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Abstract 

One of the important parameters needed to model ship motions in 

a seaway is the added mass matrix of the hull. Current state-of-

the-art boundary element methods routinely evaluate the 6 x 6 

added mass matrices as part of the radiation problem solution. 

These developments have largely superseded conventional 

approaches to sectional added mass evaluation using conformal 

mapping techniques. However, conformal mapping techniques 

are still attractive in terms of their mathematical explicitness and 

computational simplicity.  

 

The recurrent form of Bieberbach Method of conformal mapping 

was developed for mapping the exterior of a closed curve i.e. the 

two-dimensional ship cross section and its mirror image, into the 

exterior of the circle oscillating vertically at free surface and to 

compute the added mass coefficients. By incorporating a strip 

theory approximation the added mass coefficients of a three 

dimensional structure can be estimated from its two-dimensional 

section coefficients at different drafts. In this paper we have 

applied this method to calculate the heave, pitch and heave 

induced pitch added mass coefficients of a tanker. The 

applicability of these conformal mapping techniques to floating 

platforms under consideration is discussed, by comparing the 

results with state-of-the-art industry standard boundary element 

methods, AQWA and SESAM. 

 

Introduction 

Added Mass is the pressure force per unit acceleration acting on 

an oscillating floating body, due to the acceleration field set up in 

the surrounding fluid. It is different in different degrees of motion 

and depends upon the geometry of the body. The governing 

equations of motion for a floating rigid body are given by:  
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where 

Mij =  Oscillating mass/ moment of inertia 

aij = Added mass induced in i due to unit acceleration in j  

bij = Damping 

kij =  Restoring stiffness  

Fi = Exciting forces in the ith direction 

, ,j j jx x x� �� = the displacement, velocity and acceleration of the 

vessel in the jth direction 

i, j = 1, .. 6, denote the six degrees of freedom surge, sway, 

heave, roll, pitch and yaw respectively as shown in 

Figure 1. 

An added mass coefficient Cij is the ratio of the added mass to the 

mass of the body as given below 
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Figure 1.  6 DOF of a rigid body2 

 

Motion prediction of floating platforms is accomplished using 

one of the several boundary element packages available in the 

market. Out of these packages, AQWA [1], and SESAM [2] are 

used by offshore industry worldwide. The common procedure 

adopted in these methods is to discretize the underwater surface 

into discrete elements and solve for the incompressible, 

irrotational velocity potential of the flow around the body. The 

boundary value problem is formulated using Green’s function 

from linear diffraction and radiation theory. One solution 

outcome is the 6x 6 added mass matrix as a function of the 

frequency of oscillation. 

 

There are no known sources of experimental or 3-D 

computational results for radiation forces on systematic series of 

hull forms, which is perhaps not surprising due to the substantial 

effort involved in either case. On the other hand, such data has 

been available for 2-D forms for quite some time. Vugts [3] 

published a comprehensive set of experimental data, along with 

some theoretical results, for 2-D cylinders including semicircles, 

triangles, several ship-like sections, and rectangles at range of 

drafts.  

 

In the ‘60s, Professor Landweber and M. Macagno from Iowa 

Institute of Hydraulic Research attempted a number of added 

mass coefficient calculations methods including two parameter, 

three parameter and conformal mapping developments to 

calculate added mass coefficients of two dimensional forms [4, 5, 

6]. The method of conformal mapping was found comparatively 

better than the other two methods, and provides higher level of 

accuracy as compared to the other two methods [7]. The first two 

methods are based on the assumption that a ship section having 

the same principal geometric characteristics as a member of one  
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Figure 2. Two dimensional strips in heave [6]. 

 

of the particular families, the Lewis forms or the three-

parameters forms, will have the same added mass coefficient as 

that member. This assumption is not exact and no level of 

accuracy can be provided [6]. This method of conformal mapping 

thus has gone largely unnoticed by software developers. 

 

Once coefficients of a two-dimensional section are known, the 

coefficients for the entire ship may be found by strip theory (see 

for e.g. [8] or [9]).  This theory is applicable to slender bodies i.e. 

when the length of the body is much larger compared to the 

lateral dimension as shown in Figure 2. It is based on the 

assumption that the radiated wave lengths are of same order of 

magnitude as beam of the tanker and short as compared to the 

length of the tanker. Strip theory has the limitation of predicting 

transverse motions better than longitudinal motions. 

 

We present here the basics of the theory of Landweber and 

Macagno [6] followed by its implementation into a strip theory 

formulation.  Results for added mass coefficients from this theory 

are compared with boundary element packages for an offshore 

floating tanker vessel. It is to be noted that this method is 

basically applicable to the case of infinite frequency only. 

 
 
Theory 
 
The radiation problem comprises of a body shape oscillating at 

an angular frequency ω.  The boundary condition on the 

underwater surface is basically satisfaction of no flow through 

the surface, and is given in terms of the velocity potential as 

            

y
g

∂

∂
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The limiting condition when frequency ω→∞ is Ф = 0. 

 

The conformal method is based on mapping the exterior of a 

ship-section and its mirror image about x = 0, in z-plane into the 

exterior of the circle in ζ-plane as shown in Figure 2. Here B and 

T are the beam and draft of the floating body respectively.  Using  

 

Figure 3 Mapping the z-plane one-to-one into ζ-plane. 

 

a double-body contour eliminates free surface influence in the 

problem.  The boundary condition is satisfied by supposing that 

the entire shape oscillates as a single shape with instantaneous 

velocity V which gives 

y
V

n n

φ∂ ∂
=

∂ ∂
 (4) 

The above equation relates the velocity potential to the shape of 

the contour.  At infinite frequency, the amplitude of oscillation 

diminishes infinitesimally, resulting in a finite velocity.  The 

kinetic energy resident in the fluid due to this oscillation may be 

directly related to the added mass as  
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where Ψ is the stream function.  Solving for KE subject to the 

boundary conditions gives the added mass coefficient as 
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Where 

CV   = Added Mass Coefficient due to vertical (heave) oscillations 

b    = half beam of the ship section 

ro = Mean radius of the ship section. 

S = Area of the ship section  

b1 = the first coefficient of mapping from z-plane to ζ-plane. 

 

It remains to find the parameters b1, r0 and S. Let  us consider a 

double ship like contour cc’, symmetrical with respect to the x, y 

axes with the x-axis in the free surface as shown in Figure 3. The 

transformation as per the Bieberbach method of conformal 

mapping is given by [6] 
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z re

θ=  is the complex coordinate.  Its inverse given by 
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is the transformation of mapping the exterior of the closed curve 

(Ship section and its mirror image) in the z-plane into the exterior 

of the closed circle in ζ-plane (Figure 3). The form of these 

mapping functions as expansions of odd powers of z and ζ with 

real coefficients is required in order to satisfy the condition that 

both the  original section cc’ and its transformation in  ζ-plane be 

symmetrical with respect to their coordinate axes.  Here ai and bi 

are the coefficients of the mapping.  

 

ζ=f(z) 
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The Bieberbach method is based on the property that among the 

closed curves obtained from the conformal mapping, by 

transformations of Eq. 8, of the exterior of the given closed curve 

bounding a simply connected region, the circle will bound the 

maximum area. Ritz procedure is applied to find the values of 

finite number of coefficients of mapping i.e. bi’s. in Eq. 8 such 

that they yield maximum area subject to this restriction. 
 

The area bounded by the curve CC’ as shown in Figure 3 is given 

by 

2

' '
2

cc cc
zdz i r d iSθ= =∫ ∫� �                                                 (9) 

Thus we get the area as  
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Let C1 be the closed curve in ζ-plane obtained by mapping CC’ 

one-to-one in z-plane. From Eq. 8, we obtain 
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 Substituting Eq. 8, we get 
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Substituting values in Eq. 12 from Eqs. 9 and 11, the area, S’ 

bounded by this curve is given by, 
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And  
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Simpson’s Rule of integration may be used for the integration of 

Eq.15.  For Ritz condition that S’ be a maximum Area, the 

derivative of S’ with bj should be zero. 
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Using Eq. 13 we get a set of linear equations with the coefficients 

bk. 

j

n

k
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β                                                                      (17)      

This system of linear equation is solved to get b’s, the values of 

coefficients of mapping. 

The radius of the circle, obtained by the mapping is the mean 

radius of the curve cc’ 

∫=
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Substituting mean radius, Area, b1 and half beam values in Eq. 6 

gives the vertical added mass coefficient of the two-dimensional 

section. 

 

The procedure included obtaining the series of added-mass 

coefficients at each station. By incorporating strip theory we can 

calculate the added mass coefficients of three-dimensional 

tanker-shaped offshore production platform from the added 

masses of the two dimensional cross sections of the tanker at 

each section as shown in Figure 2. Heave-induced heave added 

mass (A33), pitch-induced pitch added mass (A55), and heave-

induced pitch added mass (A53) or pitch-induced heave added 

mass (A35) are obtained from the two-dimensional heave added 

mass (a33) by the strip theory formulations as below 

∫= dxaA 3333
         (16) 

∫−== xdxaAA 333553
       (17) 

∫= dxxaA
2

3355
        (18) 

 

 

Implementation & validation  
 

The above formulation has been implemented for the calculations 

of added mass coefficients of a Floating Production Storage and 

Offloading (FPSO) tanker with dimensions shown in Table 1. the 

draft was varied to obtain a range of B/2T ratios.  The sectional 

heave added mass thus evaluated was compared against 

published data for ship-shaped sections by Vugts [3] in Figure 4. 

 

The data from conformal mapping shows approximately constant 

value for various B/2T with a slight decrease in the limit of B/2T 

→ 0 i.e. a very deep structure. In contrary Vugts data shows a 

very small value of a33 as B/2T→0. The agreement is seen to be 

 
Table 1. FPSO tanker particulars 

Parameter Value 

Length Over All (LOA) 329 meters 

Length between perpendiculars (Lpp) 318 meters 

Beam (b) 57.24 meters 

Depth (d) 28.2 meters 

Draft (D) variable meters 

Displacement (W) 145800 Tonnes 
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Figure: 4 Non-dimensional heave added mass (a33/ρA) Vs B/2T 
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reasonable at realistic values of B/2T of around 2 (as shown in 

Figure 4). At very high values of B/2T (shallow draft) the 

conformal mapping shows an increase in the added mass 

coefficient, which is contrary to Vugt’s data. The shallow draft 

limitation of strip theory is well known (for example, Lewis [9]) 

and is being studied further. Landweber and Macagno [4] 

mentioned that the mapping twice gives more accuracy in the 

added mass coefficient values. This aspect will be considered in 

the future work.  

 

Figures 5 and 6 show curves of heave-induced pitch (A53) pitch-

induced pitch added mass (A55) and pitch induced heave (A35) vs. 

B/2T.  Since these are obtained from Eqs. 17 and 18, they follow 

an amplified monotonic trend derived from Figure 4.  

 

The added mass values and corresponding coefficients of the 

entire hull were independently computed using both AQWA and 

SESAM for two different drafts.  As is well known, computations 

with boundary element software becomes quite unreliable at very 

low wave lengths, corresponding to higher frequencies.  For 

realistic offshore structures this limits application of these 

methods to periods less than 5 seconds (frequencies of 0.2 Hz). 

The computational results at the highest frequency are compared 

with the present strip theory results in Tables 2 and 3.  The 

agreement is shown to be very reasonable with maximum errors 

of less than 10% in all cases.   

 
Conclusions 
 
We have presented the theory and implementation of a conformal 
mapping technique and compared with published data as well as 
with industry standard software results.  Following conclusions 
have been drawn.  

• Conformal mapping method of calculating added mass 
coefficients is quicker for calculations at varying drafts 
as compared to the other two industry accepted 
methods. 

• It achieves the level of accuracy in calculating added 
mass of the three dimensional floating tanker. 

Further studies in progress: 
• Analysis of the increase in the 2-D sectional added 

mass coefficient at higher B/2T, which is contrary to 
the Vugts data. 

• Repetitive application of conformal mapping to achieve 
higher level of accuracy  
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Figure 5. Heave induced pitch added mass (A53/ρA

2) vs. B/2T. 
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Figure 6. Two-dimensional pitch induced pitch added mass 

(a55/ρA
2B) vs. B/2T. 

 
Table 2. Comparison of added mass 

 

At draft 10 m 
Method A33

 (kg) A53 (kg – m) A55 (kg – m2) 
Draft = 10 m    
Conformal 
Mapping 

2.57E+08 -4.70E+10 1.01E+13 

AQWA 2.66E+08 
 

-4.71E+10 
 

9.36E+12 
 

Draft = 10.56 m    
Conformal 
Mapping 

2.82E+08 -5.16E+010 1.11E+013 

AQWA 2.86E+08 -6.07E+10 1.05E+13 
SESAM 2.79E+08 -4.86E+10 8.29E+12 

 
 

Table 3. Comparison of Added Mass Coefficients 
 

Method C33 C53 C55 
Draft = 10 m    
Conformal 
Mapping 

1.85 -3.38E+02 7.27E+04 

AQWA 1.91 -3.39E+02 6.73E+04 
Draft = 10.56 m    

Conformal 
Mapping 

1.96 -3.59E+02 7.73E+04 

AQWA 1.99 
 

-4.23E+02 
 

7.31E+04 
 

SESAM 1.94 -3.38E+02 5.77E+04 
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