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ABSTRACT The appearance of systematic errorsin computation suggests
relatively unlinked computational knowledge to conceptual knowledge,
and hence difficulties with forward learning of mathematics. The
provision of programs of good teaching, where concrete materials are
used to exemplify and thus legitimize algorithmic processes, frequently
are not effective for use with upper primary students: systematic errors
often resurface. A novel and quite alternate approach to intervention is
the Old Way/New Way (O/N) strategy (Lyndon, 1989) based on psycho-
logical principles of memory, forgetting and interference. In this article,
issues associated with intervention, systematic errors and upper primary
students are addressed through a discussion of results of previous
research into seventh graders’ subtraction knowledge development by
overcoming error patterns in subtraction computation. By comparing
re-teaching strategies and O/N, it is proposed that both good teaching
and effective intervention strategies should be integral to the craft of
teaching, particulary in the middle school.

Background

Mathematical knowledge

In the past, basic mathematical knowledge was viewed as a student’s
proficiency in arithmetical calculation (Putnam et al., 1990), and thus
traditionally, the teaching of computational skill was dominant in
mathematics instruction (Lampert, 1986). From this perspective, it
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could be argued that a student who exhibited errors in calculation
would be regarded as having little or poor mathematical knowledge.
However, definitions of mathematics knowledge and understanding
state that computational performance is only one element encompassed
within a definition of knowing. For example, Resnick (1982) suggested
that mathematical knowledge is both syntactic and semantic, where
syntactic knowledge is correct performance of mathematical
procedures, and semantic knowledge is the understanding of the
meaning of those procedures. Leinhardt (1988) suggested that
mathematics knowing derives from four knowledge types: intuitive,
concrete, computational, and principled-conceptual, where, intuitive
knowledge is ‘everyday’ or real world application knowledge which is
normally acquired before formal instruction; concrete knowledge is
knowledge associated with representation by appropriate concrete
materials during instruction; computational knowledge is algorithmic
performance; and principled-conceptual knowledge is the ‘... under-
lying knowledge of mathematics from which the constraints can be
deduced.” (p. 122). It is generally accepted that the development of
mathematical knowledge can compartmentalize, and hence knowledge
types can grow in isolation. For example, a child who is proficient in
computational skill may have limited understanding of the math-
ematical principles of the computation; a child who can perform
calculations mentally in real-life situations may not be able to perform
the same calculation in the school setting. Computational proficiency
therefore cannot be regarded as a true indicator of knowledge, just as
poor computational skill does not necessarily mean the student
possesses little principled-conceptual knowledge. Comprehensive
mathematics knowledge, then, is where knowledge is linked; the
knower has developed various internalized representations of related
mathematical ideas, and easily moves between each representation
(Putnam et al., 1990).

From descriptions of mathematical knowledge, it can be seen that for
a child to know subtraction means that he/she is not simply proficient in
computation. Subtraction knowledge is the melding of principled-
conceptual and intuitive knowledge from which computational knowledge
is derived (Leinhardt, 1988); it is intuitive knowledge, a child’s ability to
solve subtraction problems as experienced in real life, providing the
basis for formal knowledge growth and the meaningful application of the
standard subtraction algorithm (Ginsburg 1977); it is the link of the
syntax (the procedures used in the subtraction algorithm) with the
semantics (the meaning of the procedures) in the mind of the learner
(Resnick, 1982). Computational errors in subtraction therefore could be
regarded as indicative of a student’s underdeveloped computational
knowledge, or the absence of linkage between computational subtraction
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knowledge and principled-conceptual knowledge, particularly if the
error is a consistent automated response.

Error patterns in computation

Traditionally, students who made errors in their work were regarded as
suffering from some learning disability (Kephart, 1960). Errors were
indicative of alack of knowledge. Such a deficit model of error production
assumed that minimal learning occurred as a result of the original
teaching effort, and so slow and progressive re-teaching was required.
Error pattern research has provided an alternative to this perspective.
Analysis of errors in computation has revealed that many student errors
arenot careless or random, but occur regularly and consistently (Brumfield
and Moore; 1985, Cox, 1975). Consistency in error production indicates
that the student is in fact capable of learning, but has somehow acquired
a learned disability rather than a learning disability (Ashlock, 1994).
Consistent errors are active knowledge constructions (Confrey, 1990a;
Resnick et al., 1989) and therefore indicate the presence rather than the
absence of learning. What has been learned are merely incorrect ways of
doing things.

The development of consistent errors in computation, according to
Resnick et al. (1989), occurs as children attempt to integrate new
knowledge with established knowledge when they are confronted with
mathematical examples which extend beyond their current knowledge
base. Children apply known mathematical procedures to unfamiliar
activities. This description of the development of consistent errors is
consistent with Brown and Van Lehn’s (1982) Repair Theory. Repair
Theory suggests that when learners are confronted with tasks which
they are unsure of how to perform (on which they have become ‘stuck’),
they use a simple ‘repair’ tactic which enables them to produce a solution
and become ‘unstuck’. In this way, repairs occur as learners choose
alternative solution paths in order to produce answers. However, if the
repair is erroneous and is left unchecked, the incorrect repair will
become a habit through repetition and practice. The repair then becomes
a consistent error.

The development of error consistency can also be seen to be similar to
the development of skill automaticity (Anderson, 1985). According to
Anderson, there are three stages to skill learning: (1) a cognitive stage;
(2) an associative stage and (3) an autonomous stage. Anderson suggested
that the cognitive stage of skill learning demands application of much
cognitive effort to learn a skill or procedure. At the associative stage the
procedure is practised and more efficient means of performing the task
are discovered. As a result of practise the procedure enters the third
" stage, the autonomous stage, and is performed with little conscious
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thought. Consistent errors in computation, then can be seen to be
procedures practised to automaticity which are performed with little
cognitive effort by the students in response to appropriate stimuli.
Through repetition, the errors become learned habits. They are produced
automatically in response to a stimulus, and in contrast to random,
careless errors, are not self-detected nor self-corrected. They are
conceptual and learned (Ashlock, 1994).

Overcoming errors in computation

Once acquired, students’ errors and misconceptions are extremely
difficult to overcome (Confrey, 1990b; Fischbein, 1987; Graeber and
Baker, 1991), and without appropriate instructional intervention,
systematic, learned errors persist for long periods of time (Cox, 1975).
For the remediation of systematic errors in computation, approaches
incorporating the close linkage of the written representation with the
concrete/pictorial representation have been suggested (e.g. Ashlock et
al., 1983; Booker et al., 1980; Resnick, 1982). Such approaches are
characterized by the use of various materials to promote concept
development, and typically incorporate the manipulation of specific
materials to demonstrate procedures within written algorithms. For
promoting subtraction knowledge, and hence overcoming systematic
errors in subtraction computation, Booker et al. (1980) described a
sequence of lessons that begin with activities for bundling and
unbundling popsicle sticks in groups of tens and ones, leading to
activities involving grouping, regrouping and trading of base 10 blocks,
to finally symbolically recording the algorithm whilst simultaneously
manipulating base 10 blocks. Studies on teaching subtraction using
similar approaches have been reported in the literature. For example,
a teaching sequence for subtraction was trialled with first and second
grade children by Fuson and Briars (1990) where subtraction algorithms
were explored in concrete, verbal and symbolic modes. Concrete materials
were used until children reached the point at which the blocks became
unnecessary and were dispensed with. One of the aims of this sequence
was to ensure that error patterns in computation did not develop.
Fuson and Briars stated that at every point in the teaching sequence,
students’ performance was carefully monitored so that any errors made
were not practised. In another study, Leinhardt (1988), described a
similar teaching sequence that began with the concrete representation
of a subtraction problem, progressed to an expanded decomposition
algorithm and finally moved to the simple decomposition algorithm. A
variety of manipulatives were also incorporated into this sequence.
Drawing from her definition of knowing, Leinhardt’s sequence was
aimed at guiding the development of students’ principled-conceptual
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subtraction knowledge through building knowledge of the following
principle:

The place value system can be partitioned and is conveniently arbitrary
inits notation. 26 = 20 + 6 can be expressed as 10 + 16 or 26 ones if value
is maintained as equal. Using this notational rearrangement column
subtraction can be applied. (Leinhardt, 1988: p. 24)

The teaching sequences described by Leinhardt (1988) and Fuson and
Briars (1990) were reported as successful in promoting the subtraction
knowledge of the first and second grade students in these studies.
However, using a similar teaching sequence with students who had
developed consistent errors in subtraction computation, Resnick (1982),
found quite contrasting results. In her study, Resnick found that the
students who received intensive instruction using concrete materials
and place-value games performed only marginally better than students
in the control group. Of this study, Resnick (1992) stated:

Despite the intensive personal instruction, only half the children taught
learnt the underlying semantics well enough to construct an explanation of
why the algorithm worked and what the marks represented. More surprisingly,
even children who did give evidence of good understanding of the semantics
often reverted to their buggy calculation procedures once the instructional
sessions were over (p. 394).

Resnick’s study, using good re-teaching approaches, provides
evidence that students can develop and hold appropriate concepts with-
out giving up their prior, inappropriate concept or error pattern. This
phenomenon has been described as knowledge compartmentalization,
where a learner holds two pieces of knowledge that are in conflict with
each other as separate entities in the mind (Posner et al., 1982; Vinner,
1990).

The recurrence of systematic errors and misconceptions despite the
intensity and quality of re-teaching programs has shown the limitations
of good re-teaching for assisting students with learned mathematical
difficulties. This is one of the major factors affecting programs of
intervention. It is well documented that good re-teaching does not
always result in the complete eradication of errors and misconceptions
(e.g. Bourke, 1980; Connell and Peck, 1993; Resnick, 1992). It is
extremely important to assist students overcome their mathematical
errors and misconceptions as they ‘act as barriers to the acquisition of
new conceptual knowledge’ (Mansfield and Happs, 1992: p. 453). Prior
knowledge has aninterfering effect on the development of new knowledge.
In astudy by Connell and Peck (1993) where concrete materials and good
re-teaching sequences were used with students who had developed
mathematical errors and misconceptions, this factor became apparent.
As they stated:
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When clearly identifiable student conceptual change occurred, it had limited
effect due to interference from previously acquired mental structures. Newly
acquired information appeared to serve in a superordinate capacity with
previously learned procedures or concepts being automatically applied (p. 329).

The reported lack of sustainability of conceptual change away from the
intensive remedial settingis also a factor affecting intervention programs.
It is well documented that some students appear to make satisfactory
progress under closely supervised and individualized instruction, but
these gains do not transfer to the regular classroom. Although
improvement may occur in the short term, these gains appear to fade
over time (Read, 1987).

A further factor that plays a significant role in intervention programs
is the affective domain of the learner. Typical responses from students in
intervention situations include slowness to respond, apathetic attitude
to task, frustration and task avoidance. Often, negative responses to
mathematical situations are in the form of avoidance behaviours, where
a student shows extreme reluctance to perform any mathematical task,
particularly those tasks with which the student has had a long history of
failure. Of avoidance behaviour, the American psychologist W. James
stated over 100 years ago that avoidance behaviours are exhibited as a
response to avoiding the situation: the best way to avoid failure is never
totry anythingnew, becauseifthereis not attempt there can be nofailure
and with no failure there can be no humiliation (James, 1890). Fernald
(1971) suggested that students who have experienced repeated failure in
performing mathematical tasks will only approach anythingmathematical
with adegree offear and loathing, and that such students need ‘emotional
reconditioning’. This is achieved by ensuring that students experience
success on the first day of the remedial session by organizing instruction
for ‘ensuring early success, and avoiding situations that lead to failure’
(Cole and Chan, 1990; p. 14).

For students who exhibit consistent errors in mathematics, the provision
of successful intervention programs is not a simple task. Many issues
associated with mathematics intervention are apparent. Some of these
issues are summarized in the following list:

¢ Errors are knowledge;

¢ Consistent errors are learned and habitual;

¢ Computational errors indicate the absence of linkage to principled-
conceptual knowledge;

¢ Errors/misconceptions interfere with development of new knowledge
and forward learning;

¢ Re-teaching programs are often ineffective in eradicating consistent
errors;

¢ Recurrence of error patterns after intense intervention influences the
affective domain of the learner;
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e Learners in intervention situations frequently exhibit avoidance
behaviours.

New alternatives for intervention

Re-teaching approaches do not overtly focus on the specific errors/
misconceptions held by the child. Re-teaching approaches appear to
align the approach to intervention programs as suggested by Gagne
(1983):

The effects of incorrect rules of computation, as exhibited by faulty perform-
ance, can most readily be overcome by deliberate teaching of correct rules. . .
This means that teachers would best ignore the incorrect performances and
set about as directly as possible teaching the rules for correct ones. . . To make
students fully aware of the nature of their incorrect rules before going on to
teach correct ones . .. seems to me . . . is very likely a waste of time (p. 15).

Gagne proposed that to overcome errors is to aim for ‘extinction’ (in
psychological terms) of that error by ignoring this inappropriate
knowledge. An alternative view is that errors/misconceptions must be
the focus of intervention, and intervention must assist unlearning of
inappropriate knowledge. This view isin agreement with Ausubel (1968)
who stated:

The role of preconceptions in determining the longevity and qualitative
content of what is learned and remembered is crucial. . . [The] unlearning of
preconceptions may well prove to be the most determinative factor in the
acquisition and retention of . . . knowledge (p. 135).

Alternative intervention programs have been described in the literature
which appear to take an ‘unlearning’ perspective on intervention. Rather
than being programs of re-teaching these methods begin with the
students’ errors/misconceptions, or incorporate procedures to enable
students’ errors/misconceptions to surface. Errors/misconceptions are
used in varying degrees to accelerate conceptual change. Such methods
include error pattern analysis and intervention (e.g. Ashlock, 1994;
Gable et al., 1991); cognitive conflict and conflict teaching (Bell, 1986—
87; Swedosh, 1999; Swedosh and Clark, 1998); using errors as spring-
boards for enquiry (Borassi, 1994); belief-based teaching (Rauff, 1994)
and teaching by analogy (e.g. Tirosh, 1990). Rather than taking a linear
approach, these methods can be regarded as splintering from the error
in a number of pathways.

Another program which provides a further dimension to intervention
is provided by the Conceptual Mediation (CM) program (Lyndon, 1995)
incorporating the Old Way/New Way (O/N) strategy (Lyndon, 1989). CM
is similar to intervention programs which actively focus on students’
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errors and misconceptions. CM differs in that its theoretical background
provides persuasive answers to questions that have plagued
remedial teachers and researchers such as those asked by Erlwanger
(1975):

Why is it that remedial children often display patterns of errors, hold
tenaciously to their own procedures, appear to become confused and emotion-
ally disturbed during remedial work and to require prolonged individual
assistance and guidance? (p. 171).

Conceptual Mediation

The Conceptual Mediation program is an integrated approach to
intervention that incorporates a particular strategy for assisting students
overcome systematic errors and misconceptions. The strategy is called
0ld Way/New Way (O/N), and by using this strategy, the student and
teacher engage in a two-way dialogic process where the child’s
misconception or error is explored and compared and contrasted to
information presented by the teacher.

The fundamental principle upon which the O/N strategy rests, and
which makes it different from other ‘unlearning’ strategies, is that
knowledge is held within the mind and protected from change by a
mental mechanism, referred to in psychological terms as proactive
inhibition (PI). Acknowledging this brain mechanism and its influence
on conceptual change provides a new perspective to learned math-
ematical difficulties and programs of intervention.

Proactive inhibition

As a psychological concept, PI has been widely researched over many
years (e.g. Dyer, 1973; Melton and Von Lockum, 1941; Postman and
Underwood, 1973; Stroop, 1935; Underwood, 1948; 1957; 1966;
Underwood and Postman, 1969). PI is a knowledge protection mecha-
nism that acts to protect first learned knowledge by preventing the
association of conflicting ideas (Baddeley, 1990; Houston, 1991;
Underwood, 1966). The PI mechanism in action can be clearly seen
through the following example provided by Underwood (1966):

If we are told that: 2 x 2 now is 11

8 —4 now is |

3+ 3 now is 27

we can imagine the difficulty we would have in remembering and applying this new

information. Interference, indeed frustration might well occur. (p. 516)

The following example provided by Baddeley (1990) provides a further
description of proactive inhibition: ‘Being taught that C means ‘caldo’
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which means hot, but none the less ‘forgetting’ and turning the wrong tap
would be an instance of proactive interference’ (p. 40). The psychology
literature provides evidence that the PI mechanism is an involuntary
mechanism over which the individual has little or no control (e.g.
Baddeley, 1990; Houston, 1991), but that considerable variation exists
within the population in the level of PI one inherits (Stroop, 1935).

Proactive inhibition and intervention
Proactive inhibition as an innate universal brain mechanism common to
everyone has significant implications for education and programs of
intervention. Re-visiting errors in light of PI, it can be seen that errors
as knowledge will be protected from change by PI. PI does not prevent
learning from occurring, it merely prevents the association of conflicting
ideas. In the remediation setting, then, for students who have developed
consistent errors or misconceptions, the teacheris most likely presenting
information that is in conflict with their own knowledge. The PI
mechanism thus will ensure that the student’s erroneous knowledge is
protected. In such a situation, the brain will experience confusion, a state
of disbelief, and the new information will be rejected or distorted so as
to come closer into agreement with what has been learned before.
According to Lyndon (1989), many factors affecting intervention can
be attributable to the action of PI. As discussed above, the recurrence of
errors/misconceptions despite the intensity of the intervention is due to
that particular program’s inability to overcome the influence of P1. With
application of much cognitive effort, students will appear to make
progress whilst closely monitored during intervention, but these gains
will fade when the student is working alone. The student’s correct
performance is cue-dependent; that is, dependent upon the presence of
the remediator. Inthe absence of theremediator, PIwill cause accelerated
forgetting of the new knowledge and this new knowledge will be dismissed
due to the cognitive effort required by the individual to overcome the
power of PI. The recurrence of errors will reinforce in the students their
feelings of failure, and thus students will exhibit avoidance behaviourin
remedial situations.

The Old Way/New Way strategy

For effective remediation, which contrasts programs of re-teaching,
Lyndon (1989), stated that the influence of PI as aninhibitor of knowledge
change must be acknowledged. Further, Lyndon stated that ‘... the
inhibitory effects of PI may be reduced by the use of the O/N method; and
the use of O/N may lead to the retroactive inhibition (i.e. forgetting) of
the “old knowledge”’.
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The O/N procedure is based upon bringing the learner’s ‘old way’ to a
conscious level and exchanging it for a ‘new way’ by means of
discrimination learning, followed by practise with the correct ‘new way’.
There are four steps in the procedure, as follows:

1. Reactivation of the error memory;

2. Labelling and offering an alternative;
3. Discrimination; and

4. Generalization.

The application of O/N to a student’s systematic error in the sub-
traction algorithm (306 — 149) would proceed in the following manner.
In step 1, reactivation of the error memory, the student would be
presented with the subtraction exercise 306 — 149 and asked to com-
plete that calculation in his/her usual way. Prior to this step, it would
have been determined that the student produces consistent errors in
such exercises. For step 2, labelling and offering an alternative, the
student would be asked if his/her particular method of performing that
computation could be called the ‘old way’. After gaining consent, the
student would then be asked if a ‘new way’ for computing 306 — 149
could be shown. Using carefully selected language, the remediator
would then perform the algorithm the standard way. The difference
between the two algorithms would then be carefully pointed out, with
both the student and the remediator suggesting differences. In step 3,
discrimination, the student would then be asked to perform the com-
putation his/her old way again, then to perform it the new way, and
then asked to contrast the two ways. This discrimination step, using
the same problem (306 — 149) is repeated five times, in the sequence:
old way, new way, difference; old way, new way, difference. For step 4,
generalization, the student would be provided with six subtraction
exercises and asked to complete them using the new way. The sequence
of four steps in O/N is called a learning trial, and takes approximately
10 minutes.

The application of O/N

The application of O/N to errors and misconceptions has been explored
in mathematics (e.g. Dole, 1990, 1993, 1995, 1999) and science (Lyndon
and Dawson, 1995; Rowell et al., 1990). In a particular research study
conducted by Dole (1993), two programs of intervention were utilized in
an attempt to overcome Grade 7 students’ (age 12-13 years) error
patterns in subtraction computation, and to promote links between
computational, concrete and principled-conceptual subtraction
knowledge. One program of intervention was based on a conventional
good re-teaching approach; the other program utilized O/N. The specific
purposes of the study were four-fold, as follows:
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1. To compare the effectiveness of two intervention programs upon
changing Year 7 students’ erroneous computational subtraction
knowledge and their potential for linking computational knowledge
with concrete and principled-conceptual subtraction knowledge;

To document subjects’ responses to the two methods;

To search for evidence of PI affecting conceptual change;
Tohypothesize an effective program of intervention for upper primary
students.

e

In this study, 16 students from a pool of 60 Grade 7 students
demonstrated systematic errors in subtraction computation, and were
randomly allocated to one of two treatment groups. Identification of
error consistency was via a diagnostic error analysis test that consisted
of five types of subtraction exercises classified according to skill level (see
Table 1). The test consisted of five subtraction exercises from each level
of computational skill (25 items), presented in random order. Test
performance was scored by examining errors for the existence of a
pattern. For any given skill level, a systematic error was defined as one
which occurred three or more times out of five attempts (Cox, 1975).

This test not only assisted selection of subjects, but also highlighted
the fact that the students’ computational knowledge was inappropriate.
The students were also interviewed prior to treatment to ascertain the
appropriateness of their intuitive, concrete and principled-conceptual
subtraction knowledge. For concrete knowledge, subjects were required
todemonstrate the procedures in a two-digit subtraction algorithm (with
regrouping) using base 10 blocks. For intuitive/real life knowledge,

Table 1 Five skill levels of subtraction algorithms

Skill level  Skill Example
Level A Subtracting a two-digit from a two-digit 53
number with regrouping -14
Level B Subtracting a two-digit number from a three-digit 523
number with renaming in ones and tens place 78
Level C Subtracting a three-digit from a three-digit number 260
containing zero in the ones place with regrouping -156

in the tens place

Level D Subtracting a three-digit from a three-digit number 608
containing zero in the tens place with renaming in -134
the hundreds place

Level E Subtracting a three-digit from a three-digit number 302
containing zero in the tens place with renaming -158
across the tens to the hundreds place
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subjects had to solve a real world subtraction problem, and also create
areal world subtraction problem. For principled-conceptual knowledge,
subjects had to demonstrate the following understandings:

1. That by increasing/decreasing the minuend or subtrahend in a
subtraction exercise, the solution alters accordingly;

2. Addition is the inverse of subtraction, by stating that subtraction
computation could be checked through addition;

3. Regrouping/renaming is a legitimate process used for decomposition
subtraction algorithms, by being able to explain, for example, that 28
ones can be regrouped as 1 ten and 18 ones;

4. Placevalue, by organizing expanded numbersinto appropriate columns
to perform subtraction computation.

Interview data gathered prior to treatment revealed that students in
both groups had inappropriate computational knowledge, but that their
intuitive, concrete and principled-conceptual knowledge showed
variation. For all students in this study, therefore, the subtraction
algorithm existed in relative isolation and was unlinked to other
subtraction knowledge types. Also, it was found that two students
performed subtraction computations in the same erroneous manner, yet
of these two students, one demonstrated appropriate principled-
conceptual knowledge in three of the four subcategories of this knowledge
type, whilst the other failed to demonstrate any such knowledge. It can
be seen that the students’ errors in subtraction computation effectively
masked deeper subtraction knowledge.

Intervention commenced after all interviews had been conducted. For
this study, a two-week period was set aside for intervention, and
students in each treatment group were withdrawn from their regular
classroom at the same time each day over this period of ten consecutive
days. Conventional intervention consisted of a series of lessons which
centred upon using appropriate materials to demonstrate the legality of
the subtraction process within the base ten numeration system. Students
in this group experienced 10 lessons of approximately 25 minutes
duration beginning with regrouping activities using bundling sticks and
base 10 blocks for the subtraction of single digit numbers from two digit
numbers, and progressing through the five skill levels of algorithms used
on the diagnostic error analysis test.

The lessons followed a sequential framework, but planning of each
lesson was also contingent upon progress in the previous lesson. The
O/N intervention consisted of an O/N trial performed individually with
each student on the first day of intervention. Subtraction exercises
selected for intervention using O/N were determined through analysis of
individual students’ error patterns. For example, a skill Level E algorithm
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was used with a student who demonstrated an error pattern in skill
Level E algorithms. For students who demonstrated error patterns at
several skill levels, skill Level B algorithms were selected for O/N as
Level B algorithms were the algorithms that students had the most
difficulty with second to Level E algorithms.

Each O/N trial took approximately 10 minutes. On the second day of
O/N intervention, these subjects met as a whole group, and were
presented with five skill level B and five skill level E exercises. Subjects
were expected to complete the exercises relating only to the skill level
that had been targeted using O/N. From this information, the
experimenter could ascertain which subjects required further O/N trials
for other skill level algorithms. (Further O/N trials were not required,
however).

During the two-week treatment time allocation, Group 2 met together
ononeotheroccasion foraskillmaintenance check, where ten subtraction
exercises were presented for computation. Comprehensive field notes
were gathered during the intervention sessions, particularly students’
responses and attitudes totheintervention approaches. Second interviews
were conducted after treatment, and responses on interview items were
compared to data collected during the first interview.

After treatment, students in both groups demonstrated change in
subtraction knowledge across particular knowledge categories. The O/N
was successful in changing computational knowledge for all students,
and also surprisingly appeared to have some influence on concrete and
principled-conceptual knowledge development, though the extent of the
development of these two knowledge categories was much less than the
development of computational knowledge. The conventional approach,
which was more time intensive compared to O/N, was less successful in
improving computational knowledge and only marginally better in
building concrete and principled-conceptual knowledge.

Subjects’ attitudes to the two intervention methods also showed stark
contrast. When O/N was used individually with students, initially
presentation of a subtraction exercise caused feelings of anxiety, both
about mathematics in general, or the subtraction exercise in particular.
Such student comments were: ‘I can’t do these, I always get them wrong.’,
‘T'm no good at Maths.’, ‘Oh, I hate these . . . with the zero. I always get
them wrong.” The students also expressed task avoidance (slowness to
take up the pencil, leaning back on the chair, distancing body from the
table). After the O/N trial, students expressed the following comments:
‘Oh, that’s good. Now I know how to do it. Good.’, ‘Oh yeah. I just used to
forget about the zero.’, ‘Oh this is easy. I know how to do this now.” After
one O/N trial, one subject asked whether he could take his work home to
show his mother! With these students, there was a change of attitude
from negative to positive.
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Table 2 Number of Group 1 and Group 2 subjects demonstrating
appropriate computational, intuitive, concrete and principled-
conceptual subtraction knowledge — interview 1 and interview 2

Group 1 Group 2

Subtraction knowledge Interview 1 Interview 2 Interview 1 Interview 2
1. Computational 0 4 0 8
2. Concrete 0 5 2 5
3. Intuitive

(a) Solving 2 4 5 7

(b) Creating 5 8 7 8
4. Principled-conceptual

(a) Subtraction operation 2 4 4 6

(b) Inverse 3 4 6 7

(¢) Renaming 1 2 5 6

(d) Place-value 4 6 6 7

For the students in the conventional intervention group, however, the
reverse occurred. As the group came together for treatment on the first
day, the mood of the Group appeared positive, and the students appeared
excited. Comments noted included: ‘Are we going tohave some fun?’, ‘What
arewe goingtodo? Make something? The studentsindicated that they had
never used materials such as bundling sticks or base ten blocks for
subtraction, and they readily engaged in bundling and unbundling groups
of ten sticks, and exploring the value of the various base ten blocks. When
students were asked to demonstrate subtraction exercises with base ten
blocks whilst simultaneously recording the algorithm, the students
became veryreluctanttoperform. The students were continually informed
that the demonstration of the process itself was more important than
attainment of the correct solution. This resulted in one student physically
distancing himself from the main group, the slow and deliberate pounding
of the blocks onto the place value chart by another student, and the
construction of towers with the blocks by another student. Comments from
other students were: ‘This is babyish.’, ‘I feel a bit daggy doing this.’, ‘Oh,
thisissocinch.’, ‘Oh, why dowehave todoit with blocks?’, “Thisis sobasic.’,
‘I don’t need to use blocks. I know how to do this.” Many subjects
disregarded the concrete model and, when not monitored, calculated the
solution using their own (upon inspection, erroneous) computational
methods. From comments and observed body language it was apparent
that enthusiasm for these sessions had waned for some students in the
group, despite the fact that errors were still being made.

From this study, limitations of conventional approaches tointervention
with upper primary students became apparent. Specifically, the
conventional intervention sequence failed to:
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o Cater to the ability levels of the subjects;

e Control the desire of all students to produce answers rather than
analyse the procedure used to gain the answer;

e Maintain motivation to enable all tasks to be completed;

¢ Promote the translation of the concrete process to cognitive structure,
and to the pen and paper procedure, evidenced by the discarding of
materials at the earliest convenience; and

¢ Confront subjects’ existing knowledge, as evidenced by the recur-
rence of systematic errors.

This method was also time and energy intensive for all parties. In
contrast, the O/N intervention, was seen to be very appealing for use
with Year 7 students. The strengths of O/N lay in the short amount of
time and effort required for implementation, its power to motivate
students and its ability to confront the effect of PI as recurrence of
erroneous computation procedures was not evident.

Good teaching and effective intervention
The two intervention approaches explored in this study attacked
subtraction computation from entirely different angles. O/N looked first at
the error, and was concerned with replacing the erroneous procedure with
a correct procedure. The conventional approach aimed to use concrete
materials to legitimize the steps in the algorithm. From this study, O/N
appeared to provide an excellent starting point for remediation with
students of Grade 7. Students displayed confidence in their ability, and a
perceptible sense of relief at finally being shown the correct way. Once the
subtraction algorithm was correctly performed, these students appeared
ready to engage in activities designed to develop other aspects of
subtraction knowledge. Aspects of conventional intervention, such as
exemplifying the legitimacy of the subtraction algorithm with concrete
materials, exploring the use of addition to check subtraction calculations,
linking subtraction to the real world and developing estimation skills to
approximate answers appeared to be the next logical steps in the
intervention process, in an effort to promote and link computational
subtraction knowledge to concrete and principled-conceptual knowledge.
This study highlighted the value of using a simple process to break
through the barrier of erroneous knowledge, and enable forward
knowledge growth and development. In light of this study, an effective
method of intervention for use with upper primary students is proposed
as one which would consist of the following steps:

1. Identification of systematic errors;
2. Structured interview to establish depth of intuitive, concrete and
principled-conceptual knowledge;
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3. Application of O/N upon systematic computational errors;
4. Use of good re-teaching methods to link computational knowledge to
concrete knowledge and principled-conceptual knowledge.

Implications for practicing school psychologists

The recidivist nature of errors is frequently observed by those working
with learners in educational contexts. For practitioners trained in
remedial techniques, methods and strategies to assist students with
learned difficulties can be regarded as good teaching techniques. A
common assumption appears to be that students who are struggling in
academicsituations require good teaching at a slower pace, encapsulated
by the following quote taken from the Bullock Committee (HMSO, 1975):

Thereis nomystique about remedial education, not are its methods intrinsically
different from those employed by successful teachers anywhere. The essence
of remedial work is that the teacher is able to give additional time and
resources to adapting these methods to the individual child’s needs and
difficulties.

Similarly, Adelman and Taylor (1986) have echoed similar thoughts:

. remedial strategies involve no new principles of instruction. ..’
(p. 167) and ‘. . . conventional remedial practice is not distinguishable
from good teaching practise. . .’ (p. 176).

In this study, Lyndon’s O/N strategy was an effective and efficient
means for overcoming systematic computational errors. The theoretical
background of O/N offers a framework for interpreting error recidivism.
The O/N method itself offers a prescriptive approach to attacking
consistent errors, which was readily accepted by students in this study.
Exploration of O/N in this study has enabled the difference between good
teaching strategies and remedial teaching strategies to be enunciated.
There is a clear difference between good teaching and intervention
teaching. Good teaching strategies fall into a category distinct from true
remediation or intervention strategies. Only strategies that attack,
rather than build on prior knowledge, and that are effective in overcom-
ing the power of PI, can be classed as mediation or remediation strategies.
Practitioners in school settings therefore, need to make conscious decisions
about intervention methods when they work with students. The decision
is whether to apply good re-teaching strategies or to use methods for ‘un’-
teaching, and this is determined through diagnosis or assessment of
students’ knowledge. Planning for instruction is thus a two-step process
consisting of (1) diagnosis of students’ knowledge of the topic, including
identification of systematic errors and/or misconceptions and (2) plan-
ning instruction for either (i) teaching (and/or re-teaching) or (ii)

<
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un-teaching. Teaching and re-teaching should occur via implementation
of good teaching strategies for building students’ knowledge of the topic.
For un-teaching, intervention strategies, such as O/N should be utilized.

Concluding comments

Current trends in mathematics intervention research have come to
focus on the centrality of considering students’ errors and misconcep-
tions. The need to assist students unlearn has given rise to a variety of
methods and strategies. The O/N strategy as described in this article,
is a prescriptive method based on the psychological concept of PI as a
knowledge protection mechanism. Acceptance of PI in this manner
reflects the absolute necessity for both good teaching strategies and
effective intervention (un-learning) strategies as vital for effective
instruction.
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