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Abstract

In a finite volume CFD method for unsteady flow fluxes of mass, momentum and
energy are exchanged between cells over a series of small time steps. The conven-
tional approach, which we will refer to as direction decoupling, is to estimate fluxes
across interfaces in a regular array of cells by using a one-dimensional flux expres-
sion based on the component of flow velocity normal to the interface between cells.
This means that fluxes cannot be exchanged between diagonally adjacent cells since
they share no cell interface, even if the local flow conditions dictate that the fluxes
should flow diagonally. The direction decoupling imposed by the numerical method
requires that the fluxes reach a diagonally adjacent cell in two time-steps.

In order to evaluate the effects of this direction decoupling, we examine two nu-
merical methods which differ only in that one uses direction decoupling while the
other does not. We examine a generalized form of Pullin’s Equilibrium Flux Method
(EFM) [1] which we have called the True Direction Equilibrium Flux Method
(TDEFM). The TDEFM fluxes, derived from kinetic theory, flow not only between
cells sharing an interface, but ultimately to any cell in the grid. TDEFM is used here
to simulate a blast wave and an imploding flow problem on a structured rectangu-
lar mesh and is compared with results from direction decoupled EFM. Since both
EFM and TDEFM are identical in the low CFL number limit, differences between
the results demonstrate the detrimental effect of direction decoupling. Differences
resulting from direction decoupling are also shown in the simulation of hypersonic
flow over a rectangular body. The computational cost of allowing the EFM fluxes
to flow in the correct directions on the grid is minimal.
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1 Introduction

Bird’s Direct Simulation Monte-Carlo (DSMC) method [5] simulates a rarefied
flow by following the motion and collisions of a large number of simulator
particles as they move through the flow. DSMC in the high collision rate limit
has been used as an Euler solver [1,6–8] and as the ‘continuum’ part of a hybrid
DSMC/continuum solver. DSMC is generally more robust than a conventional
Euler solver but suffers from statistical scatter which requires large amounts of
CPU power to reduce to acceptable limits. One reason for DSMC’s stability is
that the fluxes of mass, momentum and energy are carried by particles which
move in the physically correct directions; in any time step fluxes may flow
from any cell to any other cell in the computational domain.

In continuum solvers the fluxes are typically ‘direction decoupled’; one dimen-
sional flux calculations are performed in the direction normal to the interface
between two cells, and the fluxes are only exchanged with cells that share
an interface. For example, on a 2D structured grid the fluxes flow in two co-
ordinate directions and never flow in one time step between cells which are
diagonally contiguous (share a vertex in common) but do not have a common
interface. Cook [9] shows that when the cell structure is not well aligned with
the physical structures in the flow, direction decoupled methods may produce
non-physical results such as negative temperatures or densities where strong
shocks occur or interact. These solvers may also produce asymmetrical results
where symmetrical results are theoretically required.

This phenomenon can be demonstrated through the solutions of radially im-
ploding or exploding flows on rectangular meshes. Figure 1 shows the com-
putational domain and the initial condition in which there is a low pressure
cylindrical region surrounded by a high pressure region with a sharp disconti-
nuity between the two. A cylindrically symmetric shock wave will propagate
toward the center, causing an increase in temperature and density as the shock
travels inwards. The figure also shows density contours found using three exist-
ing direction decoupled methods. It can be seen that the direction decoupled
methods give asymmetrical results.

Pullin [1] proposed the Equilibrium Flux Method (EFM) in which the fluxes
carried by particles having velocities conforming to the local Maxwell-Boltzmann
distribution were calculated analytically for the limit of an infinite number of
particles. EFM eliminates the statistical scatter associated with the effectively
equivalent particle flux methods. When EFM was used in 2D and 3D flows
[10–13] the conventional direction decoupling approach described above was
used. A 1D solution using EFM to calculate fluxes between cells is presented
in Figure 2. Viscous effects are ignored, although the numerical viscosity in-
herent to EFM is present. Figure 2 also shows the radially symmetric density
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Fig. 1. Direction decoupled 2D solutions to the implosion problem using a 50x50
mesh shown in Figure 2: (Top Left) Initial condition ; (Top Right) EFM; (Lower
Left) Godunov Method [2]; (Lower Right) Van Leer [14]. Contours are of density
(ρ/ρL) with contours every 0.5. Flow is shown at t

√
RTL/r = 0.098 after 100 time

steps. Initial conditions are γ = 9/7, TH/TL = 1.0, ρH/ρL = 10. Computational
domain lies in the square region 0 < x/r < 2.

contours as constructed from the 1D solution corresponding to the conditions
and elapsed time used in the direction decoupled results shown in Figure 1.

Since the EFM fluxes are just the amounts of mass, momentum and energy
transported by molecules in free-molecular flight there is no need, other than
for simplicity, to use direction decoupling when EFM is applied in two or three
dimensions. The True Direction Equilibrium Flux Method [3,4] represent the
analytical expressions for the fluxes carried by molecules originating in a rect-
angular cell with velocities selected from the Maxwell-Boltzmann distribution
and moved in free-flight in a specified time of flight to any rectangular region.
One dimensional TDEFM fluxes are equivalent to EFM fluxes when the CFL
number approaches zero. In this limit, the only difference between TDEFM
and EFM exists in higher dimensions when EFM is direction decoupled while
TDEFM is not. The TDEFM flux expressions are the analytical equivalent
to Macrossan et.al ’s Particle Flux Method (PFM) [15] applied to rectangular
cells.
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Fig. 2. (Left) Finite volume representation for a 1D simulation showing momen-
tum correction. (Right) Reconstructed 2D solution to the implosion problem using
1D-EFM. Flow is shown at t

√
RTL/r = 0.098 after 100 time steps. Initial conditions

are γ = 9/7, TH/TL = 1.0, ρH/ρL = 10. Computational domain lies in the square
region 0 < x/r < 2.

Here we compare TDEFM results to those obtained from direction decoupled
EFM for a 2D implosion problem and a 2D blast wave problem. These dif-
ferences are then further demonstrated in the simulation of hypersonic flow
over a rectangular body. The aim of the paper is to examine the effects of
direction coupling alone, thus both methods are restricted to first order accu-
racy in space and time, using identical grids with identical time steps. Since
both solvers share the same underlying principles and differ only in the direc-
tion decoupling aspect, results show the detrimental effects due to direction
decoupling.
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Fig. 3. Particle moving from the source region at x (xL ≥ x ≥ xR) to the destination
region between xl and xr.

2 Derivation of TDEFM flux expressions

Below are the expressions for the mass, momentum and energy carried by
molecules in free-molecular flight for time ∆t, starting from a rectangular re-
gion (in 2D) to any other rectangular region. All forces acting on particles are
assumed to be zero, i.e. no particle interactions occur while particles are mov-
ing. Uniform conditions are assumed within the cell from which the molecules
originate (i.e. there are no gradients of density, mean velocity or temperature
within the cell) and all the molecules within the cell have velocities conforming
to the same Maxwell-Boltzmann distribution:

g(vj) =
1√
2πs

exp

(−(vj −mj)
2

2s2

)
(1)

where s = (RT )0.5, mj is the bulk velocity and vj the velocity in the direction
j. Referring to Figure 3, the probability of a particle from location x falling
in the region between xl and xr in the time ∆t is:

Pm =
∫ xr−x

∆t

xl−x

∆t

1√
2πs

exp

(−(v −m)2

2s2

)
dvx

=
1

2

[
erf

(
m∆t + x− xl√

2s∆t

)
− erf

(
m∆t + x− xr√

2s∆t

)]
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The ‘mean’ probability Pm over the region between xL and xR is:

fM =
1

(xR − xL)

∫ xR

xL

Pmdx

= fM(m, s, ∆t, xR, xL, xl, xr)

= Mc exp

(−(m∆t + xR − xl)
2

2s2∆t2

)
+ M1erf

(
m∆t + xR − xl√

2s∆t

)

−Mc exp

(−(m∆t + xR − xr)
2

2s2∆t2

)
−M2erf

(
m∆t + xR − xr√

2s∆t

)

−Mc exp

(−(m∆t + xL − xl)
2

2s2∆t2

)
−M3erf

(
m∆t + xL − xl√

2s∆t

)

+ Mc exp

(−(m∆t + xL − xr)
2

2s2∆t2

)
+ M4erf

(
m∆t + xL − xr√

2s∆t

)
(2)

where the values of Mc,M1−M5 are located in the Appendix. It is clear that
fM represents the total fraction of mass between the region between xL and
xR to move into the region between xl and xr, and is therefore the mass flux
per unit mass from the source region.

The mean velocity of particles from location x to land in the region between
xl and xr, found by taking the moment of the velocity distribution function, is:

Pp =
∫ xr−x

∆t

xl−x

∆t

vx√
2πs

exp

(−(vx −m)2

2s2

)
dvx

=

[
− s√

2π
exp

(−(m− vx)
2

2s2

)
− m

2
erf

(
m− vx√

2s

)]xr−x
∆t

xl−x

∆t

=
s√
2π

[
exp

(−(m∆t + x− xl)
2

2s2∆t2

)
− exp

(−(m∆t + x− xr)
2

2s2∆t2

)]

+
m

2

[
erf

(
m∆t + x− xl√

2s∆t

)
− erf

(
m∆t + x− xr√

2s∆t

)]

The mean average velocity of particles (or the average momentum per unit
source mass) moving into region xl ↔ xr from region xL ↔ xR is:
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fP =
1

(xR − xL)

∫ xR

xL

Ppdx

= fP(m, s, ∆t, xR, xL, xl, xr)

= Pc exp

(−(m∆t + xR − xl)
2

2s2∆t2

)
+ P1erf

(
m∆t + xR − xl√

2s∆t

)

−Pc exp

(−(m∆t + xR − xr)
2

2s2∆t2

)
− P2erf

(
m∆t + xR − xr√

2s∆t

)

−Pc exp

(−(m∆t + xL − xl)
2

2s2∆t2

)
− P3erf

(
m∆t + xL − xl√

2s∆t

)

+ Pc exp

(−(m∆t + xL − xr)
2

2s2∆t2

)
+ P4erf

(
m∆t + xL − xr√

2s∆t

)

(3)

where the values of Pc, P1−P5 are located in the Appendix. The energy carried
by a particle, in any single simulated direction, can be divided into a kinetic
energy and internal energy:

Ep =
1

2
v2 + C

C ≡ 1

2ζ

(
2

γ − 1
− ζ

)
s2 (4)

where C is the internal energy per simulated degrees of freedom ζ, thus ζ = 2
in a 2D simulation. This ‘internal energy’ includes contributions from rota-
tion and vibration, as well as contributions from unused translational degrees
of freedom as proposed by Pullin [1]. Therefore, there is no limit upon which
value of γ can be used. Therefore, the mean energy of particles (per unit mass)
moving from x into the region between xl and xr,Pe, is defined as:

Pe =
∫ xr−x

∆t

xl−x

∆t

(0.5v2
x + C)√
2πs

exp

(−(vx −m)2

2s2

)
dvx

=

[
(m2 + s2 + 2C)

4
erf

(
vx −m√

2s

)
− s(m + vx)

2
√

2π
exp

(−(m− vx)
2

2s2

)]xr−x
∆t

xl−x

∆t

=
(2C + m2 + s2)

4

[
erf

(
m∆t + x− xl√

2s∆t

)
− erf

(
m∆t + x− xr√

2s∆t

)]

+
s(m∆t− x + xl)

2
√

2π∆t
exp

(−(m∆t + x− xl)
2

2s2∆t2

)

−s(m∆t− x + xr)

2
√

2π∆t
exp

(−(m∆t + x− xr)
2

2s2∆t2

)
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The mean energy over the range xL to xR to flow into the region between xl

and xr is:

fE =
1

(xR − xL)

∫ xR

xL

Pedx

= fE(m, s, ∆t, xR, xL, xl, xr)

= Ec exp

(−(m∆t + xR − xl)
2

2s2∆t2

)
+ E1erf

(
m∆t + xR − xl√

2s∆t

)

−Ec exp

(−(m∆t + xR − xr)
2

2s2∆t2

)
− E2erf

(
m∆t + xR − xr√

2s∆t

)

−Ec exp

(−(m∆t + xL − xl)
2

2s2∆t2

)
− E3erf

(
m∆t + xL − xl√

2s∆t

)

+ Ec exp

(−(m∆t + xL − xr)
2

2s2∆t2

)
+ E4erf

(
m∆t + xL − xr√

2s∆t

)
(5)

where the values of Ec, E1−E5 are located in the Appendix. These fluxes ex-
pressions are first order accurate in time and space - this is done to ensure fair
comparison with the EFM fluxes. Higher order implementations of TDEFM
may be implemented though:

• The application of a normalised, linearly varying flow properties eg. ρ(x)
(ρ(x, y) in higher dimensions) prior to integration over the source region.
This is then integrated over the source volume to determine the fluxes of
mass, momentum and energy per unit mass. There are currently analytical
expressions available when density and velocity gradients are applied this
way [4].

• The application of arbitrarily selected reconstructions of flow properties
to provide improved estimates of conditions at the volume boundaries can
be used to calculate pseudo-direction coupled fluxes. These conditions are
used to calculate one dimensional fluxes which are then transported to all
neighbouring cells, including those diagonally adjacent.

Other flow properties can be applied to the flux calculation procedure in the
same way. Careful selection of the function ρ(x, y) allows mathematical split-
ting of the expressions [4]. While this is not difficult to achieve, it is beyond
the scope of investigating the effects of direction decoupling and will not be
investigated here.
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3 TDEFM fluxes in the low CFL number limit

Instead of using a region of finite width into which the fluxes flow (as used in
Equations 2-4), we can use a right-hand bound infinitely far away from the
source region and take the limit ∆t → 0.

Using Equation 2, with the right hand side of the destination region xr set to
∞, now becomes:

fM = Z
2
√

π

[
exp (−S2)− exp

(
−(S − 1

Z
)2

)]

+1
2
SZ

[
erf (S)− erf

(
S − 1

Z

)]
+ 1

2

[
erf

(
S − 1

Z

)
+ 1

] (6)

where the speed ratio S = m
cmp

, cmp ≡
√

2RT is the most probable speed, and

Z ≡ ∆t
√

2RT
∆x

= ∆tcmp

∆x
. This equation represents the reduced TDEFM mass

flux expression when the destination and source cells are adjacent. Further
simplifications are possible in the low CFL limit. Recalling that erf (−∞) =
−1 and exp (−∞) = 0 the expression becomes

fM =
∆t

∆x

[
cmp

2
√

π
exp

(
−S2

)
+ m

[
1

2
erf (S) +

1

2

]]
(7)

The actual mass to move from the source region to the destination region per
unit time per unit area is

M =
MofM

A∆t
= ρ

[
cmp

2
√

π
exp

(
−S2

)
+ m

[
1

2
erf (S) +

1

2

]]
(8)

This equation is identical to the EFM mass flux. Likewise treatment of mo-
mentum and energy fluxes also provide the EFM fluxes in the small time
step limit. The difference between the EFM and TDEFM fluxes only becomes
significant when the kinetic CFL number is larger than 1. The kinetic CFL
number is defined here as:

CFL =
(|m|+ σs)∆t

∆x
(9)

where σ is a selected number of variances of the equilibrium distribution. At
a CFL of 0.1, with σ = 5, used as an upper limit throughout this paper, the
maximum difference between the density profiles found in a simple 1D test
(shown in Figure 4) is 1e − 13 percent. At a kinetic CFL number of 1, this
difference increases to 1.5 percent. We therefore conclude that the use of the
simplified of TDEFM in the low CFL number limit is justified.
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Fig. 5. Sample source and destination cell geometry in 2D. The source cell is bounded
by the coordinates (xL, yL) − (xR, yR). The destination cell is bounded by the co-
ordinates (xl, yl)− (xr, yr).

4 Implementation of TDEFM in two and three dimensions

Referring to Figure 5, the net flux of mass, momentum and energy to move
from the source region to the destination region is:
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Fig. 6. Sample source and destination cell geometry in 3D. The source cell is bounded
by the coordinates (xL, yL, zL) − (xR, yR, zR). The destination cell is bounded by
the coordinates (xl, yl, zl)− (xr, yr, zr).

M = M0fM(U,
√

RT, ∆t, xR, xL, xl, xr)× fM(V,
√

RT, ∆t, yR, yL, yl, yr)

Px = M0fP(U,
√

RT, ∆t, xR, xL, xl, xr)× fM(V,
√

RT, ∆t, yR, yL, yl, yr)

Py = M0fM(U,
√

RT, ∆t, xR, xL, xl, xr)× fP(V,
√

RT, ∆t, yR, yL, yl, yr)

Ex = M0fE(U,
√

RT, ∆t, xR, xL, xl, xr)× fM(V,
√

RT, ∆t, yR, yL, yl, yr)

Ey = M0fM(U,
√

RT, ∆t, xR, xL, xl, xr)× fE(V,
√

RT, ∆t, yR, yL, yl, yr)

E = Ex + Ey

where M, P and E are the net mass, momentum and energy fluxes respectively,
M0 is the initial mass in the source region, and ([xL, yL], [xR, yR]) give the size
and location of the rectangular source region, ([xl, yl], [xr, yr]) describe the size
and location of the destination region, U is the X velocity, V is the Y velocity,
M is the net mass flux, Px and Py are the X and Y momentum fluxes and E
is the energy flux. For the extension to 3D, the process is very simple. The
fluxes of mass, momentum and energy from the source cell to the destination
cell, shown in Figure 6, is:
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M = M0fM(U,
√

RT, ∆t, xR, xL, xl, xr)× fM(V,
√

RT, ∆t, yR, yL, yl, yr)

×fM(Z,
√

RT, ∆t, zR, zL, zl, zr)

Px = M0fP(U,
√

RT, ∆t, xR, xL, xl, xr)× fM(V,
√

RT, ∆t, yR, yL, yl, yr)

×fM(Z,
√

RT, ∆t, zR, zL, zl, zr)

Py = M0fM(U,
√

RT, ∆t, xR, xL, xl, xr)× fP(V,
√

RT, ∆t, yR, yL, yl, yr)

×fM(Z,
√

RT, ∆t, zR, zL, zl, zr)

Pz = M0fM(U,
√

RT, ∆t, xR, xL, xl, xr)× fM(V,
√

RT, ∆t, yR, yL, yl, yr)

×fP(Z,
√

RT, ∆t, zR, zL, zl, zr)

Ex = M0fE(U,
√

RT, ∆t, xR, xL, xl, xr)× fM(V,
√

RT, ∆t, yR, yL, yl, yr)

×fM(Z,
√

RT, ∆t, zR, zL, zl, zr)

Ey = M0fM(U,
√

RT, ∆t, xR, xL, xl, xr)× fE(V,
√

RT, ∆t, yR, yL, yl, yr)

×fM(Z,
√

RT, ∆t, zR, zL, zl, zr)

Ez = M0fM(U,
√

RT, ∆t, xR, xL, xl, xr)× fM(V,
√

RT, ∆t, yR, yL, yl, yr)

×fE(Z,
√

RT, ∆t, zR, zL, zl, zr)

E = Ex + Ey + Ez

Significant simplifications of these flux expressions can be performed when
the computational domain is a simple cartesian mesh, as displayed in Figure 7.
To calculate the mass fluxes from the source cell (in the region xL ≥ x ≥ xR,
yL ≥ y ≥ yR) to all surrounding cells, only 4 total evaluations of fM are
required. The flux calculation procedure for the mass fluxes is:
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(1) Calculate values of fN , fS, fE and fW . In this instance, these values are:

fN = fM(V,
√

RT, ∆t, yR, yL, yR, yr)

fS = fM(V,
√

RT, ∆t, yR, yL, yl, yL)

fE = fM(U,
√

RT, ∆t, xR, xL, xR, xr)

fW = fM(U,
√

RT, ∆t, xR, xL, xl, xL)

If we assume that (i) the local CFL is small, and (ii) that all of the mass is
captured in the surrounding cells, the expressions for these fluxes simplify
to Pullin’s EFM fluxes, requiring only a single erf() and exp() function
evaluation each.

(2) Making use of the above assumptions, the fluxes of mass to the surround-
ing neighbours are:

MNW = M0 × fN × fW

MN = M0 × fN × (1− fW − fE)

MNE = M0 × fN × fE

MW = M0 × (1− fN − fS)× fW

ME = M0 × (1− fN − fS)× fE

MSW = M0 × fS × fW

MS = M0 × fS × (1− fW − fE)

MSE = M0 × fS × fE

This procedure can be repeated for the momentum and energy fluxes. This
procedure reduces the computational expense significantly, with this form of
TDEFM requiring 10 percent more computational time that ordinary EFM.
If required, the “cell catchment” region could be increased to include more
distant cells; however this would mean that the flow might posses an artificially
large mean free path. In hypersonic flow, if the bulk velocity in a cell is larger
than 3

√
RT , the contribution from cells downstream would be negligible and

can be disregarded. In the results presented here, the time step is limited to
ensure that all of the mass is captured in the surrounding 8 cells and the
reduced form of the TDEFM flux expressions are used. To demonstrate the
effect of direction decoupling, a strictly uniform cartesian grid is used. The
implementation of TDEFM on non-rectangular grids is beyond the scope of
this investigation.

5 Blast Wave Problem

The flow field contains a two dimensional ‘blast wave’ caused by an initial small
region with a temperature higher than the surrounding gas. One quarter of a
square plane of unit width with symmetry condition applied on all four walls
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Fig. 8. Blast wave geometry. (a) Ideal initial condition and geometry. (b) Geometry
used by the solvers with 50x50 cells. (c) Geometry used by solvers with 100x100
cells. The symmetry boundary condition (specular reflection) was applied at all
boundaries. Perfect gas with ratio of specific heats γ = 5/3. Initial conditions:
TH/TL = 1000, ρH/ρL = 1 (pressure ratio PH/PL = 1000). Radius of high pressure
region is r.

is used. The length of computational domain is 50r in each direction, where r
is the radius of the high temperature region. The initial conditions are:

ρH/ρL = 1

T = χTH

χ = f + (1− f) TL

TH

U = V = 0

γ = 5
3

(10)

where ρ0 is the density, TH is the temperature inside the ideal circular initial
condition, TL is the temperature outside. The fraction of the area of each
cell inside the high temperature region is given by f , and is demonstrated in
Figure 8. The ratio chi is used to ensure that, regardless of mesh density, the
initial computational domain possesses the same total energy. This initial high
temperature (and hence pressure) in the one cell simulates a sudden ‘explosion’
centered on the origin. Ideally, the resulting flow is radially symmetric. The
unsteady simulation is run to time t

√
RTL/r = 0.00196 where the expanding

shock wave has traveled to just beyond 22r. Although the method disregards
viscous effects, the same numerical viscosity present in EFM is present in
TDEFM.

The benchmark result is obtained from a 1D-EFM solution using the initial
condition described in Figure 8(a). The length of the circular region was di-
vided radially into 800 cells and the simulation run up to t

√
RTo/r = 0.00196

using 1000 time steps. The benchmark results are represented as solid lines in
Figure 9. Representations of the initial circular starting condition are shown
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Fig. 9. 2D solutions of the blast wave problem showing normalised density using
2D-TDEFM (◦) and 2D-EFM (·) using a 50x50 mesh (left) and a 400x400 mesh
(right). The initial conditions as shown in Figure 8(b). The results from all individual
cells are shown and should collapse into a single line. The solid line shows 1D results
with 1x800 cells. Simulations are run up to t

√
RT/r = 0.00196. Sections of the

results have been enlarged to better demonstrate the scatter present in the results.

in Figure 8(a). Figure 9 shows the normalised density for the 2D-TDEFM
and 2D-EFM results for a mesh using 50 x 50 cells and 400 x 400 cells. The
expected features of this flow are present in both results - an increase in Mach
number, density and temperature occur through the radially expanding shock.
The flow is smeared due to the inability of the solvers to accurately capture
the flow on a coarse mesh, though this smearing diminishes as the mesh den-
sity increases. Since the flow is expected to display radial symmetry there is a
single correct value for temperature, density and Mach number at any given
radius. It can be seen that this is not true for the numerical solution - in-
deed, the degree of scatter in these profiles is an indication of the error of the
solution and has been used as such previously [3].

In order to quantify the effect of direction decoupling, we use an “angle of
deviation”, designated as θ, to measure the radial symmetry present in the
solution. The angle of deviation is defined as the angle between the radial
position vector ~r = (xi + yj) and the velocity vector ~v = (Vxi + Vyj), and is
given by:

θ = cos−1

(
~v · ~r
|~r||~v|

)
. (11)

This angle should be zero because of the radially symmetric nature of the flow.
The magnitude of θ at any position is a measure of radial asymmetry in the
flow and therefore a measure of error. Figure 10 shows that deviation angle θ
taken from the 2D-EFM and 2D-TDEFM results with meshes of 50x50 and
400x400 cells. It is clear that the angle of deviation is consistently less for
TDEFM than for EFM, indicating a higher level of fidelity. This fact remains
true regardless of mesh density - simulations using much finer meshes (À
2 million cells) have revealed that the magnitude of the angle of deviation
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Fig. 11. 2D solutions to the implosion problem showing normalised density using
2D-TDEFM (◦) and 2D-EFM (·) using a 50x50 mesh (left) and a 400x400 mesh
(right). The solid line shows 1D results with 1x800 cells. Simulations are run up to
t
√

RT/r = 0.098.

is always lower in TDEFM results than in EFM results. Therefore, there is
always an effect due to direction coupling, regardless of mesh density, although
this effect diminishes as mesh density increases.

6 Implosion Problem

TDEFM has been compared to EFM in a 2D implosion problem with the aim
of demonstrating the problems associated with direction splitting. The implo-
sion problem is shown in the introduction in Figure 1. The initial conditions
are as follows:

ρ = χρH

χ = f + (1− f) ρL

ρH

TH/TL = 1

U = V = 0

γ = 5
3

(12)

where f is the fraction of the cell falling outside radius r. The results from
2D-TDEFM and 2D-EFM using a 50 x 50 and 400 x 400 mesh are shown
in Figure 11. As expected, the fine mesh results more closely match the 1D
results. The angle of deviation is used again as a measure of radial asymmetry
and is shown in Figure 12. The angle of deviation is the angular difference
between the radial position vector and the velocity vector for any given cells.
Figure 12 shows that 2D-TDEFM gives a more radially symmetric result than
2D-EFM on the same mesh. Shown in Figure 13 is a comparison of density
contours between 2D-EFM and 2D-TDEFM for the same initial conditions
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Fig. 13. (Left) Contours of density for the implosion problem shown in Figure 1
using 2D-TDEFM, (Right) Enlarged (2x) comparison between contours of density
from TDEFM and EFM using the same initial conditions showing the effects of
direction decoupling.

used to obtain the results in Figure 1. The 2D-TDEFM contours are closer
to being radially symmetric than the 2D-EFM contours, confirming the result
obtained through the analysis of the angle of deviation. The time step used
was small enough to justify the simplification of the primary TDEFM flux
expressions in Equations 2-4 to the original EFM expressions. At this time
step, the direction coupled EFM provided identical results (differences of less
than 1e-13 percent) to the complete TDEFM expressions while performing
the same number of exponential and error function evaluations as direction
decoupled EFM.

7 Hypersonic flow over a rectangular body

The previous examples dealt with predominately low speed, unsteady flows in
a square region. The results for steady hypersonic flow over the rectangular
body shown in Figure 14 are shown here. The flow conditions are M∞ = 20,
ρ∞ = 1 and T∞ = 1. The flow is progressed until t

√
RT∞/H = 3. The gas is

ideal with γ = 7/5. Density contours of the result obtained using TDEFM is
shown in Figure 15. The top and right hand side boundaries are extrapolated
outflow. The lower boundary and the body surfaces are reflective boundaries
which are appropriate for this inviscid calculation. As expected, a detached
bow shock has formed, with the density increasing through the bow shock
and decreasing as the flow expands around the corner of the rectangular body.
There are no bumps or other spurious oscillations present in the bow shock.
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Fig. 14. The computational domain used for the hypersonic flow example over a
rectangular body of height H. Flow is at Mach 20 with γ = 1.4. Initial conditions
are ρ = ρ∞, M = M∞ and T = T∞. The simulations are progressed in time to
t
√

RT∞/H = 3.

The temperature and density profiles alone line A-A’ (shown in Figure 14) are
shown in Figure 16. Here, we can see that even for steady flow problems there
is a distinct difference in the solutions. The location at which the detached bow
shock crosses the line A-A’ differs for true direction and direction decoupled
fluxes. This is true regardless of mesh density. As shown by the density profile
in Figure 16, when the number of cells is increased by more than 400 percent
there is still a noticeable difference in the location of the bow shock. The ef-
fect of direction decoupling here is quite severe as the flow is not aligned with
the grid. The temperature profile in Figure 16 extends from 1 ≥ y/H ≥ 2.5
(along the line A-A’ shown in Figure 14) where the flow is closer to the body
and better aligned with the computational grid. The results demonstrate that
the difference between the methods decreases where the flow is better aligned
with the grid. As the flow direction diverges from grid alignment, i.e. as the
distance y/H increases along line A-A’, the difference between the results is
shown to increase.

As may be expected, the shock stand off distance is also affected. Presented
in Table 1 are the shock standoff distances using TDEFM and EFM with
varying mesh densities. The shock standoff distance is defined here as the
location along y = 0 where the mach number equals unity. Since TDEFM (in
its simplified form) is typically 10 percent computationally slower than EFM,
tests were performed using EFM with a correspondingly larger number of cells.
While the results improve slightly, the difference between the results is still
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Fig. 15. Colour contours of density for hypersonic flow over a rectangular body of
height H using TDEFM. The computational region extends to 4H, with the front
of the body located at [2.5H, 0]. Flow is at Mach 20 with γ = 1.4. Initial conditions
are ρ = ρ∞, M = M∞ and T = T∞. The simulations are progressed in time to
t
√

RT∞/H = 3.

Method Number of cells Standoff Distance Relative Shock

∆/H Standoff Distance

TDEFM 3255 1.118 1

EFM 3255 1.185 1.06

EFM 3596 1.163 1.04

TDEFM 13050 1.0195 1

EFM 13050 1.05 1.03

Table 1 - Shock standoff distances for varying computational grids.

significant. In terms of the shock standoff distance, increasing the number of
cells from 3522 to 3596 decreased the difference in normalised shock standoff
distance from 6 percent to 4 percent. Similar trends were shown with increasing
mesh densities. Therefore, we conclude that the benefits of direction coupling
outweigh the slight increase in computational expense.
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√
RT∞/H = 3.
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8 Conclusion

Direction decoupling is defined here as the procedure used by finite volume
solvers in CFD where 2D flow problems are solved by a series of one dimen-
sional fluxes, calculated by finding normal components to a cell interface.
These fluxes are only exchanged between cells sharing a common interface,
ignoring other physically realistic flows to adjacent cells not sharing an inter-
face.

In order to show the effects of direction decoupling, the implementation of
TDEFM on a structured, uniform rectangular mesh has been investigated
and compared to the direction decoupled Equilibrium Flux Method (EFM).
These two methods are identical for small time steps and differ only in the
fact that TDEFM is direction coupled while EFM is not. The methods were
compared by simulating a blast wave problem and an implosion problem, for
which the solution is expected to be radially symmetric. All simulations have
been restricted to first order in space and time. The deviation of the solutions
from axisymmetry is an indication of the errors associated with the different
flux methods. This deviation was quantified by the angle between the radial
position vector and the flow velocity vector for any point in the flow.

Results show that on a structured, uniform rectangular mesh TDEFM cap-
tures flows with significantly greater accuracy, as measured by flow symmetry,
than the comparable direction decoupled method on the same mesh. TDEFM
was then applied to a steady hypersonic flow problem, showing that the de-
tached bow shock was moved further away from the body as a direct result
of direction decoupling. The steady flow problem also demonstrated that the
effects of direction decoupling do not disappear in the steady flow limit. We
conclude that the direction decoupling of the fluxes in 2D flows can have
significant detrimental effects in the accuracy of the solutions.
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Appendix - TDEFM Flux expression coefficients

Mass coefficients

Mc =
s∆t

(xR − xL)
√

2π

M1 =
1

2(xR − xL)
(m∆t− xl + xR)

M2 =
1

2(xR − xL)
(m∆t− xr + xR)

M3 =
1

2(xR − xL)
(m∆t− xl + xL)

M4 =
1

2(xR − xL)
(m∆t− xr + xL)

Momentum coefficients

Pc =
ms∆t

(xR − xL)
√

2π

P1 =
1

2(xR − xL)
(m(m∆t− xl + xR) + s2∆t)

P2 =
1

2(xR − xL)
(m(m∆t− xr + xR) + s2∆t)

P3 =
1

2(xR − xL)
(m(m∆t− xl + xL) + s2∆t)

P4 =
1

2(xR − xL)
(m(m∆t− xr + xL) + s2∆t)

Energy coefficients
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Ec =
(2C + m2 + 2s2)s∆t

2(xR − xL)
√

2π

E1 =
1

4(xR − xL)

(
(m2 + s2 + 2C)(m∆t− xl + xR) + 2ms2∆t

)

E2 =
1

4(xR − xL)

(
(m2 + s2 + 2C)(m∆t− xr + xR) + 2ms2∆t

)

E3 =
1

4(xR − xL)

(
(m2 + s2 + 2C)(m∆t− xl + xL) + 2ms2∆t

)

E4 =
1

4(xR − xL)

(
(m2 + s2 + 2C)(m∆t− xr + xL) + 2ms2∆t

)
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