Figure 4.1.
It can be compared to the visualisation of the formal High-level Design shown later in
4.2.

This design shows three Protel “sheets”, labelled: PICS and CLK, DICTIONARY
and COMPARISON. The first of these contains both the input and output processing
components, which we separate for the formal analysis. The formal high-level design
therefore has four major components:

1. An Input handler.

2. A Dictionary component, which handles the retrieval of authorized words from
the dictionary.

3. The Comparator, which manages the comparison of the input word with the
authorized words retrieved from the dictionary.

4. An Output handler.

These components are described by the B machines InputCOMP, DictCOMP, Com-
pCOMP and OutputCOMP respectively. These machines are given on pages 28-34
below.

25
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One advantage of specifying the high-level design in the B language is that there is
good tool support. In particular, the B tools can check the specification for consistency
and type correctness. Consistency is checked by generating and proving a number
of proof obligations. Most of these are trivial, and many of the rest can be proven
automatically by the B support tools.

In addition B tools can check the refinement of one B machine by another which is
closer to the implementation. This process is the basis of the B method. The four com-
ponents which make up the HLD have been derived from the functional specification

Figure 4.1: Informal High-level block design used in the Protel development
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3.1 by a process of refinement and decomposition. This is done in a formal framework
and can be checked by the B tools. This process allows an evaluator to check both
the correctness of the high-level design, and its decomposition and traceability to the
SFRs.
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MODEL
InputCOMP

SEES
Char, PString, SeqSimp

VARIABLES
ib,iwi,scan,p, /* internal */
r,s,t,u,ic,ci,cr, /* external */
it,dt,itc,dtc,iwc

DEFINITIONS
boo(E) , (E = T);
InputReady , (t 6= r);
OPICReady , (s = r)

INVARIANT
ib ∈ seq(C) ∧
∃ ps.(ps ∈ PS ∧ ib ⊆ ps) ∧
r ∈ N ∧
t ∈ N ∧
p ∈ N ∧
u ∈ N ∧
s ∈ N ∧
r ∈ t .. t+1 ∧
r ∈ s .. s+1 ∧
t ∈ s .. s+1 ∧
p ∈ r .. r+1 ∧
p ∈ t .. t+1 ∧
u ∈ t .. t+1 ∧
u ∈ r .. r+1 ∧
(r 6= t ⇒ ib ∈ PS) ∧
scan ∈ BOOL ∧
ic ∈ C ∧
ci ∈ N ∧
cr ∈ ci-1 .. ci ∧
it ∈ N ∧
iwc ∈ C ∧
iwi ∈ N ∧
(r 6= t ⇒ iwi ∈ 0 .. size(ib)) ∧
itc ∈ N ∧
dt ∈ N ∧
dt ∈ it .. it+1 ∧
dtc ∈ N ∧
dtc ∈ itc .. itc+1 ∧
(itc 6= dtc ⇒ r 6= t)

THEOREMS
(s=r ⇒ t=r) ∧ (s\net⇒r=t)

INITIALISATION
p,r,t,s,u := 0,0,0,0,0 ‖ ib := 〈〉 ‖ scan := T ‖
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ci,cr := 0,0 ‖ ic :∈ C ‖ it,dt:=0,0 ‖
iwi,itc := 0,0 ‖ iwc :∈ C ‖
dtc := 0

EVENTS
/* internal */
readc = WHEN r = t ∧ cr 6= ci ∧

((p=r ∧
ic = bwc) ∨ ∃ ps.(ps ∈ PS ∧ ib←ic ⊆ ps) ∨ scan = T )

THEN
IF ∃ ps.(ps ∈ PS ∧ ib←ic ⊆ ps) THEN
ib,scan := ib←ic,F

ELSIF ic = bwc THEN
ib,scan := [bwc], F

ELSIF scan = T THEN
ib := 〈〉

END ‖
cr := cr+1 ‖
IF p=r THEN p:= p+1 END

END;
input = WHEN p 6= r ∧ u 6= r ∧ s = r ∧ ib ∈ PS THEN

r := r+1 ‖ iwi:= 0
END;

nextiw = WHEN it 6= dt THEN
it,iwi := it+1,0

END;
nextiwc = WHEN it = dt ∧ itc 6= dtc ∧ iwi<size(ib) THEN

iwc := ib(iwi+1)‖ iwi,itc := iwi+1,itc+1
END;

/*external*/
/*dictionary*/
initd = WHEN u = t ∧ u = r THEN

u:= u+1
END;

nextd = WHEN r\net ∧ it = dt THEN
dt:= dt+1

END;
nextdc = WHEN r\net ∧ it = dt ∧ dtc = itc THEN

dtc := dtc+1
END;

/*comparitor*/
release = WHEN t 6= r ∧ itc = dtc THEN

t := t+1
END;

/*output PIC*/
output = WHEN s 6= t THEN

s := s+1
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END;
/*reset*/
reset = BEGIN

ib,p,u,s,t,cr,scan := 〈〉,r,r,r,r,ci,T ‖
it := dt ‖
itc := dtc ‖
iwi:= 0

END;
/*environment*/
sendc = WHEN cr = ci THEN

ic :∈ C ‖ ci := ci+1
END

END
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MODEL
DictCOMP

SEES
CDict, Char, PString, SeqSimp

VARIABLES
tw,dc,dt,V,DE,dec,twc, /*internal*/

ED,it,itc,twi,dtc,dcc,ot,otc, /*external*/
r,t,s,u

DEFINITIONS
boo(E) , (E = T);
InputReady , (t 6= r);
NEXTCMD1 , (dt = dc);
NEXTCMD2 , (ot = dc);
NEXTCMD3 , (it = dc);
NEXTCHAR , (dtc = dcc);
OPICReady , (s = r);
DICTReady , (dec 6= dcc);
DICTAvail , (otc 6= dtc);
RELEASE , (DICTReady ∧ boo(ED))

INVARIANT
r ∈ N ∧
s ∈ N ∧
t ∈ N ∧
r ∈ t .. t+1 ∧
r ∈ s .. s+1 ∧
t ∈ s .. s+1 ∧
u ∈ r .. r+1 ∧
u ∈ t .. t+1 ∧
tw ∈ CD ∧
dc ∈ N ∧
dt ∈ N ∧
dt ∈ dc .. dc+1 ∧
V ⊆ CD ∧
twc ∈ C ∧
twi ∈ 0 .. size(tw) ∧
dtc ∈ N ∧
dcc ∈ N ∧
dtc ∈ dcc .. dcc+1 ∧
ot ∈ N ∧
ot ∈ dt .. dt+1 ∧
ot ∈ dc .. dc+1 ∧
otc ∈ N ∧
dtc ∈ otc .. otc+1 ∧
otc ∈ dcc .. dcc+1 ∧
it ∈ N ∧
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itc ∈ N ∧
dt ∈ it .. it+1 ∧
it ∈ dc .. dc+1 ∧
itc ∈ dcc .. dcc+1 ∧
dtc ∈ itc .. itc+1 ∧
(t 6= r ∧ dtc 6= dcc ⇒ 1 ≤ twi ∧ twc = tw(twi)) ∧
(t = r ⇒ dtc = dcc) ∧
(dt = dc ⇒ dtc = dcc) ∧
DE ∈ BOOL ∧

(boo(DE) ⇒ V = CD) ∧
(¬ boo(DE) ∧ dt = dc ⇒ V 6= CD) ∧
ED ∈ BOOL ∧

dec ∈ dcc .. dcc+1 ∧
itc ∈ dec .. dec+1 ∧
dtc ∈ dec .. dec+1 ∧
(¬ boo(DE) ∧ dec 6= dcc ⇒ V 6= CD) ∧
(DICTReady ⇒ itc 6= dcc ∧ dtc 6= dcc ∧ otc 6= dcc) ∧
(DICTReady ⇒ it 6= dc ∧ ot 6= dc) ∧
(DICTReady ⇒ InputReady) ∧
(dt 6= ot ⇒ InputReady) ∧
(dt 6= dc ⇒ InputReady) ∧
(DICTAvail ⇒ InputReady) ∧
(u 6= r ⇒ ED = F) ∧
(it 6= dt ⇒ ED = F) ∧
(itc 6= dtc ⇒ ED = F) ∧
(dt 6= dc ∧ dec = dcc ⇒ ED = F) ∧
(itc 6= dec ⇒ ED = F) ∧
(dec 6= dcc ∧ ED = F ⇒ twc 6= ewc) ∧
(dec 6= dcc ∧ ED = F ⇒ twi < size(tw)) ∧
(r 6= t ∧ dec = dtc ∧ boo(ED) ⇒ twi = size(tw) ∧ twc = ewc) ∧
(it 6= dt ⇒ itc = dcc) ∧
(dt = dc ⇒ itc = dtc) ∧
(ot = dc ⇒ otc = dtc) ∧
(otc 6= dtc ⇒ ot 6= dc) ∧
(dt 6= dc ⇒ ot 6= dc) ∧
(dt 6= dc ⇒ u 6= t) ∧

(RELEASE ⇒ ¬(NEXTCMD1))
THEOREMS
(s=r ⇒ t=r) ∧ (s\net⇒r=t) ∧
(ot = dc ⇒ ot = dt) ∧
(dtc = dcc ⇒ otc = dcc) ∧
(otc 6= dcc ⇒ otc = dtc) ∧
(otc 6= dtc ⇒ otc = dcc) ∧
(dt = dc ⇒ it = dc) ∧ (it 6= dt ⇒ dt 6= dc) ∧
(dtc = dcc ⇒ itc = dcc) ∧ (itc 6= dtc ⇒ dtc 6= dcc)

INITIALISATION
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r,t,s,u := 0,0,0,0 ‖ tw:: CD ‖
V := ∅ ‖ it,dc,dt,dec,ot:=0,0,0,0,0 ‖ DE,ED :=
F,F ‖
itc := 0 ‖
twi,dtc := 0,0 ‖ twc :∈ C ‖
dcc,otc := 0,0

EVENTS
/* internal */
initd = WHEN u = t ∧ u = r THEN

DE, ED, V := F, F, ∅ ‖
u:= u+1

END;
nextd = WHEN u 6= t ∧ NEXTCMD1 ∧ ¬ boo(DE) ∧ dt 6=ot THEN

tw:: CD-V ‖ dt:= dt+1 ‖ V:=V∪{tw} ‖ ED := F ‖
twi:= 0

END;
nextdc = WHEN dt\nedc ∧ it = dt ∧ NEXTCHAR ∧ dtc=dcc ∧

twi<size(tw) ∧ dtc =otc ∧ dtc = dec
THEN

twc := tw(twi+1) ‖ twi,dtc := twi+1, dtc+1
END;

decode = WHEN itc 6= dec ∧ otc 6= dec THEN
DE : | ((boo(DE)) ⇔ (V=CD)) ‖
ED : | ((boo(ED)) ⇔ (twc=ewc))‖
dec:= dec+1

END;
/*external components*/
/*input PIC*/
input = WHEN OPICReady ∧ u 6= r THEN

r := r+1
END;

nextiw = WHEN it 6= dt THEN
it := it+1

END;
nextiwc = WHEN it = dt ∧ itc 6= dtc THEN

itc := itc+1
END;

/*comparator*/
chkc = WHEN DICTReady THEN

IF ¬ boo(ED) THEN
dcc:: dcc .. dcc+1

ELSE CHOICE
dc,dcc := dc,dcc OR
dc,dcc := dc+1,dcc+1

END END
END;
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release = WHEN RELEASE THEN
t := t+1 ‖ dc := dc+1 ‖ dcc := dcc+1

END;
/*output PIC*/
nextow = WHEN InputReady ∧ NEXTCMD2 THEN

ot := ot+1
END;

nextowc = WHEN DICTAvail THEN
otc := otc+1

END;
output = WHEN s\net THEN

s := s+1
END;

/*reset*/
reset = BEGIN

s,t,u,DE,ED := r,r,r,F,F ‖
dc,it,ot := dt,dt,dt ‖
dec,itc,dcc,otc := dtc,dtc,dtc,dtc ‖
twi:= 0 ‖ V:= ∅

END
END
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MODEL
CompCOMP

SEES
CDict, Char, PString, SeqSimp

VARIABLES
dc,dt,dec,twc,iwc,ED, /* all external*/
it,itc,dtc,dcc,ot,otc,
r,t,u

DEFINITIONS
boo(E) , (E = T);
InputReady , (t 6= r);
NEXTCMD1 , (dt = dc);
NEXTCMD2 , (ot = dc);
NEXTCMD3 , (it = dc);
NEXTCHAR , (dtc = dcc);
MATCH , (twc = iwc);
DICTReady , (dec 6= dcc);
DICTAvail , (otc 6= dtc);
RELEASE , (MATCH ∧ DICTReady ∧ boo(ED))

INVARIANT
r ∈ N ∧
t ∈ N ∧
r ∈ t .. t+1 ∧
u ∈ r .. r+1 ∧
u ∈ t .. t+1 ∧
iwc ∈ C ∧
twc ∈ C ∧
dc ∈ N ∧
dt ∈ N ∧
dt ∈ dc .. dc+1 ∧
dtc ∈ N ∧
dcc ∈ N ∧
dtc ∈ dcc .. dcc+1 ∧
ot ∈ N ∧
ot ∈ dt .. dt+1 ∧
ot ∈ dc .. dc+1 ∧
otc ∈ N ∧
dtc ∈ otc .. otc+1 ∧
otc ∈ dcc .. dcc+1 ∧
it ∈ N ∧
itc ∈ N ∧
dt ∈ it .. it+1 ∧
it ∈ dc .. dc+1 ∧
itc ∈ dcc .. dcc+1 ∧
dtc ∈ itc .. itc+1 ∧
(t = r ⇒ dtc = dcc) ∧
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(dt = dc ⇒ dtc = dcc) ∧
ED ∈ BOOL ∧
dec ∈ dcc .. dcc+1 ∧
itc ∈ dec .. dec+1 ∧
dtc ∈ dec .. dec+1 ∧
(r\net ∧ dec = dtc ∧ boo(ED) ⇒ twc = ewc) ∧
(u 6= r ⇒ ED = F) ∧
(itc 6= dtc ⇒ ED = F) ∧
(itc 6= dec ⇒ ED = F) ∧
(it 6= dt ⇒ ED = F) ∧
(it 6= dt ⇒ itc = dcc) ∧
(dt = dc ⇒ itc = dtc) ∧
(ot = dc ⇒ otc = dtc) ∧
(otc 6= dtc ⇒ ot 6= dc) ∧
(dt 6= dc ⇒ ot 6= dc) ∧
(DICTReady ⇒ itc 6= dcc ∧ dtc 6= dcc ∧ otc 6= dcc) ∧
(DICTReady ⇒ it 6= dc ∧ ot 6= dc) ∧
(DICTReady ⇒ InputReady) ∧
(dt 6= ot ⇒ InputReady) ∧
(dt 6= dc ⇒ InputReady) ∧
(DICTAvail ⇒ InputReady) ∧
(u 6= r ⇒ ED = F) ∧
(it 6= dt ⇒ ED = F) ∧
(dt 6= dc ∧ dec = dcc ⇒ ED = F) ∧
(itc 6= dtc ⇒ ED = F) ∧
(itc 6= dec ⇒ ED = F) ∧
(dec 6= dcc ∧ ED = F ⇒ twc 6= ewc)

THEOREMS
(ot = dc ⇒ ot = dt) ∧
(dtc = dcc ⇒ otc = dcc) ∧
(otc 6= dcc ⇒ otc = dtc) ∧
(otc 6= dtc ⇒ otc = dcc) ∧
(dt = dc ⇒ it = dc) ∧ (it 6= dt ⇒ dt 6= dc) ∧
(dtc = dcc ⇒ itc = dcc) ∧ (itc 6= dtc ⇒ dtc 6= dcc)

INITIALISATION
r,t,u := 0,0,0 ‖
it,dc,dt,dec,ot:=0,0,0,0,0 ‖ ED := F ‖
itc := 0 ‖ iwc :∈ C ‖
dtc := 0 ‖ twc :∈ C ‖
dcc,otc := 0,0

EVENTS
/* internal */
chkc = WHEN DICTReady THEN

IF MATCH ∧ ¬ boo(ED) THEN
dcc:= dcc+1

ELSIF ¬ (MATCH) THEN
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dc,dcc := dc+1, dcc+1
END

END;
release = WHEN RELEASE THEN

t := t+1 ‖ dc,dcc := dc+1, dcc+1
END;

/*external*/
input = WHEN t = r ∧ u 6= r THEN

r := r+1
END;

nextiw = WHEN it 6= dt THEN
it := it+1

END;
nextiwc = WHEN it = dt ∧ itc 6= dtc THEN

iwc :∈ C ‖ itc := itc+1
END;

initd = WHEN u = t ∧ u = r THEN
ED,u := F,u+1

END;
nextd = WHEN NEXTCMD1 ∧ ¬ boo(ED) ∧ dt\neot THEN

dt:= dt+1 ‖ ED := F

END;
nextdc = WHEN dt\nedc ∧ it = dt ∧ NEXTCHAR ∧ ¬ boo(ED) ∧

dtc =otc ∧ dtc = dec
THEN

twc :∈ C ‖ dtc := dtc+1
END;

decode = WHEN itc 6= dec ∧ otc 6= dec THEN
ED : | ((boo(ED)) ⇔ (twc=ewc))‖
dec:= dec+1

END;
nextow = WHEN InputReady ∧ NEXTCMD2 THEN

ot := ot+1
END;

nextowc = WHEN DICTAvail THEN
otc := otc+1

END;
reset = BEGIN

t,ED := r,F ‖
dc,it,ot := dt,dt,dt ‖
dec,itc,dcc,otc := dtc,dtc,dtc,dtc

END
END
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MODEL
OutputCOMP

SEES
Char, PString, SeqSimp

VARIABLES
ob,o, /* internal */
r,t,s,oc,cw,co,ot,dc,otc,dtc,twc /* external */

INVARIANT
ob ∈ seq(C) ∧
∃ ps.(ps ∈ PS ∧ ob ⊆ ps) ∧
r ∈ N ∧
t ∈ r-1 .. r ∧
s ∈ r-1 .. r ∧
s ∈ t-1 .. t ∧
(s 6= t ⇒ ob ∈ PS) ∧
(s = r ⇒ ob = 〈〉) ∧
o ∈ 0 .. maxsize ∧
oc ∈ C ∧
cw ∈ N ∧
o ≤ cw ∧
co ∈ cw-1 .. cw ∧
(t\ner ⇒ o=0) ∧
(s=t ⇒ o=0) ∧
dc ∈ N ∧
twc ∈ C ∧
dtc ∈ N ∧
ot ∈ dc .. dc+1 ∧
ot ∈ N ∧
otc ∈ N ∧
dtc ∈ otc .. otc+1 ∧
(ot = dc ⇒ otc = dtc) ∧
(otc 6= dtc ⇒ ot 6= dc) ∧
(r 6= t ∧ otc 6= dtc ⇒ ∃ ps.(ps ∈ PS ∧ ob←twc ⊆ ps)) ∧
(r=t ⇒ otc = dtc)

THEOREMS
(s=r ⇒ t=r) ∧ (s\net⇒r=t)

INITIALISATION
r,t,s,o := 0,0,0,0 ‖ ob := 〈〉 ‖
co,cw := 0,0 ‖ oc :∈ C ‖ dc,ot:=0,0 ‖
dtc := 0 ‖ twc :∈ C ‖ otc := 0

EVENTS
/* internal */
nextow = WHEN r\net ∧ ot = dc THEN

ot := ot+1 ‖ ob := 〈〉
END;

nextowc = WHEN r 6=t ∧ otc 6= dtc THEN
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ob := ob←twc ‖ otc := otc+1
END;
writec = WHEN s 6= t ∧ cw = co ∧ o < size(ob)THEN

oc,o,cw := ob(o+1),o+1,cw+1
END;

output = WHEN s 6= t ∧ o = size(ob) THEN
s := s+1 ‖ o := 0 ‖ ob := 〈〉

END;
/*external*/
/* input PIC */
input = WHEN s = r THEN

r := r+1
END;

/* dictionary */
nextdc = WHEN r 6=t ∧ dtc = otc ∧ ot 6= dc THEN

twc : | (twc ∈ C ∧
∃ ps.(ps ∈ PS ∧ ob←twc ⊆ ps)) ‖ dtc := dtc+1

END;
/* comparator */
chkc = WHEN r 6=t ∧ otc = dtc ∧ ot 6= dc THEN

dc :∈ dc .. dc+1
END;

release = WHEN t 6= r ∧ ob ∈ PS ∧ ot 6= dc ∧ otc = dtc THEN
t := t+1

END;
/*reset*/
reset = BEGIN

o,ob,s,t,co := 0,〈〉,r,r,cw ‖
otc := dtc ‖ ot:= dc

END;
/*environment*/
recvc = WHEN cw 6= co THEN

co := co +1
END

END

4.1 High-level Design Components

4.1.1 Input handler

The input handler InputCOMP has ten events. Event sendc models the sending of
characters to the filter from the environment. It models an external event and is not
refined. Event reset is also an environment event, and models resetting the device when
the reset button is pressed.
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Four internal events process data that is directly handled by InputCOMP. Corre-
sponding events in the other three machines synchronise with these where necessary.
The events readc and input handle the input and output of data. I/O is at character level
and characters are assembled into words (which is handled by the input and output
PICs in the implementation). The events nextiw and nextiwc handle the passing of an
input word, character by character, from the input PIC when needed by the comparator.

The other four events synchronise with actions in the other three components. nextd
and nextdc synchronise with the dictionary, release with the comparator and output
with OutputCOMP. When these events occur data local to InputCOMP is updated to
keep track of events in other components. These are also external events relative to the
Input handler.

4.1.2 Dictionary

The dictionary handler DictCOMP has 12 events. Again there is a reset event. The
other external synchronisation events are input, nextw, nextwc (synchronising with In-
put), chkc, release (Comparator) and output, nextow, nextowc (Output).

Three internal events process data that is directly handled by DictCOMP. The
events nextd and nextdc keep track of the next dictionary word and next dictionary
character respectively, while decode checks for end of word and end of dictionary.

4.1.3 Comparator

The comparator CompCOMP has 11 events. The external events are input, nextw, nex-
twc (Input), nextd, nextdc, decode (Dictionary) and output, nextow, nextowc (Output),
plus the em reset event.

The internal events are chkc and release. chkc compares the current character in
the input word with the next character of the dictionary word. If there is match then the
dictionary character counter is incremented. If there is not a match then the dictionary
word counter is incremented. The release event occurs when there is a match on the last
character of the input word. This increments t - the number of words matched, which
in turn causes the system to commence transmitting the current output word (which at
this point matches the input word).

4.1.4 Output handler

The output handler OutputCOMP also has 11 events. Again we have a reset event and
the external events, input, nextw, nextwc (Input), nextd, nextdc, decode (Dictionary)
and chkc, release (Comparator).

There are four internal events are writec, output, nextow and nextowc. These handle
output words and characters in a parallel way to the events in InputCOMP.

Similarly there is event recvc, which is an external event that models an output
character being received by the environment from the filter’s output.
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4.2 High-level Block Design

The block structure of the formal high-level design is illustrated in Figure 4.2. This is
an abstract block design, constructed in the SIFA analysis tool [11] from the formal B
design described by the machines InputCOMP, DictCOMP, CompCOMP and Output-
COMP. Each major component (i.e. each top-level B-machine) is shown as a block,
and shared variables are shown as ports connected to these blocks.

Figure 4.2: High-level block design derived from the formal specification

The formal requirements of CC EAL7 stop at the high-level design level. The
tracing of this design to the implementation is only required to be semi-formal. Key
abstractions in the HLD with respect to the actual implementation include the follow-
ing.

• The simple dictionary in the HLD actually represents a sub-system which im-
plements the handling of numeric wild-cards in the dictionary entries. These
wild-cards match any of the digits 0-9.

• The comparison of characters is atomic in the HLD (i.e. at the byte level)
whereas this is implemented on a bit-wise cascading comparison circuit.

• The implementation includes error checking of the input and output PICs (which
effects shut-down on failure).

• Some synchronization is implemented by timing assumptions.

The internal variables (ports) in Figure 4.2 can be matched by name to generate
connections which correspond to the connections between the components in the im-
plementation. The correspondence is not a simple one-to-one at this level, since in the
formal high-level design the connections represent shared variables and not logical sig-
nals. For example, as described on page 21, the variables r , s , t and p together define
three states or stages of processing a command. However, these states are defined by
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relationships between the variables in the design and will be implemented by sequenc-
ing between signals. Nevertheless the implementation using signals can be derived
from the design in terms of shared variables.



Chapter 5

Comments on the Process

5.1 Ease of use of the Common Criteria

Neither of the investigators had used the Common Criteria directly before. Eventually
it proved to be reasonably usable, however the learning curve was quite steep especially
in respect to the quantity of documentation and the number of acronyms to be mastered.

During the course of the investigation CC version 3.1 was officially adopted over
the earlier version 2. This caused some reworking, but version 3 was felt to be a
noticeable improvement over the previous version, it was sensibly simplified and the
organisation of the material was clearer and more logical.

These remarks are qualified by our focus on the formal requirements of EAL7.
Thus we only worked in detail with the small portion of the CC that was relevant
to our investigation. For instance, we cannot comment on how easy it is to achieve
completeness in the required documentation, since we only had to deal with a single
aspect.

5.2 The Use of B as the Formal Method

Although the Common Criteria is just a framework that can be used in a variety of cir-
cumstance, its documentation does provide some guidance on the use of formal meth-
ods. This is in Annex 5 of CC Part 3 [6] Supplementary material on formal methods.

Although it does not recommend any particular formal methods it does give four
‘examples’.

• The Z specification language.

• ACL2.

• Isabelle.

• The B method.

43
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These are four of the most well known and popular formal methods. Annex 5 also
states that “if the developer uses a formal system which is already accepted by the
certification body the evaluator can rely on the level of formality and strength of the
system and focus on the instantiation of the formal system to the TOE specifications
and correspondence proofs”. Thus using a standard formal system such as B assists the
evaluator as well as the developer.

The CC supplement notes that there are “two aspects of formal methods: the speci-
fication language that is used for formal expression, and the theorem prover that math-
ematically proves the completeness and correctness of the formal specification”. In
respect to the latter, one advantage of the B method [7, 1] is that there is excellent tool
support. In particular, the B tools can check the specification for consistency and type
correctness. Consistency is checked by generating and proving a number of proof obli-
gations. Most of these are trivial, and many of the rest can be proven automatically by
the B support tools. In addition B tools can check the refinement of one B machine by
another one which is closer to the implementation.

For the Trusted Filter we in fact used the Event B [8] formalism, which is an exten-
sion of the original B method. Event B allows one to model distributed systems and to
verify the correctness of functionality distributed between different components. Since
Event B is just an extension of ‘standard’ B, it is supported by the standard toolset.

In one way the efficiency of the B Toolset causes a difficulty for evaluators. Most
B proof obligations are discharged automatically by the B proof tool, but it is not easy
to record and document this process. One way to handle this is for evaluators to satisfy
themselves that the B proof tool performs automatic proof correctly, and to verify a
level of confidence in the B toolset itself – as a published EAL level for use of the
toolkit. If this were done, then the evaluation of any particular use of the B tool as part
of a CC certification case (up to the accepted EAL) would simply require an audit that
the B tool was used correctly.

5.3 Formalising the Trusted Filter

5.3.1 Structure of the Formal Model

As noted in Section 1.2 we were supplied with a number of development documents
for the Trusted Filter. However, none of these were consistent with each other, since
the filter had evolved during its development. Since the context of the exercise was
a CC evaluation, which is focused on the final product, the correctness of our formal
model was judged against the final Protel circuit diagram.

Nevertheless, our understanding of the practical functionality of the filter was de-
rived, at first, from the high-level design documents. This resulted in an iterative pro-
cess of model construction. A model was constructed according to our high-level un-
derstanding, a lower level model was derived from this, discrepancies with the actual
construction of the device were found and the high-level model was re-visited and cor-
rected to accommodate the new insight.

There were several major iterations of this kind.

• Initially we started bottom-up from an early version of the Protel block model
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Figure 4.1. But since this model matched neither the original requirements, nor
the final circuits, we started again top-down.

• The second model formalized the processing of a single command, i.e. a sin-
gle cycle: receive command, check command, transmit or shutdown. However,
this did not handle shutdown properly, since this is essentially a state that exists
across a sequence of commands.

• The next formalisation was in terms of sequences of commands, to handle shut-
down. This too was found to be insufficient, since it could not handle the syn-
chronization between the various components, especially when it was realised
that input and transmission were concurrent processes, and that either could be
interrupted at any time by a reset.

• The difficulty with synchronization required that we change the granularity of
the formal model. A word-level model was inappropriate and we had to change
the granularity to a character-based model. This could not be achieved by re-
finement from the word-based model, because reset was enabled more often in
the character-base one. Instead it was necessary to define operations at a charac-
ter level from the start, so, for example, the input and output operations could be
interrupted between any pair of characters.

• The final major change to the formalisation was the introduction of Proper Strings
(see Section 2.2.2). This was necessary in order for an insecure-side receiver to
resynchronise after an interruption such as a reset. To achieve this it is neces-
sary to have both start word and end word markers in the transmitted stream of
characters.

During this iterative construction of the formal model, several bugs found were found
in the design and implementation.

• The command representation was inadequate to define a policy that was strong
enough to achieve its basic objective. Words needed to have both start and end
control characters.

• There is a race condition between input and output which requires changes to the
PIC code to fix.

• There is also a race condition between the release and next-char signals. This
results in a delay to the release signal which may allow the data on the dictionary
output lines to be changed before it is transmitted by the output PIC. Incorrect
data may then be transmitted. This requires a new signal to correct.

5.3.2 The Functional Specification

Overall the aim of the modelling process was to define a B model that served as a formal
functional specification of the filter. The B method then allows a high-level design to
be derived from this specification. The possibility of continuing the B refinement to
derive a model at the VHDL level was considered. We think that this is feasible, but it
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is outside of the scope of the project (and beyond what is envisaged by the Common
Criteria).

During the iterations described above two major specification decisions had to be
made.

• Should the specification be simple e.g. commands, or complex (chars with re-
sets)

• Should the specification describe shutdown as a variable or a (deadlock) state.

5.3.3 The Security Policy

Decisions were also made about the appropriate policy, but this was done less directly
than for the security functionality. As mention previously (page. 16), the CC describes
a Security Policy Model as “merely a formal representation of the set of SFRs being
claimed”. Thus, in one sense, the SPM is simply derived from the SFRs. However,
from a modelling perspective, the SPM describes the most important features of the
SFR model, and thus much of the discussion about how the models should be con-
structed was done at level of the SPM.

Key questions that arose during development of the SPM and which determined
basic characteristics of the final model include the following.

• What was appropriate for partial domain separation.

• Should the policy refer to a single command or sequences of commands.

• Should interruption/reset be part of the formalised policy or part of the assump-
tions.

• Should covert channels/noninterference be addressed.

• What was the appropriate granularity-level for modelling.

5.3.4 The High-level Design

The Common Criteria does not define explicitly what a High-level Design should con-
sist of, although it does describe the relationship between the HLD and other devel-
opment artefacts. In the context of this report, one of the most important features of
the HLD is that it is the‘lower limit’ of the CC’s requirements for formality at EAL7.
The design must be formalized, but its relationship to the implementation need only be
demonstrated semi-formally.

We chose to place the high-level design at a similar level to the draft documents that
we had received from DSD (see Figures 4.1 and 4.2). This was an exploratory inves-
tigation, and much more evidence and experience is necessary before a fully informed
choice on the optimal level the HLD could be made.

For the Trusted Filter a good choice for HLD would seem to be one that minimizes
formal development but which has enough detail that it can be proven to possess the
required fault-tolerant and security properties. In this case, to have separated Input and
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Output and no data line between them, with all Output coming from dictionary. Thus
there is no need for the HLD to model implementation details like wild cards or specific
components such as multi-plexors etc.

One characteristic that seemed important for the plausibility of the design is that
the wiring between the various components is finalised in the HLD. No new inter HLD
component wires should be added during the further (semi-formal) development. Al-
though they can be removed by suitable timing assumptions or other cleverness. This
ensures that the formal properties proven for the HLD carry through to the implemen-
tation.

5.3.5 Proofs

The B method generates logical theorems (obligations) requiring proof, both when B
machines are defined (in order to prove that the machines are well formed and con-
sistent), and also when B machines are elaborated (refined) (in order to show that the
refinement preserves the requisite properties). In the case of the filter, the security
properties were also safety properties which are preserved by refinement. This is the
simplest case. In other developments this is may not always be the case, and the prop-
erties have to be proved again for final HLD.

The B development environment has a proof tool that, in many case, will prove
such obligations automatically, but which also allows the developer to prove difficult
cases ‘by hand’ (with machine assistance to manage the proof). In this project 90%
of proofs were completed automatically by the tool. 10% had to be done by hand, but
proofs were often similar to each other. A typical way of proceeding with such proofs
is to prove subsidiary lemmas that encapsulate useful properties of the system. These
can then be used in the proofs of similar obligations. For the filter, the proofs of lemmas
involving properties of proper strings were hard, but these were the key to proving the
security properties.

In general the proofs were easier for the better specification, while the failure to
prove obligations for some earlier versions of the specification indicated faults in spec-
ification or basic filter design problems.

5.3.6 Final Recommendations

1. Get the specification right

• The hardest thing was getting the specification right.
• A bad specification was very difficult to develop further.
• Once the specification was right, the development was much easier.
• The development required intimate understanding of refinement.

2. Do development top-down from specification.

• The best design evolves from a good specification and an understanding of
the issues.
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• For example the problem of partial words was not addressed in the imple-
mentation at all and it is a fundamental design aspect.
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Appendix A

Input and Output

Char

Defines the set of allowed characters callow (ASCII in the implementation), and the
beginning and end of word markers bwc and ewc.

MODEL
Char

SETS
C

CONSTANTS
bwc, ewc, callow

PROPERTIES
bwc ∈ C ∧ /*start word char*/
ewc ∈ C ∧ /*end word char*/
callow ∈ POW(C) ∧ /*allowed characters */
bwc 6= ewc ∧
{bwc,ewc} ∩ callow = ∅

END

PString

Defines the type PS of permitted strings (which are the character-based equivalent of
words).

• Permitted strings start with bwc and end with ewc.

• Permitted strings have a maximum size maxsize.
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MODEL
PString

SEES
Char, SeqSimp

CONSTANTS
PS, maxsize, ps

PROPERTIES
maxsize ∈ N1 ∧
3 ≤ maxsize ∧
PS ⊆ seq(C) ∧
ps ∈ PS ∧
PS = {s | s ∈ seq(C) ∧ size(s) ≤ maxsize ∧

∃ t.(t ∈ seq
1
(callow) ∧ s = bwc->t<-ewc)}

THEOREMS
PS ⊆ seq(C) ∧

∀ ps.(ps:PS ⇒ [bwc] ⊆ ps) ∧

∀ (ps,c).(ps:PS ∧ c:C ∧ [c] ⊆ ps ⇒ c = bwc) ∧

∀ ps.(ps:PS ⇒ ps|>{ewc} = {size(ps)|->ewc}) ∧

∀ ps.(ps:PS ⇒ ps|>{bwc} = {1|->bwc})
END

CDict

This (re)defines the dictionary as a finite set of permitted strings.

MODEL
CDict

SEES
Char, PString

CONSTANTS
CD

PROPERTIES
CD ∈ F

1
(PS)

THEOREMS
CD ⊆ PS

END
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CIO

This model captures the pure character I/O interface aspects of the filter. It was used to
derive the specification of the filter.

MODEL
CIO

SEES
Char

CONSTANTS
cin

PROPERTIES
cin ∈ N → C

VARIABLES
ic,oc,ci,cr,co,cw,cout /* external */

INVARIANT
ic ∈ C ∧
oc ∈ C ∧
ci ∈ N ∧
cr ∈ ci-1 .. ci&
cw ∈ N ∧
co ∈ cw-1 .. cw ∧
cout ∈ seq(C) ∧
cw = size(cout)

INITIALISATION
ci,cr,co,cw:= 0,0,0,0 ‖ ic :∈ C ‖ oc :∈ C ‖ cout := <>

EVENTS
/*internal*/
readc = WHEN cr 6= ci THEN

cr := cr+1
END;

writec = WHEN cw = co THEN
ANY c WHERE c ∈ C THEN

oc := c ‖ cw := cw+1 ‖ cout := cout ← c
END
END;

reset = BEGIN
cr,co := ci,cw

END;
/*external*/
sendc = WHEN cr = ci THEN

ic := cin(ci+1) ‖ ci := ci+1
END;

recvc = WHEN cw 6= co THEN
co := co+1
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END
END

CFilter0

This model captures the high level safety properties of the filter that are sufficient to
prove the formal security policy (in both the approximate and final forms). However,
this model is not sufficient to form the formal specification of the filter because the
specification of readc event is too weak: it is not guarenteed to parse the input into
the input buffer properly. For instance, this machine may repeatedly output the same
word without parsing a new word into the input buffer ib, i.e. input does not wait
for readc. Also, it may continously parse the input characters without ever loading
the characters into the input buffer ib.

MODEL
CFilter0

SEES
CDict, Char, PString, SeqSimp, PStringSimp1, PStringSimp2, PStringSimp3

CONSTANTS
cin

PROPERTIES
cin ∈ N1 → C

VARIABLES
cout,win,wout, /* proof */
iw, ow, /* abstract */
ib,ob,r,t,s, /* internal */
ic,oc,ci,cr,cw,co /* external */

INVARIANT
cout ∈ seq(C) ∧
win ∈ seq(PS) ∧
wout ∈ N1 7→ CD ∧
iw ∈ seq(C) ∧
ow ∈ seq(C) ∧
ib ∈ seq(C) ∧
ob ∈ seq(C) ∧
r ∈ N ∧
s ∈ N ∧
t ∈ N ∧
r = size(win) ∧
r ∈ t .. t+1 ∧
r ∈ s .. s+1 ∧
t ∈ s .. s+1 ∧
(r 6= t ⇒ ib ∈ PS ∧ iw ∈ PS ∧ iw = ib ∧ iw = win(r)) ∧
(s 6= t ⇒ ob ∈ CD ∧ ow ∈ CD ∧ ob = iw ∧ ow = ob ∧ ow = win(r)) ∧
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(s = r ⇒ rev(ob) ⊆ rev(cout)) ∧
ic ∈ C ∧
oc ∈ C ∧
ci ∈ N ∧
cr ∈ N ∧
ci ∈ cr .. cr+1 ∧
cw ∈ N ∧
cw = size(cout) ∧
co ∈ N ∧
cw ∈ co .. co+1 ∧
size(ib) ≤ ci ∧
(ci 6= 0 ⇒ ic = cin(ci)) ∧

/* ∃ ps.(ps:PS ∧ ib ⊆ ps) ∧ */
rev(ib) ⊆ rev(cin/|\cr) ∧
∃ j.(j:0 .. ci ∧ rev(iw) ⊆ rev(cin/|\j)) ∧

/* ∃ ps.(ps:PS ∧ ob ⊆ ps) ∧ */
/* ∃ cd.(cd:CD ∧ ob ⊆ cd) ∧ */
∃ i.(i:0 .. cw ∧ cout\|/i ⊆ ob) ∧
wout ⊆ win ↑ s ∧
∀ i.(i ∈ 0 .. cw ∧ cout\|/i ∈ PS ⇒ cout\|/i ∈ CD) ∧
∀ (i,j).(i ∈ 0 .. cw ∧ j ∈ 0 .. cw ∧ i ≤ j ∧ cout/|\j\|/i ∈ PS ⇒

cout/|\j\|/i ∈ CD) ∧
∀ i.(i ∈ 0 .. cw ∧ cout\|/i ∈ PS ⇒

∃ j.(j:0 .. ci ∧ rev(cout\|/i) ⊆ rev(cin/|\j))) ∧
∀ j.(j ∈ 1 .. cw ⇒
∃ (i,cd).(i∈0 .. j-1 ∧ cd : CD ∧ cout/|\j\|/i ⊆ cd))

THEOREMS
(s=r ⇒ t=r) ∧ (s 6= t ⇒ r=t) ∧
∀ i.(i ∈ N ⇒ cin/|\i ∈ seq(C))

INITIALISATION
r,t,s := 0,0,0 ‖ ib,iw,ob,ow := <>,<>,<>,<> ‖
ci,cr,co,cw := 0,0,0,0 ‖ ic :∈ C ‖ oc :∈ C ‖
cout,win,wout := <>, <>, <>

EVENTS
/* internal */
readc = WHEN r = t ∧ cr 6= ci

THEN
ib : | (ib ∈ seq(C) ∧ rev(ib) ⊆ rev(cin/|\cr+1) ) ‖
cr := cr+1

END;
input = WHEN s = r ∧ ib ∈ PS THEN

iw,r := ib,r+1 ‖ win := win ← ib
END;

chkc = WHEN t 6= r THEN
ob : |(ob ∈ seq(C) )

END;
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release = WHEN t 6= r ∧ ib ∈ CD ∧ ob = ib THEN
t := t+1 ‖ ow := ob

END;
writec = WHEN s 6= t ∧ cw = co THEN

ANY c, cout0 WHERE c∈C ∧ cout0 : seq(C) ∧ cout0 = cout THEN
oc := c ‖
cout : |(cout = cout0<-c ∧ ∃ i.(i:0 .. size(cout0) ∧ cout\|/i ⊆ ob))

END ‖
cw:= cw+1
END;

output = WHEN s 6= t ∧ rev(ob) ⊆ rev(cout) THEN
s := s+1 ‖ wout(s+1) := ow

END;
reset = BEGIN

ib,ob,s,t,cr,co := <>,<>,r,r,ci,cw
END;

/*external*/
sendc = WHEN cr = ci THEN

ic := cin(ci+1) ‖ ci := ci+1
END;

recvc = WHEN cw 6= co THEN
co := co + 1

END
END

CFilter1

This model strengthens the guard so that it incorporates parsing and scaning. The
variable p (for parsing) is used to make sure that parsing occurs before an input event
may occur. The variablescan is used to allow the filter to read ahead after a reset event
or initialisation. This is because the next character in the input stream may not be a
begin-word character (bwc) at the start or after reset event (for instance if a reset occurs
part way through a word). Without the scan variable, the filter would continuously
shutdown unnecessarily after a reset. Scanning mode is only entered initially or after
reset. After a normal input event we require that the next character is a bwc. Hence
the guard (p = r ∧ ic = bwc). Note that if scan is FALSE and p 6=r and
the next character does not form a proper extension of the buffer then the readc event
will not be enabled so no more input will occur until after a reset. However, output
may continue concurrently even though input is disabled.

While the guard is now correct, the body of the readc event is still too weak as it
still does not require any characters to be put in the input buffer.

REFINEMENT
CFilter1
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REFINES
CFilter0

SEES
CDict, Char, PString, SeqSimp, PStringSimp1, PStringSimp2, PStringSimp3

VARIABLES
cout, /* proof */
ib,ob,r,t,s,p,scan, /* internal */
ic,oc,ci,cr,cw,co /* external */

INVARIANT
p ∈ N ∧
p ∈ r .. r+1 ∧
p ∈ t .. t+1 ∧
scan ∈ BOOL ∧
∃ d.(d:CD ∧ ob ⊆ d) ∧
∃ ps.(ps:PS ∧ ib ⊆ ps)

INITIALISATION
p,r,t,s := 0,0,0,0 ‖ ib,ob := <>,<> ‖ scan := T ‖
ci,cr,co,cw := 0,0,0,0 ‖ ic :∈ C ‖ oc :∈ C ‖
cout := <>

EVENTS
/* internal */
readc = WHEN r = t ∧ cr 6= ci ∧

((p=r ∧ ic = bwc) ∨ ∃ ps.(ps:PS ∧ ib<-ic ⊆ ps) ∨ scan = T)
THEN

ib : | (ib ∈ seq(C) ∧ rev(ib) ⊆ rev(cin/|\cr+1) ∧
∃ ps.(ps:PS ∧ ib ⊆ ps)) ‖

cr := cr+1 ‖
IF p = r THEN p := p+1 END ‖
IF ic = bwc THEN scan := F END

END;
input = WHEN p 6= r ∧ s = r ∧ ib ∈ PS THEN

r := r+1
END;

chkc = WHEN t 6= r THEN
ob : |(ob ∈ seq(C) ∧ ∃ d.(d:CD ∧ ob ⊆ d) )

END;
release = WHEN t 6= r ∧ ib ∈ CD ∧ ob = ib THEN

t := t+1
END;

writec = WHEN s 6= t ∧ cw = co THEN
ANY c, cout0 WHERE c∈C ∧ cout0 : seq(C) ∧ cout0 = cout THEN

oc := c ‖
cout : |(cout = cout0<-c ∧ ∃ i.(i:0 .. size(cout0) ∧ cout\|/i ⊆ ob))

END ‖
cw:= cw+1
END;
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output = WHEN s 6= t ∧ rev(ob) ⊆ rev(cout) THEN
s := s+1

END;
reset = BEGIN

ib,ob,s,t,p,cr,co,scan := <>,<>,r,r,r,ci,cw,T

END;
/*external*/
sendc = WHEN cr = ci THEN

ic := cin(ci+1) ‖ ci := ci+1
END;

recvc = WHEN cw 6= co THEN
co := co + 1

END
END

CFilterR

This final version of CFilter is sufficient to serve as the specification of the filter as it
correctly adds characters to the input buffer when they form a proper extension of the
input buffer. In addition, the writec and output events have been refined in such a
way that they may now be implemented in code.

REFINEMENT
CFilterR

REFINES
CFilter1

SEES
CDict, Char, PString, SeqSimp, PStringSimp1, PStringSimp2, PStringSimp3

VARIABLES
ib,ob,r,t,s,o,p,scan, /* internal */
ic,oc,ci,cr,cw,co /* external */

INVARIANT
o ∈ 0 .. maxsize ∧
(s/=t ⇒ cout\|/size(cout)-o = ob/|\o) ∧
o ≤ cw ∧
(t/=r ⇒ o=0) ∧
(s=t ⇒ o=0) ∧
(ib 6= <> ⇒ scan = F) ∧
(ib = <> ⇒ scan = T)

THEOREMS
(∃ ps.(ps:PS ∧ ib<-ic ⊆ ps) ∧ ib = <> ⇒ ic = bwc) ∧
(∃ ps.(ps:PS ∧ ib<-ic ⊆ ps) ∧ ic 6= bwc ⇒ ib 6= <>) ∧
cin/|\cr+1 = cin/|\cr<-cin(cr+1) ∧
rev([bwc]) ⊆ rev(cin/|\cr ← bwc)
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INITIALISATION
p,r,t,s,o := 0,0,0,0,0 ‖ ib,ob := <>,<> ‖ scan := T ‖
ci,cr,co,cw := 0,0,0,0 ‖ ic :∈ C ‖ oc :∈ C

EVENTS
/* internal */
readc = WHEN r = t ∧ cr 6= ci ∧

((p=r ∧ ic = bwc) ∨ ∃ ps.(ps:PS ∧ ib<-ic ⊆ ps) ∨ scan = T )
THEN

IF ∃ ps.(ps:PS ∧ ib<-ic ⊆ ps) THEN
ib,scan := ib ← ic, F

ELSIF ic = bwc THEN
ib,scan := [bwc], F

ELSIF scan = T THEN
ib := <>

END ‖
cr := cr+1 ‖
IF p=r THEN p:= p+1 END

END;
input = WHEN p 6= r ∧ s = r ∧ ib ∈ PS THEN

r := r+1
END;

chkc = WHEN t 6= r THEN
ob : | (ob ∈ seq(C) ∧ ∃ d.(d:CD ∧ ob ⊆ d))

END;
release = WHEN t 6= r ∧ ib ∈ CD ∧ ob = ib THEN

t := t+1
END;

writec = WHEN s 6= t ∧ cw = co ∧ o < size(ob)THEN
oc,o,cw := ob(o+1),o+1,cw+1

END;
output = WHEN s 6= t ∧ o = size(ob) THEN

s := s+1 ‖ o := 0
END;

reset = BEGIN
o,ib,ob,p,s,t,cr,co,scan := 0,<>,<>,r,r,r,ci,cw,T

END;
/*external*/
sendc = WHEN cr = ci THEN

ic := cin(ci+1) ‖ ci := ci+1
END;

recvc = WHEN cw 6= co THEN
co := co +1

END
END
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Auxiliary Machines Stating Properties and Theorems

The following models contain theorems about sequences and proper strings that were
usefull in proving the Filter development.

SeqSimp

MODEL
SeqSimp

SEES
Char

CONSTANTS
squash

PROPERTIES
squash ∈ (N 7→ C) 7→ seq(C) ∧
dom(squash) = {f | f ∈ N 7→ C ∧ dom(f) ∈ F(N)} ∧
squash(∅) = [] ∧
∀ f.(f ∈ N 7→ C ∧ dom(f) ∈ F

1
(N) ⇒

squash(f) = squash({max(dom(f))} < � f) ← f(max(dom(f))))
THEOREMS
∀ (x).(x:C ⇒ {1|->x} = [x]) ∧

∀ (s,c,i).(s:seq(C) ∧ c:C ∧ i:dom(s)⇒
(s|>{c}={i|->c} ⇒ s(i)=c)) ∧

∀ (s,c,i).(s∈seq(C) ∧ c:C ∧ i : 0 .. size(s) ⇒
s<-c\|/i = s\|/i<-c) ∧

∀ (s,i).(s∈seq(C) ∧ i : 0 .. size(s)-1 ⇒
s/|\i<-s(i+1) = s/|\i+1) ∧

∀ (s,t).(s:seq(C)∧t:seq(C)∧s<:t ⇒ s=t/|\size(s)) ∧

∀ (s,i,j).(s∈seq(C) ∧ i ∈ 0 .. size(s) ∧ j : 0 .. size(s) ∧ i ≤ j ⇒
(s\|/i)\|/j-i = s\|/j

) ∧

∀ (sx,i,j).(sx:seq(C) ∧ i:0 .. size(sx) ∧ j:0 .. size(sx) ∧ i ≤ j ⇒
rev(sx\|/j) ⊆ rev(sx\|/i)) ∧

∀ (sx,sy,c).(sx∈seq(C) ∧ sy:seq(C) ∧ c : C ∧ rev(sx)<:rev(sy) ⇒
rev(sx<-c) ⊆ rev(sy<-c)) ∧

∀ (sx,sy).(sx:seq(C) ∧ sy:seq(C) ∧ sx ⊆ sy ⇒ size(sx) ≤ size(sy))
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END

PStringSimp1

MODEL
PStringSimp1

SEES PString, Char, SeqSimp

THEOREMS
∀ (sx,sy).(sx:PS ∧ sy:PS ∧ sx ⊆ sy ⇒ sx = sy) ∧
∀ (sx,sy).(sx:PS ∧ sy:PS ∧ rev(sx) ⊆ rev(sy) ⇒ sx = sy) ∧
∀ (ps,cs).(ps∈PS ∧ cs : seq

1
(C) ∧ cs ⊆ ps ⇒ cs(1) = bwc)

END

PStringSimp2

MODEL
PStringSimp2

SEES PStringSimp1, PString, SeqSimp, Char
THEOREMS

∀ (sx,i,j).(sx:seq(C) ∧ i:0 .. size(sx) ∧ j:0 .. size(sx) ⇒
(∃ (ps,pt).(ps:PS ∧ pt:PS ∧ sx\|/i ⊆ ps ∧ sx\|/j ⊆ pt

∧ sx\|/i 6= <> ∧ sx\|/j 6= <>)
⇒ i = j)) ∧

∀ (ps,cs).(ps∈PS ∧ cs : seq(C) ∧ cs<-bwc ⊆ ps ⇒ cs = <>)

END

PStringSimp3

MODEL
PStringSimp3

SEES PStringSimp2, PStringSimp1, PString, Char
THEOREMS
∀ (sx,i,j).(sx:seq(C) ∧ i:0 .. size(sx) ∧ j:0 .. size(sx) ∧

sx\|/i ∈ PS ∧ sx\|/j ∈ PS ⇒ i = j)
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END



Appendix B

Comparator

This chapter contains the refinement of the electronic part of the filter. It begins with
a simplifed version of the specification where the events to do with character I/O are
abstracted, and anticipating events for the electronics are put in place. This refinement
is to do with implementing the comparison of the dictionary words with the input word
and the loading of the resultant output word.

Compare

MODEL
Compare

SEES
CDict, Char, PString, SeqSimp

VARIABLES
/* internal */

ib,ob,r,t,s /* external */
INVARIANT

ib ∈ seq(C) ∧
ob ∈ seq(C) ∧
∃ cd.(cd ∈ CD ∧ ob ⊆ cd) ∧
r ∈ N ∧
t ∈ r-1 .. r ∧
s ∈ r-1 .. r ∧
s ∈ t-1 .. t ∧
(r 6= t ⇒ ib ∈ PS) ∧
(s 6= t ⇒ ob ∈ CD)

THEOREMS
(s=r ⇒ t=r) ∧ (s\net⇒r=t)

INITIALISATION
r,t,s := 0,0,0 ‖ ib,ob := 〈〉,〈〉

64
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EVENTS
/* internal */
nextiw = skip;
nextiwc = skip;
initd = skip;
nextdc = skip;
decode = skip;
nextd = WHEN t 6= r THEN

ob := 〈〉
END;

lastd = WHEN t 6= r THEN
ob := 〈〉

END;
chkc = WHEN t 6= r THEN

ob : | (ob ∈ seq(C) ∧ ∃ d.(d ∈ CD ∧ ob ⊆ d))
END;

release = WHEN t 6= r ∧ ib ∈ CD ∧ ob = ib THEN
t := t+1

END;
nextow = WHEN t\ne r THEN

ob:= 〈〉
END;

nextowc= WHEN t\ne r THEN
ob∈|(ob ∈ seq(C) ∧ ∃ cd.(cd : CD ∧ ob ⊆ cd))

END;
/*external*/
input = WHEN s = r ∧ ib ∈ PS THEN

r := r+1
END;

output = WHEN s 6= t THEN
s := s+1

END;
reset = BEGIN

ib,ob,s,t := 〈〉,〈〉,r,r
END

END

CompareR

In the first refinement we introduce a trusted word which is a word chosen from the
dicitonary. In addition there are some signals introduced to indicate that a dictionary
word has been chosen.

REFINEMENT
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CompareR
REFINES

Compare
SEES

CDict, Char, PString, SeqSimp
VARIABLES

tw,dc,dt, /* internal */
ib,ob,r,t,s /* external */

INVARIANT
tw ∈ CD ∧
dc ∈ N ∧
dt ∈ N ∧
dt ∈ dc .. dc+1

THEOREMS
(s=r ⇒ t=r) ∧ (s\net⇒r=t)

INITIALISATION
r,t,s := 0,0,0 ‖ ib,ob := 〈〉,〈〉 ‖ tw:: CD ‖ dc,dt:=0,0

EVENTS
/* internal */
nextiw = skip;
nextiwc = skip;
initd = skip;
nextdc = skip;
decode = skip;
nextd = WHEN t 6= r ∧ dt = dc THEN

tw:: CD ‖ dt:= dt+1 ‖ ob := 〈〉
END;

lastd = WHEN t 6= r ∧ dt = dc THEN
tw := [edc] ‖ dt:= dt+1 ‖ ob:= 〈〉

END;
chkc = WHEN t 6= r ∧ dt 6= dc THEN

ob : | (ob ∈ seq(C) ∧ ob ⊆ tw)‖
IF ib 6= tw THEN dc :∈ dc .. dc+1 END

END;
release = WHEN t 6= r ∧ ib = tw ∧ ob = ib ∧ dt 6= dc THEN

t := t+1 ‖ dc:= dc+1
END;

nextow = WHEN t\ne r THEN
ob:= 〈〉

END;
nextowc= WHEN t\ne r THEN

ob∈|(ob ∈ seq(C) ∧ ∃ cd.(cd : CD ∧ ob ⊆ cd))
END;

/*external*/
input = WHEN s = r ∧ ib ∈ PS THEN

r := r+1
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END;
output = WHEN s 6= t THEN

s := s+1
END;

reset = BEGIN
ib,ob,s,t,dc := 〈〉,〈〉,r,r,dt

END
END

CompareRR

This refinment is about showing that the strategy of choosing trusted words one-by-one
from the dictionary will terminate when there are no more dictionary words to chose.
If it reaches the end of the dictionary then the nextd event will be disabled and the
filter will shutdown.

REFINEMENT
CompareRR

REFINES
CompareR

SEES
CDict, Char, PString, SeqSimp

VARIABLES
tw,dc,dt,V, /* internal */
ib,ob,r,t,s,u /* external */

INVARIANT
V ⊆ CD ∧
u ∈ N ∧
u ∈ t .. t+1

THEOREMS
(s=r ⇒ t=r) ∧ (s\net⇒r=t)

INITIALISATION
r,t,s,u := 0,0,0,0 ‖ ib,ob := 〈〉,〈〉 ‖ tw:: CD ‖
V := ∅ ‖ dc,dt:=0,0

EVENTS
/* internal */
nextiw = skip;
nextiwc = skip;
nextdc = skip;
decode = skip;
initd = WHEN u = t THEN

V,u:= ∅,u+1
END;

nextd = WHEN u 6= t ∧ t 6= r ∧ dt = dc ∧ V 6= CD THEN



APPENDIX B. COMPARATOR 68

tw:: CD-V ‖ dt:= dt+1 ‖ V:=V∪{tw} ‖ ob:= 〈〉
END;

lastd = WHEN u 6= t ∧ t 6= r ∧ dt = dc ∧ V = CD THEN
tw := [edc] ‖ dt:= dt+1 ‖ ob := 〈〉

END;
chkc = WHEN t 6= r ∧ dt 6= dc THEN

ob : | (ob ∈ seq(C) ∧ ob ⊆ tw)‖
IF ib 6= tw THEN dc :∈ dc .. dc+1 END

END;
release = WHEN u 6= t ∧ t
6= r ∧ ib = tw ∧ ob = ib ∧ dt 6= dc THEN

t := t+1 ‖ dc := dc+1
END;

nextow = WHEN t 6= r THEN
ob:= 〈〉

END;
nextowc= WHEN t 6= r THEN

ob∈|(ob : seq(C) ∧ ob ⊆ tw)
END;

/*external*/
input = WHEN s = r ∧ ib ∈ PS THEN

r := r+1
END;

output = WHEN s 6= t THEN
s := s+1

END;
reset = BEGIN

ib,ob,s,t,u,dc,V := 〈〉,〈〉,r,r,r,dt,∅

END
END

CompareRRR

Now we refine the events for checking the trusted word character by character. This
involves choosing the next trusted character, loading it into the output buffer and com-
paring the output buffer to the input buffer.

REFINEMENT
CompareRRR

REFINES
CompareRR

SEES
CDict, Char, PString, SeqSimp, PStringSimp1

VARIABLES
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tw,dc,dt,V,twc,u, /* internal */
twi,dtc,dcc,ot,otc,
ib,ob,r,t,s /* external */

DEFINITIONS
boo(E) , (E = T)

INVARIANT
twc ∈ C ∧
twi ∈ 0 .. size(tw) ∧
dtc ∈ N ∧
dcc ∈ N ∧
dtc ∈ dcc .. dcc+1 ∧
ot ∈ N ∧
ot ∈ dt .. dt+1 ∧
ot ∈ dc .. dc+1 ∧
otc ∈ N ∧
dtc ∈ otc .. otc+1 ∧
otc ∈ dcc .. dcc+1 ∧
ob ⊆ tw ∧
(dt 6= ot ⇒ ob = 〈〉) ∧
(otc = dtc ∧ ot = dt ⇒ ob = tw↑twi) ∧
(otc 6= dtc ∧ ot 6= dc ⇒ ob = tw↑twi-1) ∧

(t 6= r ∧ dtc 6= dcc ⇒ 1 ≤ twi ∧ twc = tw(twi)) ∧
(t = r ⇒ dtc = dcc) ∧
(dt = dc ⇒ dtc = dcc) ∧
(dt 6= dc ⇒ u 6= t) ∧
(dcc = dtc ∧ dt 6= dc ⇒ twi < size(tw))

THEOREMS
(ot = dc ⇒ ot = dt) ∧
(dtc = dcc ⇒ otc = dcc) ∧
(otc 6= dcc ⇒ otc = dtc) ∧
(otc 6= dtc ⇒ otc = dcc) ∧
tw ∈ seq(C)

INITIALISATION
r,t,s,u := 0,0,0,0 ‖ ib,ob := 〈〉,〈〉 ‖ tw:: CD ‖
V := ∅ ‖ dc,dt,ot:=0,0,0 ‖
twi,dtc := 0,0 ‖ twc :∈ C ‖
dcc,otc := 0,0

EVENTS
/* internal */
nextiw = skip;
nextiwc = skip;
decode = skip;
initd = WHEN u = t THEN

V,u := ∅, u+1
END;
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nextd = WHEN u 6= t ∧ t
6= r ∧ dt = dc ∧ V 6= CD ∧ dt 6= ot THEN

tw:: CD-V ‖ dt:= dt+1 ‖ V:=V∪{tw} ‖ twi:= 0
END;

lastd = WHEN u 6= t ∧ t
6= r ∧ dt = dc ∧ V = CD ∧ dt 6= ot THEN

tw := [edc] ‖ dt:= dt+1 ‖ twi:= 0
END;

nextdc = WHEN t\ner ∧ dt\nedc ∧ dtc = dcc ∧ dtc =otc
THEN

twc := tw(twi+1) ‖ twi,dtc := twi+1, dtc+1
END;

chkc = WHEN t 6= r ∧ dt 6= dc ∧ dtc 6= dcc ∧
otc 6= dcc ∧ ot 6= dc

THEN
IF ob ⊆ ib ∧ twi < size(tw) THEN
dcc:= dcc+1

ELSIF ob / ⊆ ib THEN
dc,dcc := dc+1,dcc+1

END
END;

release = WHEN t 6= r ∧ ib = tw ∧ ob = ib ∧ twi = size(tw) ∧
dtc 6= dcc ∧ otc 6= dcc ∧ dt 6= dc THEN

t := t+1 ‖ dc := dc+1 ‖ dcc := dcc+1
END;

nextow = WHEN t\ne r ∧ ot = dc THEN
ob:= 〈〉 ‖ ot := ot+1

END;
nextowc= WHEN t 6= r ∧ otc 6= dtc THEN

ob:= tw↑twi ‖ otc := otc+1
END;

/*external*/
input = WHEN s = r ∧ ib ∈ PS THEN

r := r+1
END;

output = WHEN s 6= t THEN
s := s+1

END;
reset = BEGIN

ib,ob,s,t,u := 〈〉,〈〉,r,r,r ‖
dc,ot := dt,dt ‖
dcc,otc := dtc,dtc ‖ twi := 0 ‖ V:= ∅

END
END
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CompareRRRR

We now consider extracting the characters fmom the input buffer one-by one. The
character from the input is then compared to the character from the dictonary to decide
if the substrings are a match so far.

REFINEMENT
CompareRRRR

REFINES
CompareRRR

SEES
CDict, Char, PString, SeqSimp, PStringSimp1

VARIABLES
tw,dc,dt,V,u,twc,iwc, /* internal */
it,iwi,itc,twi,dtc,dcc,ot,otc,
ib,ob,r,t,s /* external */

INVARIANT
it ∈ N ∧
iwc ∈ C ∧
iwi ∈ 0 .. size(ib) ∧
(it = dt ⇒ twi ∈ iwi .. iwi+1) ∧
itc ∈ N ∧
dt ∈ it .. it+1 ∧
it ∈ dc .. dc+1 ∧
itc ∈ dcc .. dcc+1 ∧
dtc ∈ itc .. itc+1 ∧

(t 6=r ∧ itc 6= dcc ⇒ 1 ≤ iwi ∧ iwc = ib(iwi)) ∧

(it 6= dc ∧ itc 6= dtc ⇒ iwi = twi-1) ∧
(it 6= dc ∧ itc = dtc ⇒ iwi = twi) ∧

(t 6=r ∧ otc 6= dcc ⇒ twc = ob(twi)) ∧

(itc 6= dcc ∧ it 6= dc ⇒ ob↑iwi-1 = ib↑iwi-1) ∧
(itc = dcc ∧ it 6= dc ⇒ ob↑iwi = ib↑iwi) ∧

(it 6= dt ⇒ ob = 〈〉 ∧ twi = 0) ∧
(it 6= dt ⇒ itc = dcc) ∧
(dt = dc ⇒ itc = dtc) ∧
(ot = dc ⇒ otc = dtc) ∧
(otc 6= dtc ⇒ ot 6= dc) ∧
(dt 6= dc ⇒ ot 6= dc)

THEOREMS
(dt = dc ⇒ it = dc) ∧ (it 6= dt ⇒ dt 6= dc) ∧
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(dtc = dcc ⇒ itc = dcc) ∧ (itc 6= dtc ⇒ dtc 6= dcc)
INITIALISATION
r,t,s,u := 0,0,0,0 ‖ ib,ob := 〈〉,〈〉 ‖ tw:: CD ‖
V := ∅ ‖ it,dc,dt,ot:=0,0,0,0 ‖
iwi,itc := 0,0 ‖ iwc :∈ C ‖
twi,dtc := 0,0 ‖ twc :∈ C ‖
dcc,otc := 0,0

EVENTS
/* internal */
decode = skip;
nextiw = WHEN it 6= dt ∧ itc = dtc THEN

it := it+1 ‖
iwi := 0

END;
nextiwc = WHEN it = dt ∧ itc 6= dtc ∧ iwi<size(ib) THEN

iwc := ib(iwi+1)‖ iwi,itc := iwi+1,itc+1
END;

initd = WHEN u = t THEN
V,u:= ∅,u+1

END;
nextd = WHEN u 6= t ∧ t
6= r ∧ dt = dc ∧ V 6= CD ∧ dt 6= ot THEN

tw:: CD-V ‖ dt:= dt+1 ‖ V:=V∪{tw} ‖ twi:= 0
END;

lastd = WHEN u 6= t ∧ t
6= r ∧ dt = dc ∧ V = CD ∧ dt 6= ot THEN

tw := [edc] ‖ dt:= dt+1 ‖ twi:= 0
END;

nextdc = WHEN t\ner ∧ dt\nedc ∧ it = dt ∧ dtc = dcc ∧
dtc = otc ∧ dtc = itc

THEN
twc := tw(twi+1) ‖ twi,dtc := twi+1, dtc+1

END;
chkc = WHEN t 6= r ∧ dt 6= dc ∧ dtc 6= dcc ∧ it 6=dc ∧

itc 6= dcc ∧ otc 6= dcc ∧ ot 6= dc
THEN

IF twc = iwc ∧ twi < size(tw) THEN
dcc:= dcc+1

ELSIF twc 6= iwc THEN
dc,dcc := dc+1, dcc+1

END
END;

release = WHEN t 6= r ∧ ib = tw ∧ ob = ib ∧ twi = size(tw) ∧
itc 6= dcc ∧ otc 6= dcc ∧ dtc 6= dcc ∧
dt 6= dc ∧ ot 6= dc ∧ it 6= dc THEN

t := t+1 ‖ dc := dc+1 ‖ dcc := dcc+1
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END;
nextow = WHEN t\ne r ∧ ot = dc THEN

ob:= 〈〉 ‖ ot := ot+1
END;

nextowc= WHEN t 6= r ∧ otc 6= dtc THEN
ob:= ob←twc ‖ otc := otc+1

END;
/*external*/
input = WHEN s = r ∧ ib ∈ PS THEN

r := r+1
END;

output = WHEN s 6= t THEN
s := s+1

END;
reset = BEGIN

ib,ob,s,t,u := 〈〉,〈〉,r,r,r ‖
dc,ot,it := dt,dt,dt ‖
itc, dcc,otc := dtc,dtc,dtc ‖
twi,iwi:= 0,0 ‖ V:= ∅

END
END

CompareRRRRR

Finally we introduce logical functions to implement the comparison logic in the com-
parator. This concludes the refinement of the HLD.

REFINEMENT
CompareRRRRR

REFINES
CompareRRRR

SEES
CDict, Char, PString, SeqSimp, PStringSimp1

VARIABLES
tw,dc,dt,V,u,dec,twc,iwc,ED,
it,iwi,itc,twi,dtc,dcc,ot,otc,
ib,ob,r,t,s

DEFINITIONS
boo(E) , (E = T);
InputReady , (t 6= r);
NEXTCMD1 , (dt = dc);
NEXTCMD2 , (ot = dc);
NEXTCMD3 , (it = dc);
NEXTCHAR , (dtc = dcc);
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MATCH , (twc = iwc);
OPICReady , (s = r);
DICTReady , (dec 6= dcc);
DICTAvail , (otc 6= dtc);
RELEASE , (MATCH ∧ DICTReady ∧ boo(ED))

INVARIANT
u ∈ r .. r+1 ∧
ED ∈ BOOL ∧
dec ∈ dcc .. dcc+1 ∧
itc ∈ dec .. dec+1 ∧
dtc ∈ dec .. dec+1 ∧
(dt = dc ⇒ dec = dcc) ∧
(DICTReady ⇒ itc 6= dcc ∧ dtc 6= dcc ∧ otc 6= dcc) ∧
(DICTReady ⇒ it 6= dc ∧ ot 6= dc) ∧
(DICTReady ⇒ InputReady) ∧
(dt 6= ot ⇒ InputReady) ∧
(dt 6= dc ⇒ InputReady) ∧
(DICTAvail ⇒ InputReady) ∧
(u 6= r ⇒ ED = F) ∧
(it 6= dt ⇒ ED = F) ∧
(dt 6= dc ∧ dec = dcc ⇒ ED = F) ∧
(itc 6= dtc ⇒ ED = F) ∧
(itc 6= dec ⇒ ED = F) ∧
(dec 6= dcc ∧ ED = F ⇒ twc 6= ewc) ∧
(dec 6= dcc ∧ ED = F ∧ twc 6= edc ⇒ twi < size(tw)) ∧
(r 6= t ∧ dec = dtc ∧ boo(ED) ⇒ twi = size(tw) ∧ twc = ewc) ∧
(r 6= t ∧ dec = itc ∧ boo(ED) ∧ MATCH ⇒ iwi=size(ib)) ∧
(RELEASE ⇒ ¬(NEXTCMD1))

INITIALISATION
r,t,s,u := 0,0,0,0 ‖ ib,ob := 〈〉,〈〉 ‖ tw:: CD ‖
V := ∅ ‖ it,dc,dt,dec,ot:=0,0,0,0,0 ‖ ED := F ‖
iwi,itc := 0,0 ‖ iwc :∈ C ‖
twi,dtc := 0,0 ‖ twc :∈ C ‖
dcc,otc := 0,0

EVENTS
/* internal */
nextiw = WHEN it 6= dt THEN

it,iwi := it+1,0
END;

nextiwc = WHEN it = dt ∧ itc 6= dtc ∧ iwi<size(ib) THEN
iwc := ib(iwi+1)‖ iwi,itc := iwi+1,itc+1

END;
initd = WHEN u = t ∧ u = r THEN

ED, V := F, ∅ ‖
u:= u+1

END;
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nextd = WHEN u 6= t ∧ NEXTCMD1 ∧ V 6= CD ∧ dt 6=ot THEN
tw:: CD-V ‖ dt:= dt+1 ‖ V:=V∪{tw} ‖ ED := F ‖
twi:= 0

END;
lastd = WHEN u 6= t ∧ NEXTCMD1 ∧ V = CD ∧ dt 6=ot THEN

tw := [edc] ‖ dt:= dt+1 ‖ ED := F ‖ twi:= 0
END;

nextdc = WHEN dt\nedc ∧ it = dt ∧ NEXTCHAR ∧
¬ boo(ED) ∧ dtc = otc ∧ dtc = dec

THEN
twc := tw(twi+1) ‖ twi,dtc := twi+1, dtc+1

END;
decode = WHEN itc 6= dec ∧ otc 6= dec THEN

ED : | ((boo(ED)) ⇔ (twc=ewc))‖
dec:= dec+1

END;
chkc = WHEN DICTReady ∧ twc 6= edc THEN

IF MATCH ∧ ¬ boo(ED) THEN
dcc:= dcc+1

ELSIF ¬(MATCH) THEN
dc,dcc := dc+1, dcc+1

END
END;

release = WHEN RELEASE THEN
t := t+1 ‖ dc := dc+1 ‖ dcc := dcc+1

END;

nextow = WHEN InputReady ∧ NEXTCMD2 THEN
ot := ot+1 ‖ ob := 〈〉

END;
nextowc = WHEN DICTAvail THEN

ob := ob←twc ‖ otc := otc+1
END;

/*external*/
input = WHEN OPICReady ∧ u 6= r ∧ ib ∈ PS THEN

r := r+1
END;

output = WHEN s 6= t THEN
s := s+1

END;
reset = BEGIN

ib,ob,s,t,u,ED := 〈〉,〈〉,r,r,r,F ‖
dc,it,ot := dt,dt,dt ‖
dec,itc,dcc,otc := dtc,dtc,dtc,dtc ‖
twi,iwi:= 0,0 ‖ V:= ∅
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END
END



Appendix C

High-level Design

In this chapter we reorganise the models into components corresponding to the high-
level design.

• CompCOMP corresponds to the comparison logic.

• DictComp corresponds to the dictionary logic.

• InputComp corresponds to the Input PIC.

• OutputComp corresponds to the Output PIC.

Each component has internal events correponding to the sub-machine that it im-
plements and external events corresponding to the events that it expects the rest of the
components to implement.

CompCOMP

MODEL
CompCOMP

SEES
CDict, Char, PString, SeqSimp

VARIABLES
dc,dt,dec,twc,iwc,ED, /* all external*/
it,itc,dtc,dcc,ot,otc,
r,t,u

DEFINITIONS
boo(E) , (E = T);
InputReady , (t 6= r);
NEXTCMD1 , (dt = dc);
NEXTCMD2 , (ot = dc);
NEXTCMD3 , (it = dc);

77
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NEXTCHAR , (dtc = dcc);
MATCH , (twc = iwc);
DICTReady , (dec 6= dcc);
DICTAvail , (otc 6= dtc);
RELEASE , (MATCH ∧ DICTReady ∧ boo(ED))

INVARIANT
r ∈ N ∧
t ∈ N ∧
r ∈ t .. t+1 ∧
u ∈ r .. r+1 ∧
u ∈ t .. t+1 ∧
iwc ∈ C ∧
twc ∈ C ∧
dc ∈ N ∧
dt ∈ N ∧
dt ∈ dc .. dc+1 ∧
dtc ∈ N ∧
dcc ∈ N ∧
dtc ∈ dcc .. dcc+1 ∧
ot ∈ N ∧
ot ∈ dt .. dt+1 ∧
ot ∈ dc .. dc+1 ∧
otc ∈ N ∧
dtc ∈ otc .. otc+1 ∧
otc ∈ dcc .. dcc+1 ∧
it ∈ N ∧
itc ∈ N ∧
dt ∈ it .. it+1 ∧
it ∈ dc .. dc+1 ∧
itc ∈ dcc .. dcc+1 ∧
dtc ∈ itc .. itc+1 ∧
(t = r ⇒ dtc = dcc) ∧
(dt = dc ⇒ dtc = dcc) ∧
ED ∈ BOOL ∧
dec ∈ dcc .. dcc+1 ∧
itc ∈ dec .. dec+1 ∧
dtc ∈ dec .. dec+1 ∧
(r\net ∧ dec = dtc ∧ boo(ED) ⇒ twc = ewc) ∧
(u 6= r ⇒ ED = F) ∧
(itc 6= dtc ⇒ ED = F) ∧
(itc 6= dec ⇒ ED = F) ∧
(it 6= dt ⇒ ED = F) ∧
(it 6= dt ⇒ itc = dcc) ∧
(dt = dc ⇒ itc = dtc) ∧
(ot = dc ⇒ otc = dtc) ∧
(otc 6= dtc ⇒ ot 6= dc) ∧
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(dt 6= dc ⇒ ot 6= dc) ∧
(DICTReady ⇒ itc 6= dcc ∧ dtc 6= dcc ∧ otc 6= dcc) ∧
(DICTReady ⇒ it 6= dc ∧ ot 6= dc) ∧
(DICTReady ⇒ InputReady) ∧
(dt 6= ot ⇒ InputReady) ∧
(dt 6= dc ⇒ InputReady) ∧
(DICTAvail ⇒ InputReady) ∧
(u 6= r ⇒ ED = F) ∧
(it 6= dt ⇒ ED = F) ∧
(dt 6= dc ∧ dec = dcc ⇒ ED = F) ∧
(itc 6= dtc ⇒ ED = F) ∧
(itc 6= dec ⇒ ED = F) ∧
(dec 6= dcc ∧ ED = F ⇒ twc 6= ewc)

THEOREMS
(ot = dc ⇒ ot = dt) ∧
(dtc = dcc ⇒ otc = dcc) ∧
(otc 6= dcc ⇒ otc = dtc) ∧
(otc 6= dtc ⇒ otc = dcc) ∧
(dt = dc ⇒ it = dc) ∧ (it 6= dt ⇒ dt 6= dc) ∧
(dtc = dcc ⇒ itc = dcc) ∧ (itc 6= dtc ⇒ dtc 6= dcc)

INITIALISATION
r,t,u := 0,0,0 ‖
it,dc,dt,dec,ot:=0,0,0,0,0 ‖ ED := F ‖
itc := 0 ‖ iwc :∈ C ‖
dtc := 0 ‖ twc :∈ C ‖
dcc,otc := 0,0

EVENTS
/* internal */
chkc = WHEN DICTReady THEN

IF MATCH ∧ ¬ boo(ED) THEN
dcc:= dcc+1

ELSIF ¬ (MATCH) THEN
dc,dcc := dc+1, dcc+1

END
END;

release = WHEN RELEASE THEN
t := t+1 ‖ dc,dcc := dc+1, dcc+1

END;
/*external*/
input = WHEN t = r ∧ u 6= r THEN

r := r+1
END;

nextiw = WHEN it 6= dt THEN
it := it+1

END;
nextiwc = WHEN it = dt ∧ itc 6= dtc THEN
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iwc :∈ C ‖ itc := itc+1
END;

initd = WHEN u = t ∧ u = r THEN
ED,u := F,u+1

END;
nextd = WHEN NEXTCMD1 ∧ ¬ boo(ED) ∧ dt\neot THEN

dt:= dt+1 ‖ ED := F

END;
nextdc = WHEN dt\nedc ∧ it = dt ∧ NEXTCHAR ∧ ¬ boo(ED) ∧

dtc =otc ∧ dtc = dec
THEN

twc :∈ C ‖ dtc := dtc+1
END;

decode = WHEN itc 6= dec ∧ otc 6= dec THEN
ED : | ((boo(ED)) ⇔ (twc=ewc))‖
dec:= dec+1

END;
nextow = WHEN InputReady ∧ NEXTCMD2 THEN

ot := ot+1
END;

nextowc = WHEN DICTAvail THEN
otc := otc+1

END;
reset = BEGIN

t,ED := r,F ‖
dc,it,ot := dt,dt,dt ‖
dec,itc,dcc,otc := dtc,dtc,dtc,dtc

END
END

DictCOMP

MODEL
DictCOMP

SEES
CDict, Char, PString, SeqSimp

VARIABLES
tw,dc,dt,V,DE,dec,twc, /*internal*/

ED,it,itc,twi,dtc,dcc,ot,otc, /*external*/
r,t,s,u

DEFINITIONS
boo(E) , (E = T);
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InputReady , (t 6= r);
NEXTCMD1 , (dt = dc);
NEXTCMD2 , (ot = dc);
NEXTCMD3 , (it = dc);
NEXTCHAR , (dtc = dcc);
OPICReady , (s = r);
DICTReady , (dec 6= dcc);
DICTAvail , (otc 6= dtc);
RELEASE , (DICTReady ∧ boo(ED))

INVARIANT
r ∈ N ∧
s ∈ N ∧
t ∈ N ∧
r ∈ t .. t+1 ∧
r ∈ s .. s+1 ∧
t ∈ s .. s+1 ∧
u ∈ r .. r+1 ∧
u ∈ t .. t+1 ∧
tw ∈ CD ∧
dc ∈ N ∧
dt ∈ N ∧
dt ∈ dc .. dc+1 ∧
V ⊆ CD ∧
twc ∈ C ∧
twi ∈ 0 .. size(tw) ∧
dtc ∈ N ∧
dcc ∈ N ∧
dtc ∈ dcc .. dcc+1 ∧
ot ∈ N ∧
ot ∈ dt .. dt+1 ∧
ot ∈ dc .. dc+1 ∧
otc ∈ N ∧
dtc ∈ otc .. otc+1 ∧
otc ∈ dcc .. dcc+1 ∧
it ∈ N ∧
itc ∈ N ∧
dt ∈ it .. it+1 ∧
it ∈ dc .. dc+1 ∧
itc ∈ dcc .. dcc+1 ∧
dtc ∈ itc .. itc+1 ∧
(t 6= r ∧ dtc 6= dcc ⇒ 1 ≤ twi ∧ twc = tw(twi)) ∧
(t = r ⇒ dtc = dcc) ∧
(dt = dc ⇒ dtc = dcc) ∧
DE ∈ BOOL ∧

(boo(DE) ⇒ V = CD) ∧
(¬ boo(DE) ∧ dt = dc ⇒ V 6= CD) ∧
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ED ∈ BOOL ∧
dec ∈ dcc .. dcc+1 ∧
itc ∈ dec .. dec+1 ∧
dtc ∈ dec .. dec+1 ∧
(¬ boo(DE) ∧ dec 6= dcc ⇒ V 6= CD) ∧
(DICTReady ⇒ itc 6= dcc ∧ dtc 6= dcc ∧ otc 6= dcc) ∧
(DICTReady ⇒ it 6= dc ∧ ot 6= dc) ∧
(DICTReady ⇒ InputReady) ∧
(dt 6= ot ⇒ InputReady) ∧
(dt 6= dc ⇒ InputReady) ∧
(DICTAvail ⇒ InputReady) ∧
(u 6= r ⇒ ED = F) ∧
(it 6= dt ⇒ ED = F) ∧
(itc 6= dtc ⇒ ED = F) ∧
(dt 6= dc ∧ dec = dcc ⇒ ED = F) ∧
(itc 6= dec ⇒ ED = F) ∧
(dec 6= dcc ∧ ED = F ⇒ twc 6= ewc) ∧
(dec 6= dcc ∧ ED = F ⇒ twi < size(tw)) ∧
(r 6= t ∧ dec = dtc ∧ boo(ED) ⇒ twi = size(tw) ∧ twc = ewc) ∧
(it 6= dt ⇒ itc = dcc) ∧
(dt = dc ⇒ itc = dtc) ∧
(ot = dc ⇒ otc = dtc) ∧
(otc 6= dtc ⇒ ot 6= dc) ∧
(dt 6= dc ⇒ ot 6= dc) ∧
(dt 6= dc ⇒ u 6= t) ∧

(RELEASE ⇒ ¬(NEXTCMD1))
THEOREMS
(s=r ⇒ t=r) ∧ (s\net⇒r=t) ∧
(ot = dc ⇒ ot = dt) ∧
(dtc = dcc ⇒ otc = dcc) ∧
(otc 6= dcc ⇒ otc = dtc) ∧
(otc 6= dtc ⇒ otc = dcc) ∧
(dt = dc ⇒ it = dc) ∧ (it 6= dt ⇒ dt 6= dc) ∧
(dtc = dcc ⇒ itc = dcc) ∧ (itc 6= dtc ⇒ dtc 6= dcc)

INITIALISATION
r,t,s,u := 0,0,0,0 ‖ tw:: CD ‖
V := ∅ ‖ it,dc,dt,dec,ot:=0,0,0,0,0 ‖ DE,ED :=
F,F ‖
itc := 0 ‖
twi,dtc := 0,0 ‖ twc :∈ C ‖
dcc,otc := 0,0

EVENTS
/* internal */
initd = WHEN u = t ∧ u = r THEN

DE, ED, V := F, F, ∅ ‖
u:= u+1
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END;
nextd = WHEN u 6= t ∧ NEXTCMD1 ∧ ¬ boo(DE) ∧ dt 6=ot THEN

tw:: CD-V ‖ dt:= dt+1 ‖ V:=V∪{tw} ‖ ED := F ‖
twi:= 0

END;
nextdc = WHEN dt\nedc ∧ it = dt ∧ NEXTCHAR ∧ dtc=dcc ∧

twi<size(tw) ∧ dtc =otc ∧ dtc = dec
THEN

twc := tw(twi+1) ‖ twi,dtc := twi+1, dtc+1
END;

decode = WHEN itc 6= dec ∧ otc 6= dec THEN
DE : | ((boo(DE)) ⇔ (V=CD)) ‖
ED : | ((boo(ED)) ⇔ (twc=ewc))‖
dec:= dec+1

END;
/*external components*/
/*input PIC*/
input = WHEN OPICReady ∧ u 6= r THEN

r := r+1
END;

nextiw = WHEN it 6= dt THEN
it := it+1

END;
nextiwc = WHEN it = dt ∧ itc 6= dtc THEN

itc := itc+1
END;

/*comparator*/
chkc = WHEN DICTReady THEN

IF ¬ boo(ED) THEN
dcc:: dcc .. dcc+1

ELSE CHOICE
dc,dcc := dc,dcc OR
dc,dcc := dc+1,dcc+1

END END
END;

release = WHEN RELEASE THEN
t := t+1 ‖ dc := dc+1 ‖ dcc := dcc+1

END;
/*output PIC*/
nextow = WHEN InputReady ∧ NEXTCMD2 THEN

ot := ot+1
END;

nextowc = WHEN DICTAvail THEN
otc := otc+1

END;
output = WHEN s\net THEN
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s := s+1
END;

/*reset*/
reset = BEGIN

s,t,u,DE,ED := r,r,r,F,F ‖
dc,it,ot := dt,dt,dt ‖
dec,itc,dcc,otc := dtc,dtc,dtc,dtc ‖
twi:= 0 ‖ V:= ∅

END
END

InputCOMP

MODEL
InputCOMP

SEES
Char, PString, SeqSimp

VARIABLES
ib,iwi,scan,p, /* internal */
r,s,t,u,ic,ci,cr, /* external */
it,dt,itc,dtc,iwc

DEFINITIONS
boo(E) , (E = T);
InputReady , (t 6= r);
OPICReady , (s = r)

INVARIANT
ib ∈ seq(C) ∧
∃ ps.(ps ∈ PS ∧ ib ⊆ ps) ∧
r ∈ N ∧
t ∈ N ∧
p ∈ N ∧
u ∈ N ∧
s ∈ N ∧
r ∈ t .. t+1 ∧
r ∈ s .. s+1 ∧
t ∈ s .. s+1 ∧
p ∈ r .. r+1 ∧
p ∈ t .. t+1 ∧
u ∈ t .. t+1 ∧
u ∈ r .. r+1 ∧
(r 6= t ⇒ ib ∈ PS) ∧
scan ∈ BOOL ∧
ic ∈ C ∧
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ci ∈ N ∧
cr ∈ ci-1 .. ci ∧
it ∈ N ∧
iwc ∈ C ∧
iwi ∈ N ∧
(r 6= t ⇒ iwi ∈ 0 .. size(ib)) ∧
itc ∈ N ∧
dt ∈ N ∧
dt ∈ it .. it+1 ∧
dtc ∈ N ∧
dtc ∈ itc .. itc+1 ∧
(itc 6= dtc ⇒ r 6= t)

THEOREMS
(s=r ⇒ t=r) ∧ (s\net⇒r=t)

INITIALISATION
p,r,t,s,u := 0,0,0,0,0 ‖ ib := 〈〉 ‖ scan := T ‖
ci,cr := 0,0 ‖ ic :∈ C ‖ it,dt:=0,0 ‖
iwi,itc := 0,0 ‖ iwc :∈ C ‖
dtc := 0

EVENTS
/* internal */
readc = WHEN r = t ∧ cr 6= ci ∧

((p=r ∧
ic = bwc) ∨ ∃ ps.(ps ∈ PS ∧ ib←ic ⊆ ps) ∨ scan = T )

THEN
IF ∃ ps.(ps ∈ PS ∧ ib←ic ⊆ ps) THEN
ib,scan := ib←ic,F

ELSIF ic = bwc THEN
ib,scan := [bwc], F

ELSIF scan = T THEN
ib := 〈〉

END ‖
cr := cr+1 ‖
IF p=r THEN p:= p+1 END

END;
input = WHEN p 6= r ∧ u 6= r ∧ s = r ∧ ib ∈ PS THEN

r := r+1 ‖ iwi:= 0
END;

nextiw = WHEN it 6= dt THEN
it,iwi := it+1,0

END;
nextiwc = WHEN it = dt ∧ itc 6= dtc ∧ iwi<size(ib) THEN

iwc := ib(iwi+1)‖ iwi,itc := iwi+1,itc+1
END;

/*external*/
/*dictionary*/
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initd = WHEN u = t ∧ u = r THEN
u:= u+1

END;
nextd = WHEN r\net ∧ it = dt THEN

dt:= dt+1
END;

nextdc = WHEN r\net ∧ it = dt ∧ dtc = itc THEN
dtc := dtc+1

END;
/*comparitor*/
release = WHEN t 6= r ∧ itc = dtc THEN

t := t+1
END;

/*output PIC*/
output = WHEN s 6= t THEN

s := s+1
END;

/*reset*/
reset = BEGIN

ib,p,u,s,t,cr,scan := 〈〉,r,r,r,r,ci,T ‖
it := dt ‖
itc := dtc ‖
iwi:= 0

END;
/*environment*/
sendc = WHEN cr = ci THEN

ic :∈ C ‖ ci := ci+1
END

END

OutputCOMP

MODEL
OutputCOMP

SEES
Char, PString, SeqSimp

VARIABLES
ob,o, /* internal */
r,t,s,oc,cw,co,ot,dc,otc,dtc,twc /* external */

INVARIANT
ob ∈ seq(C) ∧
∃ ps.(ps ∈ PS ∧ ob ⊆ ps) ∧
r ∈ N ∧
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t ∈ r-1 .. r ∧
s ∈ r-1 .. r ∧
s ∈ t-1 .. t ∧
(s 6= t ⇒ ob ∈ PS) ∧
(s = r ⇒ ob = 〈〉) ∧
o ∈ 0 .. maxsize ∧
oc ∈ C ∧
cw ∈ N ∧
o ≤ cw ∧
co ∈ cw-1 .. cw ∧
(t\ner ⇒ o=0) ∧
(s=t ⇒ o=0) ∧
dc ∈ N ∧
twc ∈ C ∧
dtc ∈ N ∧
ot ∈ dc .. dc+1 ∧
ot ∈ N ∧
otc ∈ N ∧
dtc ∈ otc .. otc+1 ∧
(ot = dc ⇒ otc = dtc) ∧
(otc 6= dtc ⇒ ot 6= dc) ∧
(r 6= t ∧ otc 6= dtc ⇒ ∃ ps.(ps ∈ PS ∧ ob←twc ⊆ ps)) ∧
(r=t ⇒ otc = dtc)

THEOREMS
(s=r ⇒ t=r) ∧ (s\net⇒r=t)

INITIALISATION
r,t,s,o := 0,0,0,0 ‖ ob := 〈〉 ‖
co,cw := 0,0 ‖ oc :∈ C ‖ dc,ot:=0,0 ‖
dtc := 0 ‖ twc :∈ C ‖ otc := 0

EVENTS
/* internal */
nextow = WHEN r\net ∧ ot = dc THEN

ot := ot+1 ‖ ob := 〈〉
END;

nextowc = WHEN r 6=t ∧ otc 6= dtc THEN
ob := ob←twc ‖ otc := otc+1

END;
writec = WHEN s 6= t ∧ cw = co ∧ o < size(ob)THEN

oc,o,cw := ob(o+1),o+1,cw+1
END;

output = WHEN s 6= t ∧ o = size(ob) THEN
s := s+1 ‖ o := 0 ‖ ob := 〈〉

END;
/*external*/
/* input PIC */
input = WHEN s = r THEN
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r := r+1
END;

/* dictionary */
nextdc = WHEN r 6=t ∧ dtc = otc ∧ ot 6= dc THEN

twc : | (twc ∈ C ∧
∃ ps.(ps ∈ PS ∧ ob←twc ⊆ ps)) ‖ dtc := dtc+1

END;
/* comparator */
chkc = WHEN r 6=t ∧ otc = dtc ∧ ot 6= dc THEN

dc :∈ dc .. dc+1
END;

release = WHEN t 6= r ∧ ob ∈ PS ∧ ot 6= dc ∧ otc = dtc THEN
t := t+1

END;
/*reset*/
reset = BEGIN

o,ob,s,t,co := 0,〈〉,r,r,cw ‖
otc := dtc ‖ ot:= dc

END;
/*environment*/
recvc = WHEN cw 6= co THEN

co := co +1
END

END
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Appendix 1

Components of a Security
Target

1.1 Security Target Contents

Figure 1.1 (from the Common Criteria part 1 [4], Fig. 5) lists the components of a
Security Target. It contains the following sections.

1. an ST introduction containing three narrative descriptions of the TOE on differ-
ent levels of abstraction;

2. a conformance claim, showing whether the ST claims conformance to any PPs
and/or packages, and if so, to which PPs and/or packages;

3. a security problem definition, showing the threats, OSPs and assumptions that
must be countered, enforced and upheld by the TOE and its operational environ-
ment;

4. security objectives, showing how the solution to the security problem is divided
between security objectives for the TOE and security objectives for the opera-
tional environment of the TOE;

5. security requirements, where a translation of the security objectives for the TOE
into a standardised language is provided. This standardised language is in the
form of SFRs. Additionally this section defines the SARs;

6. a TOE summary specification, showing how the SFRs are implemented in the
TOE.

An ST may also contain an extended components definition, where new components
(i.e. not included in CC Part 2 or CC Part 3) may be defined. But this is not required
for the Trusted Filter.

These components are described briefly in the following sections.
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Figure 1.1: Components of a Security Target



Appendix 2

Security Target Introduction

2.1 ST and TOE Reference

• Security Target: ST for the Trusted Filter – version 1.0.

• Target of Evaluation: Trusted Filter Prototype – version 1.1 (12/12/1005).

2.2 TOE Overview

A Trusted Filter is used to control unidirectional data transfer between two systems
with different security classification levels. The filter acts as a control point between
the two systems, determining the traffic flow between them.

The particular Trusted Filter considered here controls traffic between a a high-
security and a low-security system. It only allows traffic to be transmitted from high to
low. This traffic is a set of commands issued by high security user, typically to control
some process or device on the low side. Authorization is determined word by word,
by checking against a fixed list of permitted commands. If a word is not in the list of
authorized commands then it is not transmitted.

The prime security requirement is that no unauthorized words that might be input
to the high side are transmitted to the low side.

In addition, the implementation is required to shut down if an attempt is made to
transmit an unauthorized word. This requirement has no impact on security, since a
device that does not transmit anything trivially satisfies the security requirements.
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2.3 TOE Description

Note: this section is a summary of the of information in the document Trusted Filter –
Design Overview, Vicky Moyle, Luke Sledziona, 2005. [12]

The trusted filter has been designed to interface between a high security classifica-
tion host and a device on a low security classification network. Unlike more complex
commercial trusted filters, micro controllers or processors do not control this device.
All core functionality is provided via hardware logic and clocking. It is expected that
the trusted filter will be more secure and have a higher fault tolerance because of its
hardware implementation.

A trusted filter is used for unidirectional data transfer between two systems of vary-
ing classification levels. The filter in such a scenario acts as a control point between the
two systems determining the traffic flow between the two levels. The most common
implementation of a trusted filter is between a higher classified system and a lower
classified system in which traffic flow from low to high is blocked whilst traffic from
high to low is allowed to flow. The trusted filter has been designed to connect to both
systems via a serial RS-232 interface.
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TOE Conformance Claims

3.1 CC conformance claim

This Security Target conforms to CC 3.1 Rev 1 and contains no extended security
requirements.
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Security Problem Definition

4.1 Security Problem Definition

The general setting of the problem is the interface between areas of high and low se-
curity and the passing of data from high to low in a controlled manner. The particular
situation in which the Trusted Filter is used is where a command stream of limited
vocabulary is transmitted from an area of high security to one of low security. An ex-
ample of this is a link sending device-control commands from a workstation in a secure
area to an external device in an unsecured area.

The security problem is to ensure that the link cannot be used to pass unauthorized
information to the insecure area.

4.2 Threats

A threat consists of of a threat agent an asset and and an adverse action of that threat
agent on that asset. In the case of the Trusted Filter the asset is access to classified
information.
Table of Threats

# Agent Action.
T1 Unauthorized user Undetected compromise of asset due to unauthorized use
T2 Authorized user An authorized user may intentionally or accidentally transmit

sensitive information
T3 User An authorized or unauthorized person may cause a security

breach by an unauthorized restart
T4 – Integrity of information may be compromised due to

hardware errors
T5 – Weaknesses in the design or implementation may

transmit unchecked data
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4.3 Organisational Security Policies

This section itemizes any actual organizational security policies that the TOE must
meet.

P1 Only data not classified as secure or specifically declassified may be transmit-
ted from secure to insecure areas.

4.4 Assumptions

A1 The TOE is operated within a physically secure environment, protected from
unauthorized access.

A2 The contents of the reference dictionary is:

(a) Checked and authorized by someone at an appropriate level of security
clearance and authority.

(b) Installed correctly in the device.

A3 Operation procedures are defined which cover both normal use and the action to
be taken in the event of the machine shutting down due to invalid data or other
circumstances.

A4 the device is only operated by personnel who are trained in the authorized pro-
cedures.



Appendix 5

Security Objectives

5.1 High-level solution

The Trusted Filter controls all data passing over the subject link. It checks every com-
mand passed from the high-security area and confirms that it is one of the authorized
commands listed in its dictionary. All authorized commands are transmitted, but if an
attempt is made to send a non-authorized command the filter shuts down and awaits in-
tervention by an operator (i.e. a manual reset). The filter also monitors its own correct
functioning and similarly closes down if an internal error is detected.

5.2 Part-wise Solution

5.2.1 Security objectives for the TOE

TOE1 The TOE shall control all data passing over the subject link.

TOE2 The TOE shall check every command it receives against the commands listed in
its dictionary.

TOE3 The TOE shall only forward commands received if they match a dictionary entry.

TOE4 The TOE shall shut-down if an attempt is made to send a non-authorized com-
mand or if an internal error is detected.

5.2.2 Security objectives for the environment

OE1 The operational environment shall ensure that the dictionary in the TOE is set up
by an authorized person and only contains authorized data.

OE2 The operational environment shall set up the TOE in a secure area.

OE3 The operational procedures shall ensure that only authorized persons have access
to the TOE.
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5.3 Relation between the objectives and the problem
definition

# Objective. Threat Policy Assump
TOE1 TOE controls all data passing over the subject link. T2 P1 � � �

TOE2 TOE checks every command received T2 P1 � � �

TOE3 TOE only forwards commands in the dictionary T2 P1 � � �

TOE4 TOE shuts down on error T4, T5 � � �
OE1 OE ensures dictionary set up correctly T1, T5 P1 A2
OE2 OE sets up the TOE in a secure area. T1, T3 P1 A1
OE3 OE ensures that only authorized persons have

access to the TOE. T1, T3 A1

5.4 Security objectives rationale

Threat T1 Undetected compromise of asset due to unauthorized use. OE2 and OE3
ensure that the TOE is in a secure environment with no unauthorized
access.

Threat T2 An authorized user may intentionally or accidentally transmit sensitive in-
formation . TOE1 and TOE2 ensure that all data passing over the subject
link passes through the TOE and is checked by it. TOE3 ensures that no
data forwarded by the TOE is sensitive.

Threat T3 An authorized or unauthorized person may cause a security breach by
an unauthorized restart. As with Threat T1, no unauthorized person has
access to the machine (by OE2 and OE3). In the case of authorized
users, this is addressed by assumption A3 and OE4, which ensure that
the appropriate procedures are in place and are followed.

Threat T4 Integrity of information may be compromised due to hardware errors. This
is addressed by the shut-down function (TOE4).

Threat T5 Weaknesses in the design or implementation may transmit unchecked
data. This is addressed by the shut-down function (TOE4).

OSP P1 Only data not classified as secure or specifically declassified can be
transmitted to insecure areas. This is ensured by TOE3 which guaran-
tees that only data in the dictionary is passed to the insecure side of the
link, and OE1 which ensures that the dictionary data has been set up (as
de-classifiable) by a person with appropriate authorization.

Assump. A1 The TOE is operated within a secure environment, protected from unau-
thorized access. This is equivalent to the objectives OE2 and OE3 in
combination.
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Assump. A2 The contents of the reference dictionary is installed correctly and autho-
rized at the appropriate level. This includes ensuring that transmitting
items from the dictionary, in any sequence, cannot be used to transmit
unauthorized secure information. This is equivalent to the objective OE1.
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Extended Components
Definitions

None.

101



Appendix 7

Security Requirements

7.1 Security Functional Requirements (SFRs)

TOE evaluation is concerned primarily with ensuring that a defined set of secu-
rity functional requirements (SFRs) is enforced over the TOE resources. The
SFRs define the rules by which the TOE governs access to and use of its re-
sources, and thus information and services controlled by the TOE.

The SFRs may, in turn, include multiple Security Function Policies (SFPs).
Each SFP has a scope of control, that defines the subjects, objects, resources
or information, and operations controlled under the SFP. All SFPs are imple-
mented by the TSF (see below), whose mechanisms enforce the rules defined
in the SFRs and provide necessary capabilities.

Those portions of a TOE that must be relied on for the correct enforcement
of the SFRs are collectively referred to as the TOE Security Functionality (TSF).
The TSF consists of all hardware, software, and firmware of a TOE that is either
directly or indirectly relied upon for security enforcement.

7.1.1 Security Function Policy

SFP: SFP-TIF - Trusted Information flow The functional requirement for the
Trusted Filter device is that only commands in the authorized dictionary are
transmitted to the link passing to the insecure side.

• The subjects of the policy are:

A Authorized users of the TOE

B Any users (unrestricted)

• The information under control of the policy is any high-side data stream
determined as requiring to be under the control of the TOE by other se-
curity policies.

102



Security Target: 7 Security Requirements 103

• The operations under control of the policy consist of the simple transfer of
data by the TOE from (A) to (B).

7.1.2 Security Functional Requirements

SFP: FDP IFC Information flow control policy

This family identifies the information flow control SFPs (by name) and defines
the scope of control for each named information flow control SFP

This scope of control is characterised by three sets: the subjects under
control of the policy, the information under control of the policy, and operations
which cause controlled information to flow to and from controlled subjects cov-
ered by the policy. The criteria allows multiple policies to exist, each having a
unique name. This is accomplished by iterating components from this family
once for each named information flow control policy.

The rules that define the functionality of an information flow control SFP
will be defined by other families such as Information flow control functions
(FDP IFF) and Stored data integrity (FDP SDI). The names of the information
flow control SFPs identified here in Information flow control policy (FDP IFC)
are meant to be used throughout the remainder of the functional components
that have an operation that calls for an assignment or selection of an ‘informa-
tion flow control SFP’.

FDP IFC.2 - complete information flow

The TSF shall enforce the information flow control policy SFP-TIF on users (A)
and (B) and any information input to the TOE and all operations that cause that
information to flow to and from subjects covered by the SFP.

The TSF shall ensure that all operations that cause any information in the
TOE to flow to and from any subject in the TOE are covered by an information
flow control SFP.

SFP: FDP IFF Information flow control functions

This family describes the rules for the specific functions that can implement
the information flow control SFPs named in Information flow control policy
(FDP IFC), which also specifies the scope of control of the policy.

It consists of two kinds of requirements: one addressing the common infor-
mation flow function issues, and a second addressing illicit information flows
(i.e. covert channels). This division arises because the issues concerning illicit
information flows are, in some sense, orthogonal to the rest of an information
flow control SFP. By their nature they circumvent the information flow control
SFP resulting in a violation of the policy. As such, they require special functions
to either limit or prevent their occurrence.

FDP IFF.1 Simple security attributes, requires security attributes on infor-
mation, and on subjects that cause that information to flow and on subjects
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that act as recipients of that information. It specifies the rules that must be
enforced by the function, and describes how security attributes are derived by
the function.
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TOE Summary Specification

The Trusted Filter ensures controlled information flow by acting as a gateway
between input and output RS232 ports. All commands pass through the fil-
tering logic, which checks them serially against the contents of an authorized
commands dictionary which is held in EPROM. Only commands for which there
is a positive match are released to the output port.

If an error occurs the filter shuts down and can only recommence opera-
tion after the external reset switch is pressed or power to the device is cycled.
Shutdown can be triggered by:

• Inconsistent results from the internal logic.

• The end of dictionary being found without a match.

• An error is detected by either the input or output PIC microprocessors.

When a shut-down state occurs, the processing of further commands is
disabled, and the device is locked in an inactive state. A LED connected to
the shut-down line alerts the user that the device is in shut-down and therefore
needs resetting.

The external reset switch used by the trusted filter is a momentarily on push
button switch. By pressing the reset button, the shut-down condition is cleared
and the device reactivated.

The list of valid commands that the trusted filter will allow to pass is stored
within a dictionary contained in EPROM memory. This dictionary consists of
7 character commands that are terminated by an identifying, end of command
byte (FF). Commands less than 7 characters long padded with the end of dic-
tionary byte (DF). If the end of dictionary byte is processed, the trusted filter
will have entered an invalid state and will shut down.
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