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Abstract

The behaviour of plane fountains, resulting from the
injection of dense fluid upwards into a large container
of homogeneous fluid of lower density, is investigated.
The transient behaviour of fountains with parabolic in-
let velocity profile and Reynolds numbers, 50 ≤ Re ≤
150, Prandtl numbers, Pr=7, 300 and 700, and Froude
numbers, Fr = 0.25 to 10.0 are studied numerically.
The fountain behaviour falls into three distinct regimes;
steady and symmetric; unsteady and periodic flapping;
unsteady and aperiodic. The analytical scaling of non-
dimensional fountain height, zm, with Fr and Re is
zm ∼ Fr4/3−2γ/3Re−γ . The constant γ is found em-
pirically for each of the regimes. The fountain height de-
creases with increase in Reynolds number in the steady
region but increases with Reynolds number in the un-
steady regimes. However, the fountain height increases
with Froude number in all regimes. Numerical results
and the analytical scaling show that zm is independent
of Prandtl number in the range considered. The foun-
tain exhibits periodic lateral oscillations, i.e., periodic
flapping for intermediate Froude numbers ranging from
1.25 ≤ Fr ≤ 2.25.

Introduction

A fountain is formed whenever a fluid is injected upwards
into a lighter fluid, or downward into a denser fluid. In
the former case the jet penetrates some distance and falls
back as a plunging plume around the entering fluid.

Fountains are found in many engineering applications:
the heating of a large open structure, such as an air-
craft hanger, by large fan-driven heaters at the ceiling
level; cooling of turbine blades; cooling of electronic com-
ponents; the mixing of a two-layer water reservoir with
propellers; and the mixing in metallurgical furnaces by
gas bubble plumes, to name just a few. Hence it is im-
portant to understand the fundamental physics of such
flows.

The behaviour of plane fountains is governed by the
Reynolds, Froude, and Prandtl numbers, defined as,

Re ≡ VinXin

ν
,

Fr ≡ Vin√
g(ρin − ρ∞)/ρ∞Xin

≡ Vin√
gβ(T∞ − Tin)Xin

, (1)

Pr ≡ ν

κ
,

where Xin and Vin are the half-width and velocity of a
uniform inlet profile at the fountain source respectively,

ν is the kinematic viscosity of the fountain fluid, g is the
acceleration due to gravity, ρin and Tin are the density
and temperature of the fountain fluid at the source re-
spectively, ρ∞ and T∞ are the density and temperature
of the ambient fluid respectively, κ is the thermal diffu-
sivity and β is the coefficient of volumetric expansion.
The second expression of the Froude number in equation
(1) applies when the density difference is due to the dif-
ference in temperature of the fountain and ambient fluid
using the Oberbeck–Boussinesq approximation.

Baines et al. [1] showed that if the source size is small
compared with the fountain height for a plane turbulent
fountain the flow will depend only on min and bin, the
inlet momentum and buoyancy fluxes per unit mass per
unit span. Dimensional consistency then requires that
the fountain height obeys the relation,

zm =
Zm

Xin
=

C∗minb
−2/3
in

Xin
, (2)

where Zm is the fountain height, zm its non-dimensional
form, min = 2V 2

inXin, bin = 2g(ρin−ρ∞)/ρ∞VinXin and
C∗ is a constant of proportionality. In terms of Fr zm

can be written as,

zm = CFr4/3, (3)

where C is a constant of proportionality.

Baines et al. [1] then conducted a series of experiments
on plane fountains to validate the scaling equation (2)
for 500 ≤ Fr ≤ 3400 and found that C = 0.65. How-
ever, Campbell and Turner [2] obtained C=1.64–1.97
from their experiments on plane turbulent fountains for
5.6 ≤ Fr ≤ 51. Zhang and Baddour [3] conducted a
series of experiments on plane turbulent fountains pri-
mararily to study the effect of mass flux, momentum
flux and buoyancy flux on the properties of plane tur-
bulent fountains for large and small Froude number, as
the effect of mass flux on small Froude number fountains
was not quantified in previous investigations. Two dif-
ferent models were used by them to correlate the small
Froude number data and to quantify the effect of mass
flux on plane fountains. The first model (virtual source
model) applied the concept of virtual origin proposed
by Morton [4] and the second model (zero-entrainment
model) ignored the turbulent entrainment. The Froude
number and the Reynolds number were in the ranges of
0.6 ≤ Fr ≤ 114 and 325 ≤ Re ≤ 2700 respectively. For
Fr < 6.5, their virtual source model gave,

zm =
(
2.0 − 1.12Fr−2/3

)
Fr4/3, (4)

and their zero-entrainment model gave,

zm = 0.71Fr2. (5)
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Zhang and Baddour [3] used the scaling equation (3) for
large Froude number experiments (Fr ≥ 10) and ob-
tained C=2.0, which is reasonably close to the range of
values obtained by Campbell and Turner [2], but is about
three times the value obtained by Baines et al. [1]. They
speculated that Baines et al. [1] misinterpreted the value
of C from Campbell and Turner [2] and probably miscal-
culated the equivalent half-width as even a small error in
estimating the half-width could have a large effect on C.
Their experimental results also showed that scaling equa-
tion (3) was reasonable over the entire range of Froude
numbers investigated, whereas equation (4) was only ad-
equate for Fr < 4.0.

Goldman and Jaluria [5] carried out an experimental in-
vestigation on plane fountains by blowing hot air verti-
cally downward into a chamber which is different from
the experiments discussed previously where salt solution
was injected into a tank of fresh water. The Reynolds
number and the Froude number were varied in the range
500 ≤ Re ≤ 2500 and 1.4 ≤ Fr ≤ 15.8 respectively. The
fountain height was quantified by defining it as the verti-
cal distance from the jet inflow to the location where the
local temperature excess (T −T∞) dropped to 1% of the
inlet excess (Tin − T∞), as opposed to the other investi-
gations discussed above where the zero vertical velocity
location is used. They obtained the following empirical
scaling correlation for the fountain height,

zm = 5.83Fr0.88 . (6)

Lin and Armfield [6] conducted numerical investigations
to study the effect of the Reynolds number on the height
of plane fountains. For Re > 200 they found that the
fountain height is independent of the Reynolds number
and

zm ∼ Fr4/3, (7)

where the symbol “∼” denotes “scale to”. For Re ≤ 200
the fountain height was found to be dependent on the
Reynolds number with the following analytical scaling

zm ∼ FrRe−1/2. (8)

The scaling equation (8) was then confirmed by a series
of numerical investigations [7] for 0.2 ≤ Fr ≤ 1.0, 5 ≤
Re ≤ 500 and Pr = 7 and they obtained the following
relations

zm = 0.2774 + 1.8696 Fr, (9)

zm = 1.891 + 3.671 Re−
1
2 . (10)

As shown above similar scaling relations have been ob-
tained by various researchers, however there are signifi-
cant variations in the constant of proportionality [8].

In this study, we investigate the influence of the Froude
number on plane fountains and obtain empirical rela-
tions between the height and the Froude number for
50 ≤ Re ≤ 150 and 0.25 ≤ Fr ≤ 10. The effect of
Prandtl number on fountain height is studied for Pr=7,
300 and 700 on two Froude numbers Fr=1.0 and Fr=2.0.
Additionally we obtain the critical Froude number for a
flapping instability.

Numerical method

The fluid between horizontal insulated solid walls a dis-
tance H apart is initially still and isothermal at tempera-
ture T∞. For t > 0 fluid issues from a slot of width 2Xin

in the floor with a parabolic velocity profile

V = Vm

[
1 −

(
X

Xin

)2
]

, (11)

where Vm is the maximum velocity of the parabolic pro-
file which is equal to 1.5Vin for a fully developed laminar
flow and temperature Tin < T∞. The flow is assumed
to remain two-dimensional. Figure 1 shows the compu-
tational domain. The buoyancy is a result of the tem-
perature difference between the source and the ambient
fluids.

Fountain source

ou
tf

lo
w

outflow

L

H

Y, V

2Xin

ceiling

X, U

Figure 1: Computational domain.

The governing equations are the incompressible Navier–
Stokes equations with the Oberbeck–Boussinesq approx-
imation. The following equations are written in conserv-
ative, non-dimensional form in Cartesian coordinates,

∂u

∂x
+

∂v

∂y
= 0 , (12)

∂u

∂τ
+

∂ (uu)

∂x
+

∂ (vu)

∂y
= − ∂p

∂x

+
1

Re

(
∂2u

∂x2
+

∂2u

∂y2

)
, (13)

∂v

∂τ
+

∂ (uv)

∂x
+

∂ (vv)

∂y
= −∂p

∂y

+
1

Re

(
∂2v

∂x2
+

∂2v

∂y2

)
+

1

Fr2
θ, (14)

∂θ

∂τ
+

∂ (uθ)

∂x
+

∂ (vθ)

∂y
=

1

RePr

(
∂2θ

∂x2
+

∂2θ

∂y2

)
. (15)

The following non-dimensionalisation is used:

x =
X

Xin
, y =

Y

Xin
, u =

U

Vin
, v =

V

Vin
,

τ =
t

(Xin/Vin)
, p =

P

ρV 2
in

, θ =
T − T∞

T∞ − Tin
. (16)

The initial and boundary conditions are

u = v = θ = 0 when τ < 0, (17)

and when τ ≥ 0

∂u

∂x
= 0,

∂v

∂x
= 0,

∂θ

∂x
= 0 on x = ±L/(2Xin), (18)
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u = 0, v = 1.5(1 − x2), θ = −1 (19)

on |x| ≤ 1, y = 0 ,

u = v = 0,
∂θ

∂y
= 0 on |x| > 1, y = 0 , (20)

u = v = 0,
∂θ

∂y
= 0 on y = H/Xin, (21)

respectively.

The results were obtained using the open source code
Gerris [9], a quad-tree based adaptive mesh solver which
uses a fractional-step projection method. The advec-
tive terms are discretised using a second-order Godunov
type scheme, the remaining terms use standard second-
order schemes and the equations are solved using a semi-
implicit multi-grid approach. The computational domain
is −100 ≤ x ≤ +100 and 0 ≤ y ≤ 100. The minimum
grid spacing is 4.88 × 10−4 in each direction. The mesh
is dynamically adapted based on the vorticity and the
temperature. The adaptive refinement is performed at
the fractional timestep. A cell is refined, i.e. divided into
four square sub-cells, whenever

|∇ × v|Δx

max |v| > δ, (22)

|∇θ|Δx > δ. (23)

where Δx is the size of the cell and δ is a user-defined
threshold. The cells are also coarsened likewise. The
code has been tested for different values of δ and CFL
number. δ=0.01 and CFL=0.5 are found to be most
appropriate and have been used throughout in the nu-
merical calculations. The time-step varies dynamically
during the iteration process. The time taken for a single
run of τ = 1500 on a typical Pentium-IV machine with
1GB RAM and 3.2GHz processor is 29 hours, although
this time depends on the number of cells and thus varies
with Froude number.

Fountain height scaling

In order to obtain the fountain height scaling it is as-
sumed that Zm can be expressed in terms of powers of
the momentum flux min, the buoyancy flux bin and the
viscosity ν such that the power relation is as follow,

Zm ∼ mα
inbβ

inνγ . (24)

Dimensional analysis is then used to obtain the values of
the powers. However we end up with a set of equations
where there are only two dimensions, length and time and
three unknown powers, α, β and γ. Thus we obtain one
linearly independent solution. The dimensional analysis
thus leads to the relation,

Zm = XinFr
4
3− 2

3 γRe−γ . (25)

In non-dimensional form equation (25) becomes,

zm =
Zm

Xin
∼ Fr

4
3− 2

3 γRe−γ . (26)

For large Reynolds number, the fountain height will be
independent of the viscosity and thus γ=0. The equation
(26) then reduces to

zm ∼ Fr
4
3 , (27)

which is exactly same as equation (3) obtained by Baines
et al. [1] for turbulent plane fountains. However in the
present case, the power γ is unknown and will be evalu-
ated empirically. Lin and Armfield [6] gave an analytical
value for γ in case of weak fountains (Fr ≤ 1.0) by as-
suming that for low Reynolds number flow the height of
the weak fountains is controlled by the rate at which fluid
can exit the fountain via the viscous intrusion that forms
downstream of the fountain. Lin and Armfield [6] ob-
tained γ = 1

2
and thus for weak fountains equation (26)

becomes,

zm ∼ Fr

Re
1
2

. (28)

Results

The free-fountain results have been obtained with
Reynolds numbers ranging from 50 ≤ Re ≤ 150 for
0.25 ≤ Fr ≤ 10.0. The effect of Prandtl number on
fountain height is also examined for Pr=7, 300 and 700.

Observations

An overview of the temperature fields at different times
for Fr=1.0 and Fr=1.25 at Re=100 and Pr=7 is shown
in figure 2. After the fountain is initiated, it travels up-
wards until momentum balances buoyancy, when it comes
to rest. The rising fluid spreads due to its reduced ve-
locity and interaction with the ambient fluid. The de-
scending fluid then interacts with the environment and
with the upflow, restricting the rise of further fluid. The
descending fluid, heavier than the ambient, moves along
the floor as a gravity current. The fountain is symmetric
and steady for Fr=1.0 at full development whereas the
fountain starts symmetrically for Fr=1.25, but eventu-
ally becomes unsteady and asymmetric. An interesting
feature is the flapping, i.e. lateral oscillation, that can
be observed for Fr=1.25 in figure 2. The flapping phe-
nomenon can be thought of as a lateral movement of the
fountain fluid on either side of the fountain source. At
the extreme of each oscillation the top of the fountain
is shed laterally exposing the core of the fountain. The
fountain then increases in height and the process is again
repeated on the other side. This flapping behaviour can
again be either periodic or aperiodic depending upon on
the Froude number, which will be discussed later in this
section.

τ = 10

τ = 50

τ = 100

τ = 200

τ = 300

τ = 310

τ = 400

τ = 600

τ = 800

τ = 1000

τ = 1200

Figure 2: Evolution of temperature fields for Fr = 1.0
(left column) and Fr = 1.25 (right column) at Re=100
and Pr=7.

Figure 3 shows the instantaneous temperature fields for
different Froude numbers. The fountain is observed to
be steady and symmetric for Fr=1.0, but is asymmetric
for all the higher Froude numbers (Fr ≥ 1.25). The
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(a) Fr = 1.0 (b) Fr = 2.0

(c) Fr = 4.0 (d) Fr = 6.0

(e) Fr = 7.0 (f) Fr = 8.0

(g) Fr = 9.0 (h) Fr = 10.0

Figure 3: Instantaneous temperature fields after the flow
is fully developed at Re=100 and Pr=7.

fountain also appears to be more chaotic as the Froude
number increases.

This effect of the Froude number on the fountain is exam-
ined further in figure 4 which shows the time-evolution
of u at x=0 and y=2. The horizontal velocity is almost
zero with time for Fr=0.8 and 1.0, as shown in figure 4a,
indicating that the fountain is symmetric about x=0.
However, the fountain becomes asymmetric and flaps
with a definite frequency, periodically, as shown in fig-
ures 4b–4d for Fr=1.25, 1.5, 2.0, and quasi-periodically
for Fr=2.25 as shown in figure 4e. At Fr=2.5 the time-
series is aperiodic, as shown in figure 4f and the same is
true for all the higher Froude numbers (not shown).

Effect of Reynolds number on Fountain height

The effect of the Reynolds number on the non-
dimensional fountain height zm is shown in figure 5. The
results were obtained for Re=50, 75, 100, 125, 140 and
150 with Pr=7 and Fr=0.5, 2.0 and 6.0. The foun-
tain height is measured as the vertical distance from
fountain source to the point where the vertical velocity
goes to zero. For unsteady and asymmetric fountains
(Fr ≥ 1.25), the fountain height is obtained as a time-
average over τ=200–1400 and for lower Fr is the steady-
state height. In the case of weak fountains (Fr ≤ 1.0)
where the fountains are steady and symmetric, it is found
that increase in Reynolds number leads to a decrease in
the fountain height. For weak fountains the steady-state
fountain height provides the required energy to drive the
fountain laterally outwards. As the viscosity of the fluid
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Figure 4: Evolution of u at x = 0 and y = 2 for different
Froude numbers at Re=100 and Pr=7.

increases (decrease in Reynolds number) there is resis-
tance to this outflow and thus more energy is required to
drive the flow. This energy is obtained only by increasing
the steady-state rise height of the fountain and thus for
low Re flow the fountain height is higher.

In the case of fountains with intermediate (Fr=2.0) and
large (Fr=6.0) Froude number where the fountains are
unsteady and flap periodically and aperiodically respec-
tively, an increase in Reynolds number increases the foun-
tain height. For such flow there is still enough energy
(higher momentum flux compared to buoyancy flux) even
at low Reynolds number to overcome any resistance to
the outflow and thus fountain height increases with Re.

The scaling of fountain height with Re for each of the Fr
considered (Fr=0.5, 2.0 and 6.0) is obtained empirically
and as follows; in the steady and symmetric regime,

zm = 1.19 + 6.64Re−0.5 (29)

with a variation of less than ±0.004; in the unsteady and
periodic flapping regime,

zm = 4.4Re0.1 (30)
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Figure 5: Variation of fountain height with Re for
Fr=0.5, 2.0 and 6.0 at Pr=7.

with a variation of less than ±0.04; and in the unsteady
and aperiodic flapping regime,

zm = 19.25Re0.035 (31)

with a variation of less than ±0.025.

The scaling equation (29) is similar to the result obtained
by Lin and Armfield [6] for weak fountains. Not enough
evidence is available in the literature on plane fountains
to confirm the scalings given by equations (30) and (31).
The scaling relations (equations (29)–(31)) thus give γ
in equation (26) as 0.5, -0.1 and -0.035 for Fr=0.5, 2.0
and 6.0 respectively. Thus |γ| gradually decreases with
increase in Fr, showing there is rather a weak dependence
of fountain height on Reynolds number for larger Fr.

Effect of Prandtl number on Fountain height

The effect of Prandtl number on fountain height is stud-
ied for Pr=7, 300 and 700 with two Froude numbers
namely Fr=1.0 and Fr=2.0 at Re=100. Figure 6 shows
the variation of zm with Pr for this range. The variation

Pr

z m

0 200 400 600 800

2

3

4

5

6

7

8

9
Fr = 1.0
Fr = 2.0

Figure 6: Variation of fountain height with Pr for
Fr=1.0 and 2.0 at Re=100.

is negligible and thus it can be concluded that zm does

not vary with Pr over this range. This result agrees well
with the analytical scaling relation (equation 26) where
zm is independent of Pr.

Effect of Froude number on Fountain height

The variation of fountain height with Froude number is
shown in figure 7 for Re=50, 100 and 150 at Pr=7. Since

Fr

z m

100 101

100

101

102
Re = 50
Re = 100
Re = 150
scaling
Campbell and Turner
Goldman and Jaluria
Zhang and Baddour, small Fr model
Zhang and Baddour, large Fr model

Figure 7: Variation of fountain height with Fr for
Re=50, 100 and 150 at Pr=7.

three different regimes in the fountain were identified and
the fountain height scales differently with Reynolds for
each of the regimes, it is appropriate to use three dif-
ferent fountain height scalings with Fr. A comparison
of results with those obtained by previous researchers is
also shown in figure 7. Most of the experimental results
available on plane fountains are for intermediate and high
Fr (Fr ≥ 3.0) in transitional and turbulent regimes. Lin
and Armfield [6, 7] have obtained numerical results for
weak fountains.

The results show that the fountain height increases with
Fr in all the regimes. For weak fountain (Fr ≤ 1.0)
the fountain height decreased with Re which has been
discussed previously. Although figure 7 shows data for
Re=50, 100 and 150, the fit (solid line in figure 7) is
obtained for a fixed Reynolds number of Re=100. All
scaling relations are obtained and plotted based on the
constant γ obtained from equations (29)–(31) and using
the scaling relation from equation (26). In the steady
and symmetric region (0.25 ≤ Fr ≤ 1.0)

zm = 0.571 + 2.586Fr (32)

with a variation of less than ±0.011. In the periodic and
quasi-periodic flapping region (1.25 ≤ Fr ≤ 2.25),

zm = 1.2108 + 2.2016Fr1.4 (33)

with a variation of less than ±0.022. In the unsteady and
aperiodic flapping region (2.5 ≤ Fr ≤ 10.0),

zm = 4.45 + 1.536Fr4/3 (34)

with a variation of less than ±0.37.

Discussion and conclusions

The long-term transient behaviour of plane fountains,
with parabolic inlet velocity profiles, has been studied
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numerically for 50 ≤ Re ≤ 150, 0.25 ≤ Fr ≤ 10.0
and Pr=7, 300, 700. Three distinct regimes have been
identified. In the first regime, the fountain is sym-
metric and steady with Froude number varying from
0.25 ≤ Fr ≤ 1.0. Similar flow patterns were observed by
Lin and Armfield [7] with weak laminar plane fountains
(0.2 ≤ Fr ≤ 1.0). In the second regime (1.25 ≤ Fr ≤
2.25), the fountain is unsteady and asymmetric but has
a periodic flapping. In the third regime (Fr ≥ 2.5), the
fountain is unsteady and aperiodic. The critical Froude
number for transition from steady to unsteady flow lies
between Fr = 1.0 and 1.25.

The periodic and quasi-periodic flapping behaviour ob-
served here has not been reported previously. However
most of the work carried out by previous researchers was
in the intermediate and large Fr range (Fr ≥ 3.0), at
higher Fr than those at which the periodic and quasi-
periodic flapping has been observed. Additionally most
of the previous experimental work has used a re-entrant
nozzle, whereas we have used fountain source flush with
the floor. Initial results with a re-entrant nozzle at
Fr=2.0 (not shown here) showed a strongly asymmet-
ric flow with no flapping, and it may be that periodic
and quasi-periodic flapping behaviour is only generated
with a source flush with the floor. Lin and Armfield [6, 7]
did use a source flush with the floor, but with Fr ≤ 1.0
considered only flows for which flapping is not expected.
A number of researchers have observed aperiodic flapping
and chaotic unsteady flows at higher Fr, similar to those
observed here for Fr ≥ 2.5 [1, 2, 3].

The scaling relations between the fountain height and
the Reynolds number at the source have been obtained
empirically for Fr=0.5, 2.0 and 6.0 with a fixed Prandtl
number of Pr=7 for Re=50, 75, 100, 125, 140 and 150.
The fountain height decreases with increase in Reynolds
number for steady and symmetric fountains but increases
with Reynolds number for unsteady fountains. In the

steady and symmetric regime, zm ∼ Re−
1
2 . In the peri-

odic and quasi-periodic flapping regime, zm ∼ Re0.1 and
in the unsteady and aperiodic regime, zm ∼ Re0.035. In
the unsteady regime, as the Froude number increases the
dependence of fountain height on Re decreases. Foun-
tains with higher Fr are approaching turbulence and thus
can be approximated with turbulent fountains where the
fountain height is independent of Reynolds number.

The effect of Prandtl number on Froude number is also
studied for a fixed Re of 100 with Fr=1.0 and 2.0 for
Pr=7, 300 and 700. It is found that the fountain height
does not vary with Pr in this range.

In addition the scaling of fountain height with Fr is ob-
tained for 0.25 ≤ Fr ≤ 10.0 with Re=100 and Pr=7.
It is found that the fountain height increases with Fr
in all the regimes. In the steady and symmetric regime
(0.25 ≤ Fr ≤ 1.0), zm ∼ Fr is obtained from the an-
alytical scaling and provides a good representation of
the behaviour in this regime. This result agrees well
with the analytical scaling obtained by Lin and Arm-
field [7] with a small variation in the constant possible
as a result of the different boundary condition and in-
tegration times used there. In the periodic and quasi-
periodic regime (1.25 ≤ Fr ≤ 2.25) a best fit to the data
gave zm ∼ Fr1.4, no analytical scaling or other results
are available to furthur validate this. In the aperiodic,
chaotic regime (2.5 ≤ Fr ≤ 10.0) the analytical relation

zm ∼ Fr4/3 [1] is found to provide a good fit, with negli-

gible Re variation, in good agreement with the results of
Campbell and Turner with C=1.97 [2] and with the large
Fr results of Zhang and Baddour [3]. Both the small
Fr virtual source model of Zhang and Baddour and the
Goldman and Jaluria model [5] provide poor prediction
of the data obtained here. In the latter case this may be
due to the experimental set up and different definition of
the fountain height, while Zhang and Baddour small Fr
model is not applicable to the full Fr range considered.

The current authors have also conducted experiments
and limited three-dimensional numerical simulations
(due to computational limitations) on both planar and
round fountains with a flush source. There is a good
agreement between experiments and numerical results
quantitatively over the range of Fr and Re considered
in this paper. Further, the flapping mode described in
this paper is also observed in experiments for both pla-
nar and round fountains. The scaling relations are yet
to be confirmed for three-dimensional fountains and it
is expected that current scaling relations will hold good
with some variations in the constant of proportionality.
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