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Abstract 
The path to turbulence in the wake of cylinders with square cross-
section is investigated by means of direct numerical simulation, 
employing a two-dimensional spectral element method and Floquet 
linear stability analysis.  The critical Reynolds number for the onset 
of the three-dimensional instability modes A, B, C and QP are 
reported for cylinder incidence angles between 0° and 45°. The 
Strouhal—Reynolds number relationship, and lift and drag 
coefficients are also investigated for these incidence angles. 
Reynolds numbers (based on the side length of the square) up to 
Re=300 are considered, and a significant variation in bifurcation 
scenarios are observed for the various incidence angles. 
 
At Reynolds numbers greater than Re ≈ 225 for an incidence angle 
of 45°, a previously unreported asymmetry is detected in the von 
Kármán vortex street. The cause of this asymmetry is investigated 
as it presents a possible alternative path to turbulence to that 
reported in the wakes of other bluff bodies. 
 
Keywords: Instability, wake, square cylinder, incidence angle, 

Floquet stability analysis, spectral element method 
 
Introduction 
The transition from two-dimensional to three-dimensional flow 
around a bluff body is an important phenomenon to understand, as 
the wake forces can have potentially detrimental structural or 
positional effects on the body or its surrounds. The pressure, lift and 
drag forces on bodies are altered by three-dimensional flow 
structures [20]. In the emerging field of micro-technology, flow 
situations often occur within the Reynolds number range at which 
the flow transitions to turbulence. The three-dimensional wake 
structures that develop at the onset of three-dimensional flow have 
also been observed to persist to Reynolds numbers as high as 
10,000 [12]. Understanding the behaviour of the wake at transition 
can indicate the likely behaviour of the wake at higher Reynolds 
numbers, without resorting to resolving the turbulent wake. 
 
The transitional behaviour of bluff body wakes has been the subject 
of numerous numerical and experimental investigations. These 
studies have examined cylindrical geometries with circular [1, 7, 9, 
20, 21, 22] elliptical [17], and square [10, 11, 13, 14, 19] cross 
sections. Previous results have indicated that the bifurcation 
scenarios are dependant on the symmetry of the body about the 
wake centreline. Circular cylinders have been conclusively shown 
[3] to produce two-dimensional wakes that are unstable to two 
synchronous three-dimensional modes, labelled modes A and B, as 

well as a quasi-periodic mode, labelled mode QP, characterised by 
a complex pair of Floquet multipliers (μ). Cylinder geometries that 
are asymmetric about the wake centreline tend to be unstable to a 
third, subharmonic mode with μ = -1 (see mode C in the wake of 
rings [15, 16]) rather than a quasi-periodic mode. 
 
The effect of altering the symmetry of the bluff body, while 
investigating the stability of the wake to three-dimensional 
instability modes, was investigated for cylinders with elliptical 
cross sections [17] and for rings [15, 16], which approach a 
symmetrical body as the aspect ratio approaches infinity. To the 
knowledge of the authors, the stability of the square cylinder wake 
at varying angles of incidence, α, has not yet been investigated.  

 
Figure 1 – Schematic representation of the problem under investigation. The 

coordinate system {x,y,z} is defined at left. 
 
Throughout the current study the Reynolds number (1) is based on 
the normalised side length of the cylinder, d, the normalised fluid 
velocity, U, and the normalised kinematic viscosity ν. Figure 1 
schematically illustrates U, d and α. 
 

(1) 
 
 
The Strouhal number (2) is defined below, where f is the frequency 
at which vortices are shed in the wake of the cylinder.  
 

(2) 
 
 

 
The drag coefficient, CD and lift coefficient, CL scale with the factor 
½ρU2(1)d, and therefore represent coefficients per unit length.  
 
It should be noted that the “traditional” Reynolds number may be 
determined by multiplying equation (1) by the scale factor: 
 

(3) 

ν
UdRe =

U
fdSt =

)cos()sin(SF αα +=
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Previous Studies 
The paths to turbulence over bluff bodies have been investigated for 
cylinders with square cross section both experimentally [10, 11] 
and numerically [11, 13, 14, 19]. However, no previous study has 
investigated the available instability modes for non-zero incidence 
angles.  
 
The critical Reynolds number for transition to Modes A, B and C 
were calculated [13] as 162±12, 190±14 and 200±5, respectively. 
The modes were observed to be most unstable to spanwise 
perturbations with wavelengths of 5.22d, 1.2d and 2.8d, 
respectively. These values are all within the error limits of values 
specified in other studies. Notably, the critical transition Reynolds 
numbers for Modes A and B were found experimentally [10] to be 
approximately 160 and 200 – verifying the results of the numerical 
studies and the use of linear stability analysis. 
 
The most common technique used to calculate the stability of a 
bluff body wake to three-dimensional perturbations is the method of 
Floquet stability analysis. The technique involves measuring the 
temporal development of an infinitesimally small three-dimensional 
perturbation, superimposed onto the two-dimensional base-flow. 
The magnitude of the perturbation is amplified over each shedding 
cycle by the Floquet multiplier, which when greater than unity, 
leads to a wake instability. A full description is found in Barkley 
and Henderson [1]. This method not only significantly reduces the 
complexity of the simulation over a three-dimensional method, but 
also clearly elucidates the critical transition Reynolds numbers and 
spanwise wavelengths. 
 
While Floquet stability analysis reveals the stability of the wake to 
a particular spanwise perturbation wavelength, the topology of the 
mode is determined by inspecting the structure of the perturbation 
field. Mode A has been characterised as having alternating positive 
and negative streamwise vorticity between successive half periods 
at a given point along the span [4, 13]. The vorticity also varies 
periodically in the spanwise direction along the cylinder, with the 
overall Mode exhibiting a T-periodic temporal symmetry. Mode B 
is also synchronous with the base flow and is characterised as 
having constant streamwise vorticity through time, at a given 
spanwise location. The vorticity also alternates in sign periodically 
along the span, akin to the Mode A instability. Mode C has been 
observed in the wakes of rings [15] and the circular cylinder with 
the presence of a trip-wire [23]. In these cases mode C has been 
classified as being precisely 2T-periodic (subharmonic). Mode C 
was not reported in the wake of elliptical cylinders [17].  
 
Blackburn et al. [2] explained that the Mode S that was reported in 
square cylinder wakes [13] is actually a quasi-periodic mode, 
characterised by a complex pair of Floquet multipliers. The 
numerical method originally implemented had not allowed a 
differentiation between complex-conjugate multipliers and a single, 
real multiplier, as the technique only measured the absolute 
magnitude of the multipliers. The mode was subsequently renamed 
mode QP, which was observed to operate via both standing and 
travelling waves. 
 
Throughout this study, the observed modes will be compared to 
those from previous studies, in order to identify them and classify 

them according to their most unstable spanwise wavelength, and 
their temporal symmetry. Blackburn et al., [3] explained that when 
varying only a single parameter, Re, only one bifurcation can be 
observed as the primary bifurcation. It was noted that by varying a 
second parameter such as the body geometry, other bifurcation 
scenarios were possible. 
 
In the case of quasi-periodic instability modes, the Floquet 
multiplier magnitude is oscillatory due to the use of a single 
dimension vector to represent the Floquet multiplier. Blackburn et 
al. [2] explained that when using this method, the values of the 
Floquet multiplier oscillate about the constant value determined 
using a Krylov subspace method, which is sufficiently general to 
compute complex-conjugate pair eigensystems. Therefore when 
determining the Floquet multiplier values for quasi-periodic modes 
in this study, the average value of the oscillations will be used as an 
estimate of the steady Floquet multiplier value, and stability of the 
system to these perturbation wavelengths. 
 
Methodology 
The present study employs a spectral-element computational fluid 
dynamics package, which is used to solve the incompressible time-
dependant Navier-Stokes equations. Details of the computational 
method may be found in Karniadakis and Triantafyllou [7]. This 
method has been used previously to simulate various wake flows 
[15, 20] and is further validated within this report. 
 
The two-dimensional grid used to discretise the Navier-Stokes 
equations is shown in Figure 2. The grid is divided into 616 
macroelements, each element containing NxN interpolation nodes, 
with are placed to correspond to Gauss-Legendre-Lobatto 
quadrature points. 

 
Figure 2 – The computational domain used in this study. The mesh has 616 
elements and 81 nodes per element. The blockage ratio varies between 2.5% 

for the 0º incidence angle and 3.54% for the 45º incidence angle. 
 
In order to determine the most efficient mesh resolution for the 
present study, a grid resolution study was performed. The number 
of mesh nodes varies approximately with N2, resulting in a non-
linear computational expense with increasing resolution. The results 
of higher-resolution simulations are quite similar once a certain 
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resolution is used; rendering further resolution increases an 
inefficient use of computational resources. The Strouhal number 
has been used previously [17, 20] to determine an appropriate 
spatial resolution; therefore this method is also used in this study. 
 
The results of the grid resolution study are presented in Figure 3. 
The discrepancy between the Strouhal numbers of the N=9 and 
N=11 simulations is ~0.025%, and between N=11 and N=13 
simulations is ~0.01%. The small differences involved with using a 
grid resolution of N=9 to higher resolution grids, led to the 
conclusion that N=9 was adequate for the current study. The 
resulting mesh contains 49896 nodes. In comparison, Sohankar et 
al. [19] used a two-dimensional mesh containing 20449 
nodes.

 
Figure 3 – Results of the grid resolution study, computed at Re=100, α=45°. 
t* is a scaled time allowing for easier comparison of each simulation, as the 

onset of vortex shedding occurred at slightly different times. 
 
The time step (normalised by d/U) used in all simulations in the 
current study is 0.001. This time step is significantly smaller than 
that used in previous studies, and was chosen to ensure stability of 
the simulations. The numerical method used in the present study 
yields third-order time accuracy. 
 
Sohankar et al. [18] reported a reduction in the Strouhal number of 
1.4% as the blockage ratio was reduced from 5% to 2.5%. These 
correspond to the values used in Robichaux et al. [13] and the 
present study respectively. Increasing the upstream and downstream 
domains past 10d and 26d respectively did not alter results by more 
than a few percent even for Δt = 0.025. In the current study, an 
upstream domain of 10d was used, with a downstream domain of 
35d, chosen to capture important detail in the far wake. 
 
Results – Floquet Analysis 
A linear stability analysis was performed on three angles of 
incidence. The cases studied were 0º, in order to compare the 
results of the present mesh to previous studies; 45º, which is the 
maximum possible incidence angle; and 22.5º, which is the 

midpoint between the two angles. The results of the stability 
analysis are shown in Figures 4a-c. For the stability analysis, the 
oscillatory base flow was deemed to have become periodic when 
the period was constant to 6 significant figures.  
 
Figure 4a shows the results for the 0º incidence angle case. Three 
simulations were run at Reynolds numbers of 162, 190 and 200, 
corresponding to the critical transition Reynolds numbers for 
Modes A, B and QP, as reported by Robichaux et al. [13]. Mode A 
was observed to become critical at Re = 162, Mode B at Re = 
193.5±1, and Mode QP at Re = 210±5 with critical spanwise 
wavelengths of 5.24d, 1.14d and ~2.62d respectively. Over all 
Reynolds numbers tested, Mode A was the dominant instability. 
 
In the present study the critical Reynolds numbers differ to those 
reported in Robichaux et al. [13], though the Floquet multiplier 
magnitude is quite sensitive to Re. Given the uncertainty associated 
with the values quoted in Robichaux et al. [13], as well as the 
higher resolution in the current computations, it is likely that the 
results of the present study are more representative of real flows. 

 
Figure 4a – Results of the Floquet stability analysis at 0°. Filled symbols 
and solid lines represent real Floquet modes, whereas open symbols and 
dashed lines represent quasi-periodic modes. |μ| is the magnitude of the 
Floquet multiplier, and λZ is the spanwise perturbation wavelength. A dash-
dotted line represents the neutral stability threshold. 
 
The Re = 162, α = 0° case exhibited oscillating Floquet multipliers 
at shorter spanwise wavelengths, contrary to previous studies and to 
higher Reynolds number cases in the present study. The magnitude 
of oscillation at these wavelengths was minimal and indicates that 
the mode is either only slightly quasi-periodic in nature, or more 
likely that the stability analysis had not yet reached a saturated 
state. For each simulation at this incidence angle, the medium 
wavelength Floquet multipliers were highly oscillatory, confirming 
the results of previous studies, which have indicated that the wake 
is unstable to a quasi-periodic mode over the Reynolds number 
range under investigation. 
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The results of the α = 22.5° case are presented in Figure 4b. The 
three different simulations each contained two distinct peaks of 
instability, corresponding to two synchronous instability modes. 
This cylinder geometry is initially unstable to a shorter wavelength 
mode with a spanwise wavelength of ~2.09d, at a Reynolds number 
of 111±1. At a Reynolds number of 125 the wake became unstable 
to a second mode, with a spanwise wavelength of 5.56d. The 
stability analysis revealed a number of quasi-periodic Floquet 
multipliers, over a narrow range of span-wise perturbation 
wavelengths.  
 

 
Figure 4b – Results of the Floquet stability analysis at 22.5°. Real and quasi-

periodic modes are denoted in the same manner as in Figure 4a. 
 
 

 
Figure 4c – Results of the Floquet stability analysis at 45 degrees. Real and 

quasi-periodic modes are denoted in the same manner as in Figure 4a. 
 

Figure 4c shows the results of the Floquet stability analysis for the 
45° case. Simulations at higher Reynolds numbers were prevented 
by an aperiodic two-dimensional base-flow. From the simulations at 
this incidence angle, an instability mode was resolved, which 
occurred at a Reynolds number of 83, with a spanwise perturbation 
wavelength 5.7d. No significant secondary peaks in instability were 
observed at shorter wavelengths, and in general, shorter wavelength 
modes were strongly attenuated.  
 
The results show a trend towards suppression of the shorter 
wavelength modes as the angle of incidence is increased. The 
critical Reynolds number, Recr for each three-dimensional 
instability was found to decrease with increasing incidence angle. 
Also, the proportion of wavelengths for which quasi-periodic 
modes are available generally diminishes with increasing incidence 
angle, and for higher Reynolds numbers. Sheard et al. [17] also 
reported a decrease in Recr and the proportion of quasi-periodic 
modes, with increasing α, for elliptical cylinders. These trends 
could be investigated further with intermediate incidence angles, to 
confirm the consistency of the observations. 
 
Results – Mode Characteristics 
At each of the peaks for Figures 4a-c, streamwise vorticity plots 
were produced in order to reveal the spatiotemporal symmetry of 
each instability mode. These are shown for the 0° incidence angle 
case in Figures 5a-c. 
 
The vorticity plots in Figures 5a-c show contours that are 
comparable to those of Robichaux et al. [13]. In both studies Mode 
A is observed to have alternating streamwise vorticity every half-
cycle, mode B has constant streamwise vorticity with time, and 
Mode QP (or “Mode S”) exhibits approximately 2T spatiotemporal 
symmetry. 
 
Figures 6a-c show the streamwise vorticity for the two instability 
peaks in Figure 4b. In Figure 6a, the first peak is revealed to have 
topology equal to that of Mode A for the 0° case, and the spanwise 
wavelength of 5.24d corresponds closely to previously reported 
values for Mode A in the wake of cylinders with square cross 
section [13]. 
 
Figures 6b and c show a subharmonic Floquet mode – the vorticity 
contours were observed to alternate between Figures 6b and c over 
time. After starting transients had decayed, the Floquet multipliers 
for this instability peak reached a constant value, indicating that the 
mode is not quasi-periodic, while the vorticity contours highlight 
the 2T periodic, subharmonic nature of the mode. Mode C was 
predicted to have wavelengths of 2d and 1.7d in the wakes of 
circular cylinders [23] and rings [15] respectively. The present 
value of 2.09d agrees closely with the value for circular cylinders. 
 
The streamwise vorticity of the most unstable Floquet mode in the 
45° case is shown in Figure 7. As with the other two cases, this 
mode displays a spatiotemporal symmetry consistent with Mode A 
observed in the wake of other bluff bodies. The spanwise 
wavelength for the most unstable Floquet multiplier in this case is 
~6d, which is similar to reported values for Mode A in other 
studies. 
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(a) 

 
(b) 

 
(c) 

 
Figure 5 – Plots of streamwise vorticity ωz for the 0° incidence angle case. 

Arbitrary contour levels are chosen to reveal the structure of the 
perturbation field. (a) Mode A, Recr = 162 λcr = 5.24d (b) Mode B, 
Recr = 193.5±1 λcr = 1.14d (c) Mode QP, Recr = 210±5 λcr = 2.62d. 

(a) 

 
(b) 

 
(c) 

 
Figure 6 – Plots of streamwise vorticity ωz for the 22.5° incidence angle 

case. Arbitrary contours are chosen as in Figure 5. (a) Mode A, Recr = 125  
λcr = 5.56d (b,c) Mode C, Recr = 111±1 λcr = 2.09d. 

 (Images b and c are separated by 1 shedding period, T.) 

 

 
Figure 7 – Plot of streamwise vorticity ωz for the 45° incidence angle case, 

showing Mode A, Recr = 83 λcr = 5.7d.  
Arbitrary contours are chosen as in Figure 5.  

 
Results – Asymmetric Wake 
At Reynolds numbers of 200 and above, an asymmetry was 
observed in the wake of the 45° cylinder. This asymmetry was 
observed consistently for grids of resolution N=5 to N=11, 
demonstrating that the phenomenon was not an artefact of grid 
resolution. After travelling downstream from the cylinder, the von 
Kármán vortices were observed to travel away from the wake 
centreline at an angle, as shown in Figure 8. Sohankar et al. [19] 
mentioned this effect briefly for their two-dimensional simulations 
around square cylinders at 0° incidence angle. As their study 
focussed on three-dimensional simulations, they did not investigate 
this phenomenon in any detail. As with the present study, the 
asymmetry in the wake resulted in an average net lift coefficient. 
For the present study, at Re=225, this net lift coefficient was 
measured at CL≈ -0.20. 

(a) 

 
(b) 

 
Figure 8 – Plots of spanwise vorticity, highlighting asymmetry in the wake 

for two different simulations. Re = 225, α = 45° (a) N = 9 (b) N = 11. 
 

The asymmetry in the wake became more pronounced at higher 
Reynolds numbers, which is highlighted qualitatively in Figure 9. 
The direction of vortical propagation remained biased to one side of 
the wake region, for at least 50 shedding cycles. It is likely that the 
mechanism responsible for this asymmetric von Kármán vortex 
street is self-propagating, and the direction of propagation is 
determined by the initial perturbations that initiate the vortex street. 

 
Figure 9 – Asymmetric wake at Re = 350, α = 45°, N=7. 
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In order to investigate the origin of this asymmetry, simulations at 
Re = 225, 250 and 275 were performed using a 45° cylinder with a 
rounded (circular) downstream corner. The profile of this cylinder 
is shown in Figure 10. Using the new cylinder profile, the vortices 
travelled downstream in a symmetric manner, and no net lift 
coefficient was measured. This indicates that the asymmetry is due 
to the sharp corner at the rear of the standard 45° cylinder. It is 
likely that the corner serves to develop a pressure differential 
between the upper and lower sides of the rear of the cylinder, which 
affects the direction at which each vortex is shed. Rounding the 
cylinder smoothes the pressure gradient and allows any initial 
asymmetries to dampen out until a steady, symmetric state is 
achieved, as is observed in circular cylinder wakes. 

 
Figure 10 – Schematic of the rounded 45° cylinder. 

 
It should be pointed out that this two-dimensional asymmetry 
occurs at Reynolds numbers higher than those observed for the 
transition to three-dimensional flow. Therefore it is not possible to 
determine if the three-dimensional structure in the wake will 
suppress this asymmetry, or whether the three dimensional structure 
will instead be affected by the asymmetry. A full three-dimensional 
simulation or experimental method would be required to determine 
the true transitional nature of the wake for the 45° cylinder. 
 
Results – Wake-Splitting 
The cylinder wakes were observed to split into two distinct vortex 
streams, before recombining again further downstream. This was 
observed over all Reynolds numbers tested, from Re=50 to Re=300. 
As the vortex pairs re-combined downstream, merging of co-
rotating vortices was observed, which lead to an increasingly 
unsteady wake as the Reynolds number was increased. Due to the 
extent of the downstream domain, the chaotic recombination region 
was only observed for Reynolds numbers greater than 150, as the 
vortices combined further downstream for lower Reynolds 
numbers. The splitting region gradually travelled upstream over 
time, which significantly increased the time required for the wake 
to reach a saturated state. This is shown in Figure 11a and 11b. 

(a) 

 
(b) 

 
Figure 11 – Vorticity contours at (a) t = 232 and (b) t = 562.5 

(α = 45°, Re = 100). 

The wake-splitting phenomenon was reported and investigated both 
numerically and experimentally [5,6] in the wakes of circular 
cylinders. These studies reported the emergence of a secondary 
vortex street in the far wake, which developed after the merging of 
the primary vortex street. It is possible that this secondary street 
also forms in square cylinder wakes, however as the primary 
objectives of this study do not concern this phenomenon, it is not 
investigated any further. 
 
Results – St, CD, CL dependence on Re, α 
The results of this section are for two-dimensional numerical 
simulations. It should be noted that they span a Reynolds number 
range that exceeds the critical Reynolds numbers for three-
dimensional instability. As this study does not use a three-
dimensional grid, the results may differ from past or future 
experimental values due to these three-dimensional interactions. 
 
The Strouhal number was determined in each simulation by 
monitoring the velocity in the y-direction over time, at a point 3d 
downstream from the centre of the cylinder, and in the wake centre-
line. This point was chosen because it was located on the vertex of 
a mesh element and consequently remained fixed for alternate grid 
resolutions. The determination of the Strouhal number was not only 
required for the Floquet stability analysis, but also provides an 
avenue for verifying the current computational method.  
 
The Strouhal number variation with Reynolds number is plotted in 
Figure 12 for the three different incidence angles. The results for 
the 0° cylinder are qualitatively similar to those of Robichaux et al. 
[13] however the numerical values differ by up to 10%. Previous 
studies [18] have shown that increasing the blockage ratio leads to 
an increase in St, which could explain the discrepancy in the 
Strouhal numbers. To verify this, the results of a high blockage 
mesh are shown in Figure 12. The results of Robichaux et al. [13] 
were within 2% of the values produced by Franke et al. [4], who 
used a 1st order time-accurate numerical method, a time step of Δt = 
0.025, and a blockage ratio of 8.3%, which is larger than the 
blockage ratio of 2.5% in the present study. Blockage and time step 
effects account for the 10% discrepancy and highlight the accuracy 
of the present numerical method. 

 
Figure 12 – St-Re plots for the three incidence angles.  

1060



16th Australasian Fluid Mechanics Conference 
Crown Plaza, Gold Coast, Australia 
2-7 December 2007 
 
A peak in the Strouhal number was observed in the 0° cylinder at 
Re≈162, with a local minimum at Re≈210. This peak was observed 
in previous studies, however for circular cylinders, St increases 
continuously with Re  [8]. As the incidence angle was increased, the 
peak became less pronounced, and the maximum Strouhal number 
was reduced. At Reynolds numbers above those shown in Figure 
12, the wake was too chaotic to determine the Strouhal number. 

The average drag coefficient 
____

DC  is shown in Figure 13. The figure 
shows a clear increase in the average drag coefficient as the 
incidence angle is increased. The drag dependence on the Reynolds 
number was minimal for lower incidence angles, with the incidence 
angle exerting a much stronger influence on drag.  
 
The drag coefficient in equation (2) scales with the cylinder side 
length, rather than the projected height of the cylinder. If this scaled 
height is used, the drag coefficients become more closely grouped, 
however there is still some discrepancy. This is due to the 
separating and recirculating flow behind the body, which causes an 
“effective” height that is greater than just the body itself - a 
phenomenon that was discussed by Robichaux et al. [13]. The 
blockage ratio also increases with increasing incidence angle, from 
~2.5% to ~5%, which may alter the drag coefficient. Rounding the 
back of the 45° cylinder reduced the average drag coefficient by 
approximately 30%, to ~2, due to less inhibited vortex shedding.  

Figure 14 shows the average lift coefficient 
____

LC  variation with 
Reynolds number for the three cases. As expected, the symmetrical 
0° and 45° cases experienced virtually no net lift for lower 
Reynolds numbers. The asymmetric 22.5° cylinder experienced an 
almost negligible positive lift coefficient at low Reynolds numbers, 
which became negative at Re=125, and increased in magnitude as 
the Reynolds number was further increased. 

Figure 13 – Average drag coefficients for the three cases. 
 
The direction of the net lift force changed direction due to the 
variation of the viscous and pressure forces. At lower Reynolds 

numbers the viscous forces were slightly greater in magnitude, 
while the pressure forces were responsible for the net negative lift 
coefficient at higher Reynolds numbers. The net lift force for the 
cylinder at α = 45°, at higher Reynolds numbers, was entirely due 
to pressure forces. These were a consequence of the asymmetric 
vortex shedding. The direction in which the asymmetry operates is 
arbitrary, so the absolute magnitude of the lift coefficient is more 
important than the sign in this case. 
 

 
Figure 14 – Average lift coefficients for the three cases. 

 
Conclusions 
The three-dimensional transition scenarios in the wake of a square 
cylinder were determined for angles of incidence 0°, 22.5° and 45°. 
Critical transition Reynolds numbers Recr and spanwise 
perturbation wavelengths λcr were found for each instability mode 
and are listed in Table 1. As predicted previously [3], via altering 
Re and a second parameter α, alternative bifurcation scenarios were 
observed. Also consistent with previous results [2] was the 
observation that only bluff body geometries that are asymmetric 
about the wake centreline are unstable to subharmonic modes. 
 
The stability analysis revealed that Mode A operates in the wake of 
all three cylinder geometries, as shown by the lower hatched line in 
Figure 15. Also shown in Figure 15 is a second hatched line, which 
marks an approximate transition zone where the wake becomes 
unsteady to the point where Floquet stability analysis is no longer 
possible. The results of the 0° cylinder supported the findings of 
Robichaux et al [13], with the exception that mode “S” was quasi-
periodic as predicted by Blackburn and Lopez [2]. With increasing 
incidence angle, shorter wavelength modes, as well as quasi-
periodic modes, became less prevalent. 
 

α 0° 22.5° 45° 
Mode A B QP C A A 
Recr 162 193.5±1 210±5 111±1 125 83 
λcr 5.24d 1.14d 2.62d 2.09d 5.56d 5.7d 

Table 1 – Summary of numerical results of the Floquet stability analysis. 
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Figure 15 – Summary of results of the parameter space under investigation. 
 
The square cylinder wakes exhibited a spitting and recombination 
phenomenon over all Re tested (50 and above). For Re=200 and 
above, the 45° cylinder wake became asymmetric, which resulted in 
a net lift coefficient of order          = 0.2. 
 
The Strouhal number reached a peak of 0.157 at a Re=160, for the 
0° cylinder. At other incidence angles, the peak in the Re-St curve 
was less prominent. In general, the Strouhal number decreased with 
increasing incidence angle. The average drag coefficient was 
amplified as the incidence angle was increased, due to a larger 
deflection of the incident flow. The Reynolds number did not have 
a significant impact on the average drag coefficient. The symmetric 
bluff body geometries experienced negligible average lift forces at 
low Reynolds numbers. As mentioned, for the 45° cylinder, a lift 
force was observed at Reynolds numbers of 200 and above, due to 
asymmetric vortex shedding. The 22.5° cylinder experienced a lift 
force for all Reynolds numbers, due to its asymmetric profile and 
consequential unbalanced fluid deflection. 
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