-

P
brought to you by .. CORE

View metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

16th Australasian Fluid Mechanics Conference
Crown Plaza, Gold Coast, Australia
2-7 December 2007

An eigenmode analysis of time delays in
an acoustically coupled multi-bubble system

H. Yoon', A. Ooi! and R. Manasseh?

'Department of Mechanical and Manufacturing Engineering
University of Melbourne, Melbourne, Victoria, 3010 AUSTRALIA
2Energy and Thermofluids Engineering, CSIRO Manufacturing and Infrastructure Technology,
P.O. Box 56, Highett, Melbourne, Victoria, 3190 AUSTRALIA

Abstract

The acoustic properties of an inhomogeneous bubbly medium
are complex owing to the absorption and re-emission of acous-
tic energy by the bubbles. This phenomena can be approxi-
mated by a globally coupled system of linear oscillators. In
previous studies, it has been shown that this simple model can
produce results that are in qualitative agreement with experi-
mental data. In order to achieve better quantitative agreement
with experimental data, time-delays need to be introduced into
the mathematical model.

In the present study, the resulting delayed differential equations
were solved numerically using a 4th order Runge-Kutta method.
The numerical methodology was validated by comparing sim-
plified cases with the solution using analytical methods. The
effects of time-delay were assessed by comparing non-time-
delayed and time-delayed versions of the mathematical model.
Results from numerical simulations were then compared to as-
sess the effects and importance of the inclusion of time-delay in
the mathematical model.

This study shows that the inclusion of time-delay has a notice-
able effect on the lower frequency modes of the model. This
effect propagates to the higher frequency modes as the magni-
tude of the time-delay increases. The results also shows that the
time-delay shifts the dominant modes from the lower frequency
modes to the higher frequency mode.

Introduction

A bubbly medium’s acoustical properties are directly related to
the oscillatory behaviour of individual bubbles, which are de-
pendent on the oscillatory behaviour of all the other bubbles.
This interdependent oscillatory behaviour is influenced by sev-
eral highly variable factors such as the spacing and distribution
of the bubbles, the size of the bubbles and the number of bubbles
in the system. The changes in the acoustic properties include
the liquid medium’s attenuation, scattering and propagation of
sound. The void fraction of bubbles needed to be added into the
medium to induce a significant change in the medium’s acoustic
properties is less than one percent [1].

To study the acoustic behaviour of bubbly media, Foldy [2],
Van Wijngaarden [3] and Caflisch et al. [4] have introduced
a mathematical formulation that models the behaviour acoustic
propagation in the medium. The medium is assumed to be a
continuum with averaged properties. A detailed study was con-
ducted by Commander et al. [5] on the model of Caflisch et
al. [4] with various experimental data that was available at the
time [6, 7, 8, 9, 10]. The analysis showed limited success of the
model, with one of the major problems being that the accuracy
was severely impaired once the void fraction reached 1% -2%.

Feuillade et al [11] developed another method to explain the
multiple scattering and the interaction between bubbles. In this
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method, called the self-consistent method, individual bubbles
are modelled together with their acoustic interactions, rather
than using a continuum with average properties. Feuillade
[12] made a comparison between the self-consistent method-
ology and multiple scattering methodology, showing the self-
consistent methodology has an advantage in dealing with situa-
tions where there is a strong interaction between the bubbles.

Manasseh et al. [14] used the coupled oscillator model to com-
pute the acoustic field in the vicinity of a bubble chain without
time-delay. Comparison with experimental data showed that
while an anisotropy in the acoustic field due to the chain was
predicted, the coupled oscillator model can only reproduce the
qualitative trend in the experimental data.

From the studies mentioned, one of the common assumptions
inherent in the modeling of multiple scattering and interaction
between bubbles is that the propagation speed of pressure per-
turbations (speed of sound) between the bubbles is infinite. To
incorporate the finite speed of propagation of acoustic energy
into the mathematical model, a time-delay is added [15] [17].
The addition of time-delays has been shown have significant ef-
fects on the overall behaviour of the mathematical model. Even
when there are only two bubbles in the system, it has been
shown by [16] that time-delay has a significant effects on the
damping constant of the system. Doinikov at el [16] showed
that time-delays could improve earlier predictions [14].

This paper will focus on the how the inclusion of the time-delay
into the model can effect the behaviour of the overall globally
coupled oscillator model.

Mathematical Model

A globally coupled linear oscillator model is used to represent
a multi-bubble system (for scope of the present study, a bubble
chain). This model is a combination of the linearized bubble
oscillation model and the self-consistent methodology.

The scattered pressure field generated by a single bubble can be
expressed as

2

R,
Py (t) = p%fm (1)
m

(H
(see Vokurka [18]), where p is the density of the liquid, Ry, is
the equilibrium radius of the mth bubble, r,,(r) represents the
bubble’s radial deviation from it’s equilibrium radius and d,, is
the distance from the bubble.

The self-consistent methodology defines that the total pressure
field on any bubble to be the sum of the external field plus the
scattered fields from all the other bubbles [12]. Mathematically,
this can be expressed as


https://core.ac.uk/display/15031089?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

" Riw
() ==} p— " (0). )

The dynamics of the individual bubbles in the globally cou-
pled linear oscillator model is modelled using the linearized
Rayleigh-Plesset equation [19],
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where r,(¢) represents a small radial deviation from the bubble’s
equilibrium radius, m, is the resonant angular frequency of the
nth bubble (Minnaert’s frequency [20]), §, describes the total
damping of the nth bubble, where 8,, = 8, + 8, + 8,y and &,
is the radiation damping, d,; is the thermal damping and &, is
the viscous damping (Devin [21]), R, is the equilibrium radius
of the nth bubble and d,;, is the distance between the nth and
mth bubbles.

Equation (3) has an inherent assumption that the liquid medium
is incompressible, resulting in acoustic waves travelling at an
infinite speed. To account for the finite speed of pressure per-
turbation propagation, a time-delay needs to be introduced into
the model, resulting in the following second order delay differ-
ential equations,
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where c is the speed of sound.

The time-delayed globally coupled oscillator model is catego-
rized as neutral second-order delay differential system. All de-
lay differential systems required one additional common user-
defined input when using numerical methods like the fourth-
order Runge Kutta method. The additional input required is the
past history of the system before the point of initial simulation
(i.e. the time range of min(—dp,, /c) to 0). Bellen and Zennaro
[22] state that the solution of the delay differential system could
be very sensitive to the user defined history of the system.

Both the non time-delay equation (3) and the time-delay equa-
tion (4) are solved using the fourth-order Runge Kutta method.
The time-delay equation (4) can also be solved using an itera-
tive analytical method described in Hu et al. [23] and modified
by Ooi et al. [24] to include time-delays in the highest order
derivative term. Data from the two methods were compared to
validate the results presented in the the paper.

The history r,(¢) of the multi bubble system was set to the value
of 0 in the range of min(—d,;,/c) to 0, this can be thought as
the overall system was inactive (or at rest) before t = 0. This
assumption is only needed for simulations carried out using the
fourth order Runge-Kutta method, not the iterative analytical
method, for in the process of solving the system analytically, the
method inherently assumes a history of time < 0 which ensures
a smooth function in the vicinity of t=0.

Using the iterative analytical method, the solutions to equations
(3) and (4) can be expressed as

7(t) =AM, 5)
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Figure 1: Photo of the bubble chain’s lower section. Repro-
duced from Nikolovska [25].

Number of bubbles 16 19 40 56
Bubble radius (m) || 0.0035 | 0.0035 | 0.00118 | 0.00141
Bubble separation (m) || 0.0321 | 0.0249 0.036 0.030
Length of chain (m) || 0.4815 | 0.4731 1.4040 1.6500

Table 1: Experimental setting for 16, 19, 40 and 56 bubble chain
case.

where 7(t) is a vector composed of individual bubble radius
components (), A is the eigenvector corresponding to the
eigenvalue A. For differential systems of size N x N, there are
2N eigenvalues which can be expressed as

A=E+io, (©6)

where @ is the natural frequency, & is the damping for the cor-
responding eigenvector (mode) and i is the imaginary unit. The
eigenvalues and eigenvectors occurs in a complex conjugate
pairs which means there are only N linearly independent eigen-
values and eigenvectors.

For a single bubble scenario the eigenvalue can be simplified to

_ ¥y %
%—2i<—47 (7

where natural damping is &y = (0080/2, natural frequency
/ 2
is®y; = Wy (1 - 80/4), W is the minnaert’s frequency and

8o is the total damping of the bubble.

Experimental results

The numerical simulation will be based on the experimental
studies conducted by Manasseh et al. [14] and Nikolovska [25].

Figure 1 is a picture of the configuration of the bubble chain
structure from the experiment. This configuration is form when
the bubbles were produced and rise naturally at a constant rate
at the bottom of the water tank. This results in the bubble ori-
entated in straight line in a vertical direction. Figure 2 is a sim-
plified diagram of figure 1, where y is the parallel distance from
the location of the first bubble along the bubble chain, x is the
perpendicular distance from the first bubble and L is the total
length of the bubble chain.

1329




Figure 2: Simplified diagram of bubble chain arrangement.

Table 1 are the summary of the relevant experimental param-
eters recorded from the experimental cases, for the numerical
simulation using Eqs. (3) and (4). The experimental results
can be found in figure 7. These experimental results are used
as the base case to both validate and also to study the effect of
time-delays in the model.

time-delay analysis

Damping and mode frequency

Since the coupled oscillator model has a finite number (N) of
individual oscillators, the result will be a set of N eigenmodes.
The analysis of the mode damping and frequency of the globally
coupled linear oscillator system is conducted using the same
analysis as described in Ooi et al. [24]. Figures 3 and 5 are
plots of normalized damping constant and figures 4 and 6 are
the normalized mode frequency constant plots. Figures 3 to 6
are normalized by the standard second ordered differential sys-
tem natural damping (&) and natural frequency(®p;) and plot-
ted against normalized separation distance between the bubbles
o=7 “)O/C). Every distinct line in the figures 3 to 6 represents
a distinct mode of the system.

Figures 3 and 4 are generated by keeping the radius of the bub-
ble constant and varying the bubble separation distance.

Result of the 16 bubble case is similar to the result of 10 bubble
chain case in Ooi et al. [24]. The non time-delay case shows
no crossover for either damping or frequency results. The time-
delay case exhibits the behaviour of crossover for both damp-
ing and frequency results. The crossover for damping occurs at
intervals of y, = 1/2. The frequency crossover patten repeats
itself over interval of y, = 1/2 but depending on which two rel-
ative mode being compared, the interval of yq for 2 consecutive
Crossover various.

The figure 5 and 6 are generated by varying the radius of the
bubble and keeping the bubble separation distance constant. Im-
portant point to note is that these four plots have been plotted
against normalized bubble spacing( This is possible because the
normalize bubble spacing is a function of Minnaert’s frequency,
which is function of bubble radius). The justification for this is
to allow an easy comparison between the figures 3 to 6.

The comparison of figures 3 to 6 shows that the variation of the
bubble radius in the bubble chain has the same effects as the
variation in the bubble separation distance. The only difference
to note is that the increasing in the bubble radius has same effect
as decreasing the bubble separation distance. This result shows
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Figure 3: Plot of normalized damping for 16 bubble chain case
at constant radius of 3 mm and varying bubble spacing between
7 mm to 1200 mm, where (a) is the time-delay and (b) is the
non time-delay. — - —is the 1st mode, is the 16th mode
and-------- is mode 2nd to 15th
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Figure 4: Plot of normalized frequency for 16 bubble chain case
at constant radius of 3 mm and varying bubble spacing between
7 mm to 1200 mm, where (a) is the time-delay and (b) is the
non time-delay. — - — is the 1st mode, is the 16th mode
and-------- is mode 2nd to 15th
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Figure 5: Plot of normalized damping for 16 bubble chain case

at constant spacing of 3 mm and varying radius of 1 mm to 10
mm, where (a) is the time-delay and (b) is the non time-delay.
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Figure 6: Plot of normalized frequency for 16 bubble chain case
at constant spacing of 3 mm and varying radius of 1 mm to 10
mm, where (a) is the time-delay and (b) is the non time-delay.

that from the perspective of the damping and frequency, the ef-
fect of increasing the spacing can be negated by increasing the
bubble radius.

Results and discussion

Results of this section is compilation of numerical simulation of
equations (3) and (4). Results from the numerical simulations
are compared with the experimental data for 16, 19, 40 and 56
bubble chain cases.

Figure 7 is the plots of normalized RMS pressure parallel to the
bubble chain 6 cm away (to match the same location as in the
experiments).

All the results from the numerical simulations analyzed shows
the inclusion of time-delay has a very noticeable improvement
in the correlation between the numerical simulation and the ex-
perimental result.

There is a clear trend in all the cases that the calculations with-
out time-delay predict much higher RMS pressure along the
bubble chain than the experimental results. In figure 7 (a) and
7 (b) the normalized RMS pressure value at the end of the bub-
ble chain was still 0.7 to 0.8, which is much greater than what
was recorded in the experimental results. Another discrepancy
that can be noticed is the difference in the general behaviour of
the RMS pressure profile. In both the 16 and 19 bubble chain
cases, there is large decrease of RMS pressure at the first half
of the bubble chain and also a slight increase in RMS pressure
at the end of the bubble chain. In the 19 bubble chain case there
is also a increase in RMS pressure before the decrease at the
start of the bubble chain. The non time-delay model does not
predict these behaviours and implies that the model maybe over
simplified.

In figure 7 (c) and 7 (d), the 40 and 56 bubble chain case, the non
time-delay model shows much better agreement with the exper-
imental result than the equivalent predictions for the 16 and 19
bubble cases. The non time-delay model, predicted better initial
decrease of the RMS pressure in the start of the bubble chain for
the 40 and 56 bubble chain cases but the overall prediction still
greater than what was recorded experimentally.

In examining of the time-delay model results, there is a fair level
of agreement between the numerical results and the experimen-
tal results for all the cases studied when compare to the non
time-delay case. The 16 bubble chain case shows much im-
proved agreement, as the numerical result displays similar fea-
tures, with a major decrease in RMS pressure up to the 0.2 m
segment of the bubble chain and the slight rise at the end of the
bubble chain exhibited by the experimental results. However,
some relative magnitudes of the features are still inconsistent.
The 19 bubble chain case shows less agreement as the model
does not predict the initial increase in the RMS pressure before
decreasing, but other than this noticeable fault there still are ma-
jor improvements compared to the non time-delay model.

In the 40 and 56 bubble chain cases, the non time-delay calcu-
lation results already showed very promising results. Hence as
expected with the 16 and 19 bubble chain cases, the time-delay
case shows improve agreement. The predicted RMS pressure
for the 40 and 56 bubble chain cases shows a similar shape to
the non time-delay case, but the value predicted are lower, giv-
ing a better agreement with the experimental result.

Instantaneous pressure profile

In the experimental study of the bubble chains [14], the
anisotropy property on the bubble chain was documented and
this property was further explored in Nikolovksa et al. [26] by
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Figure 7: Numerical and experimental results for 16, 19 40, 56
bubble chain case .

Figure 8: Energy spectra plot for time-delay 16 bubble chain
case with radius 0.0035m and 0.0321m where (a) time-delay
and (b) non time-delay. is t = 0.036s, ———is t =
0.038s, —-— t = 0.040s, -------- is the 0.042s and e is the lo-
cation of the bubbles

measuring the instantaneous pressure along the bubble chain.
These previous studies showed that wavelength of the instanta-
neous pressure profiles gets larger as it travels along the bubble
chain and that the wavelength was in similar order of magnitude
as the length of the bubble chain.

In this study the instantaneous pressure profile along the bubble
chain was numerical calculated using equation (3) and (4). The
results are shown in figure 8. In the plot, the instantaneous pres-
sure is normalize by maximum instantaneous pressure to allow
an easy comparison of the anisotropy property between the non
time-delay and time-delay model.

Figure 8 shows both time-delay and non time-delay model
display similar characteristics as in the experiments [26] with
wavelength being similar magnitude to the bubble chain length.
The result also shows that the wavelength of the pressure profile
is longer near the end of the bubble chain compared to the start
of the bubble chain.

Mode shape

This section will analyze the effect of time-delay on the global
coupled oscillator system’s mode shapes.

Figure 11 to 13 are the plots of first 10 mode shape, out of
16 possible mode shape from the equation (3) (non time-delay)
and (4) (time-delay) for the 16 bubble chain case with separa-
tion distances of 0.0300 m, 0.0320 m, 0.0321 m, 0.0900 m and
0.1500 m. The equivalent normalize bubble separation distance
for the bubble spacing are 0.01901, 0.02028, 0.02034, 0.05704
and 0.09507. The comparison between the non time-delay and
time-delay mode shape plots shows time-delay has a strong ef-
fect on the low frequency modes and negligible effects on the
higher frequency modes. The most noticeable differences be-
tween the modes occur up to mode 5 with mode 6 onwards only
starting to show the effect of time-delay in the bubble separation
case of 0.15 m. Of course, as the mode number increases for a
number of bubbles, the mode shape diagram becomes rougher
in appearance, since the bubble spacing is inadequate to resolve
the mode structure; indeed, for a mode number greater than
N/2, the mode shape plot will begin to be aliased.

The comparison of figures 9, 12 and 13 shows that the effect of
time-delay on the system gets more noticeable as the spacing
between the bubbles gets larger. As the time-delay effects be-
comes greater, they begin to affect the higher frequency modes
more. This is expected since the time-delay constant is a func-
tion of bubble spacing. Hence an increase in the bubble spacing
means increase in the magnitude of the time-delay constant.

There also seems to be a further interesting observation, com-
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Figure 9: First 10 mode shape of Equ. (3) and (4) for 16 bubble
chain with bubble radius 0.0035 m and bubble separation dis-
tance of 0.0300 m. — is the time-delay case and ———is
the non time-delay case
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Figure 10: First 10 mode shape of Equ. (3) and (4) for 16 bubble
chain with bubble radius 0.0035 m and bubble separation dis-
tance of 0.0320 m. —— is the time-delay case and — ——is
the non time-delay case
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Figure 11: First 10 mode shape of Equ. (3) and (4) for 16 bubble
chain with bubble radius 0.0035 m and bubble separation dis-
tance of 0.0321 m. — is the time delay case and ———is
the non time-delay case
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Figure 12: First 10 mode shape of Equ. (3) and (4) for 16 bubble
chain with bubble radius 0.0035 m and bubble separation dis-
tance of 0.0900 m. —— is the time-delay case and ———is
the non time-delay case
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Figure 13: First 10 mode shape of Equ. (3) and (4) for 16 bubble
chain with bubble radius 0.0035 m and bubble separation dis-
tance of 0.1500 m. is the time-delay case and ———is
the non time-delay case

paring figures 9, 10 and 11. There is a shape changes in the
mode shapes for a small change in the bubble separation dis-
tance, noticeable for the second and third modes, when the sep-
aration is around 0.0300 m. The mode shapes do not change so
greatly for larger separation.

Energy spectra

This section will analyze the effect of time-delays on the energy
spectra.

Figures 14 to 17 are plots of energy spectra for the non time-
delay and time-delay cases. The evolution of the energy spectra
in the time domain show an interesting effect that time-delay
has on the system. In the non time-delay case, there is no domi-
nant mode in the system at the start but as the model is allowed
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Figure 15: Energy spectra plot for time-delay 16 bubble chain
case with radius 0.0035 m and spacing 0.0321 m. is
t = 0.0800s, ———is t = 0.0802s, —-— is t = 0.0804s and
is t = 0.0806s
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Figure 16: Energy spectra plot for non time-delay 16 bub-
ble chain case with radius 0.0035 m and spacing 0.0321 m.
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Figure 14: Energy spectra plot for time-delay 16 bubble chain

case with radius 0.0035 m and spacing 0.0321 m. ist=
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Figure 17: Energy spectra plot for non time-delay 16 bub-
ble chain case with radius 0.0035 m and spacing 0.0321 m.
ist=0.0800s, — ——is t =0.0802s, — - —is t =0.0804s
is t = 0.0806s
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to run, the higher frequency modes die out and low frequency
modes starts to dominate. This was noted earlier [14] as the
explanation of why experimental bubble sound pulses in fre-
quency during the pulse when there are other bubbles nearby.
In the time-delay case, there is also no dominant mode at the
beginning but as the model is allow to run, first 3 mode reduces
in magnitude and system is dominated by medium and high fre-
quency modes.

Conclusion

This study illustrates the time-delay modification has shown to
improve the agreement between global coupled linear oscillator
model and the experimental results. The improvement does not
allow the model to predict all the of the behaviours seen in the
experimental results but does show that addition insight can be
gained by exploring the system.

The effects of time-delay on the eigenmodes of the globally
coupled linear oscillator system has been explored. The anal-
ysis looked into the mode damping and frequency, mode shapes
and energy spectra. In all the cases, the effects of time-delay
was noticeable with the damping and frequency results show-
ing time-delay introduced crossovers. The mode shape analysis
shows that the time-delay effect increased with increase in the
bubble separation distance, and also showed a secondary fea-
ture; a sensitive dependence on bubble spacing. The energy
spectra plots shows for the non time-delay case, the dominate
mode of the system was the low frequency, but with the time-
delay modification the dominant mode is the high frequency
mode.
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