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Abstract 

The T4 shock tunnel at The University of Queensland is regularly 
used to perform supersonic combustion experiments. The fuel for 
the test model is supplied using a Ludwieg-tube delivery system. 
A combination of theoretical modelling and calibration tests is 
used to determine the mass flow-rate of fuel for given Ludwieg-
tube initials conditions and the measured pressure in the plenum 
chamber that supplies the fuel to the model. The theoretical 

model used in the calibration procedure is presented. The goal of 
this project is to check the suitability of the modelling 
assumptions by simulating the complete Ludwieg-tube system 
using the one-dimensional Lagrangian computer code, L1d. 
Simulation of the fuel delivery system is done separately for 
viscous and inviscid flow with conditions replicating those used 
in supersonic combustion tests in T4. The steady plenum 
pressures from the simulations of inviscid and viscous flow are, 

on average, within ±7% and ±4%, respectively, of the values 
measured experimentally. Further, the fuel mass flow-rates 
obtained from viscous simulations are, on average, within ±13% 
of the experimental values.  

 

Nomenclature 

Roman symbols 

a local speed of sound; 

A valve orifice area; 

A* effective throat area of holes in the plenum; 

d valve orifice diameter; 

G constant that relates pressure drop across the valve; 

K valve loss coefficient; 

L length; 

fm   fuel mass flow-rate; 

p pressure; 

R gas constant; 

T temperature; 

u flow speed of gas; 

V total volume of Ludwieg-tube and extended tube 
upstream the valve; 

 

Greek symbols 

α constant that relates initial pressure in the Ludwieg-
tube and the plenum steady pressure to the fuel mass 
flow-rate; 

γ specific heat ratio; 

ρ density; 

 

Subscripts 

p plenum chamber conditions; 

0 Ludwieg-tube stagnation conditions; 

0i Ludwieg-tube initial conditions; 

0f  Ludwieg-tube final conditions; 

tu extended tube upstream the valve; 

td extended tube downstream the valve; 

 

Abbreviations 

L1d Lagrangian one-dimensional; 

T4 T4 shock tunnel; 

 

1. Introduction 

Ludwieg-tubes can provide clean uniform flow at economical 

cost. The concept of such a tube was first proposed in 1955 by 
the German scientist Hubert Ludwieg. A Ludwieg-tube basically 
consists of a long high pressure tube closed at one end and a 

converging-diverging nozzle at the other end. Downstream of the 
nozzle, a diaphragm is used to separate the high pressure gas in 
the Ludwieg-tube from the low pressure gas in the dump tank. 
When the diaphragm ruptures (generally done by a piercing 
device), a shock propagates into the low pressure region of the 
dump tank while an unsteady expansion wave moves upstream 
into the long high pressure tube, choking the nozzle throat [1]. 
Subsequently, a sonic flow is established, and the flow remains 

steady until the reflected expansion waves from the closed end of 
the high-pressure tube arrive back at the nozzle. The duration of 
steady flow is relatively short because the expansion waves travel 
at the local speed of sound. However, this period can be 
increased by increasing the length of the high pressure tube. 
More information on the operation of Ludwieg-tubes can be 
found in reference [2].  
     The fuel delivery system in T4 works on the same principle as 

a Ludwieg-tube. The fuel delivery system consists of a long, 
high-pressure tube filled with the fuel (usually hydrogen), a fast 
acting solenoid valve and a plenum chamber with holes. The 
holes serve as sonic exhaust nozzles for releasing gas into the 
combustion chamber of the scramjet model. The solenoid valve 
has extended tubes on either side that connect to the Ludwieg-
tube and the plenum. The valve, when closed, separates the high 
pressure side from the low pressure side. The increase in cross-

sectional area in the plenum chamber reduces the speed of gas 
flow there to achieve near uniform conditions to feed the 
injection holes.  
     With the holes acting as sonic nozzles to discharge gas from 
the plenum, the measurements of the plenum total pressure and 
total temperature can be used to determine the fuel mass flow-
rate through the holes if the discharge coefficient for the holes is 
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known. But the measurement of plenum total temperature is not 
simple. The response time of typical thermocouples that might be 
used for temperature measurement is usually insufficient for the 
short duration flows in the fuel-delivery Ludwieg-tube (of order 
20 ms). Therefore, the plenum total temperature is not measured. 

     To address this problem in determining the fuel mass flow-
rate, a theoretical model is proposed. The theoretical model can 
be used to calculate the mass flow-rate without the requirement 
to measure the plenum total temperature. The theoretical model is 
developed on two critical assumptions. First, it is assumed that 
the flow from the Ludwieg-tube to the plenum is adiabatic. This 
condition is checked in the numerical simulations by comparing 
the stagnation temperature in the plenum (Tp) and Ludwieg-tube 

(T0). To include the pressure loss across the valve, it is assumed 
that the pressure in the plenum is a constant fraction of the 
pressure in the Ludwieg-tube, i.e., pp = Gp0. The simulation 
quantifies the influence of this assumption by checking the effect 
of different valve loss coefficients on plenum pressure for 
particular initial conditions.  
     This paper includes the theoretical model used to calculate the 
mass flow-rate, a brief description of the numerical simulation, 

the results obtained from the simulation and a comparison of the 
results from the simulation with those from the experiments. 
 

2. Theoretical Model 
     The following theoretical model is used to calculate the fuel 
mass flow-rate without a direct measurement of the plenum total 
temperature. This model starts with the assumption that the gas in 
the Ludwieg-tube expands isentropically from the initial fill 

conditions. Therefore 
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where, γ = 1.41 for Hydrogen. The flow is assumed adiabatic 
from the Ludwieg-tube to the plenum, which is reasonable 
considering that the initial gas temperature in the Ludwieg-tube 
and the plenum is around 300 K and 296 K respectively. Further, 

as the Ludwieg-tube fuel delivery system is exposed to standard 
atmospheric conditions, the amount of heat transfer from the fuel 
system to the surrounding is not significant. 
 

                                            0pT T .                                   (2) 

 
It is assumed that the flow is choked at the plenum holes. 
Therefore the fuel mass flow-rate is 
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where, C = 0.0107 K1/2sm-1, for H2 at 1 atm and 20˚C. From 

equation (2), 0pT T . Therefore  
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But from equation (1), T0 is related to 0i
T so that 
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There will be a loss of total pressure as the fuel flows from the 
Ludwieg-tube to the plenum through the solenoid valve. It is 
assumed that the pressure in the plenum is a constant fraction of 
the pressure in the Ludwieg-tube. Therefore,  
 

0pp Gp ,  

or 

                              0 (1/ ) pp G p ,      (4) 

 
where, G is a constant, which depends upon the valve loss 
coefficient. Using equation (4) in equation (3), 
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where, B is a constant 
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where, 
*

0i

BA

T
  . The mass that leaves the system during the 

period of time for which the valve is open can be written as 
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Therefore, the total amount of gas that leaves the Ludwieg-tube 
when the valve is open is 
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From equation (1),  
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Equating equations (6) and (7), 
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The value of α obtained from equation (8) can be substituted into 
equation (5) to determine the fuel mass flow-rate at any point in 
time during a test. 
 

3. Numerical Simulation 
     The numerical modelling used for the simulation of the fuel 
delivery system is a Lagrangian one-dimensional code called 

L1d. L1d has been used successfully for simulation of transient-
flow facilities such as the light-gas launchers and free-piston 
driven shock tunnels. The numerical modelling embodied within 
L1d is based on a quasi-one-dimensional Lagrangian description 
of the gas dynamics coupled with engineering correlations, to 
estimate gas behaviour. More information on L1d can be found 
in reference [3].  
     A representation of the geometry of the fuel delivery system is 
required for the simulation. Noting that L1d is a Lagrangian one-

dimensional code, a hydraulic diameter for the plenum is used in 
the simulation to represent its actual rectangular cross-section. 
Also, a single hole is used to simulate all the fuel injection holes. 
The area of the single simulated injection hole has the same area 
as that of the multiple injection holes in the actual model. L1d 
performs best when changes in cross-sectional area occur 
gradually rather than rapidly. Therefore in the simulation, the 
transition between tubes of different area is taken as a cubic with 

the transition length being one diameter of the larger tube. Also, 
while the fuel injection holes from the plenum chamber are 
choked sonic orifices, the single hole is modified as a 
convergent-divergent hole with the throat area equal to the 
combined area of the sonic orifices. The dimensions of the entire 
fuel delivery system are shown in figure 1. 
 

  Figure 1. Geometry of the fuel delivery system used for the simulation 

 
     Experimental data for the fuel delivery system were obtained 
from four shots in the T4 Shock Tunnel that involved combustion 

tests of a scramjet model. For all experiments 0i
T ≈ 300 K. 

Experimental data were also available from three calibration 
shots. Data were obtained from the experimenter for the fuel 
delivery system, Dr. Milinda Suraweera. The experimental data 
in Table 1 show the initial and final Ludwieg-tube pressures and 
the mean plenum pressures during the tests. 

     In the experiments and simulations, the Ludwieg-tube was 
initially filled with hydrogen and the gas downstream of the 
valve was air. The initial fill conditions for the Ludwieg-tube in 

the simulations ( 0i
p , 0i

T ) were set to the conditions for each T4 

shot or calibration test. The air downstream of the valve was set 
to 130 Pa at 295 K. Since L1d does not have features to replicate 
the operation of the solenoid valve, a gas-interface was 
incorporated in the code to separate the two gas slug. Therefore 
valve delays in opening and closing were not replicated in the 
simulation. However, L1d includes features to incorporate loss 

regions to account for pressure losses through the valve and the 
losses caused by sudden expansion or contraction at changes in 
the cross-sectional area of the pipe. The extent of pressure loss is 
specified by an appropriate minor loss coefficient for a particular 
region.  

 

T4 shot no. 
0i

p (kPa) 
0 f

p (kPa) pp (kPa) 

9291 1680 1300 1250 

9292 1315 1080 950 

9293 1005 790 740 

9294 1005 810 765 

Calibration 3 970 760 800 

Calibration 4 1120 940 890 

Calibration 5 2330 1775 1775 

 
Table 1. Experimental data for the Ludwieg-tube fuel delivery system 

 
     In L1d, increasing the number of cells provides better 
resolution of the results from the simulation, but increasing the 

number of cells also increases the computational time required to 
finish a simulation. The appropriate number of cells was 
determined using a grid refinement study. For the simulations 
done in this project 1500 cells were used for the slug upstream of 
the gas-interface and 200 cells were used for the slug 
downstream of the gas-interface. The simulations were run for a 
minimum of 30 ms, which is approximately the time for which 
the valve was left opened in the T4 shots and fuel system 

calibration tests. 
 

4. L1d Simulation Results  
     In a Ludwieg-tube, if the growth of boundary layers on the 
tube walls is neglected, several steady periods of constant 
stagnation conditions are expected [4]. An inviscid L1d 
simulation of the T4 fuel Ludwieg-tube for Shot 9293 was run 
for a total of 60 ms to show two such regions of approximately 

steady plenum pressure. Figure 2 shows results from this 
simulation in the form of a wave diagram for the Ludwieg-tube 
and the pressure trace in the plenum chamber. The results show 
that the second period of steady flow is shorter in duration than 
the first.  
     The arrival of the unsteady expansion waves at the valve 
causes the pressure in the plenum to drop as the injector 
unchokes. However, as the expansion waves reflect back, the 
injector chokes again giving rise to the next steady stage.  

     Inviscid simulations were done for the conditions of the 
experiments listed in Table 1. Plenum conditions obtained from 
the simulations were then compared with the corresponding 
experimental data. The uncertainty in the plenum pressure for the 
experiment is calculated to be ±4%. Figure 3 compares the 
pressure in the plenum chamber for the inviscid simulation and 
experiment for shot 9291. 
     The simulation shows an overshoot in pressure in the plenum 

chamber that is not evident in the experiment. There is also a 
larger drop in pressure associated with the arrival of the unsteady 
expansion in the simulation than in the experiment. Similar 
results were obtained for other conditions. For all inviscid 
simulations the plenum pressures from the simulations were 
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higher than the experimental values. This is attributed to the 
absence of complete simulation of losses in the inviscid 
simulations. 

 
 

Figure 2. Plenum pressure trace relative to the expansion fan 
 

     Viscous simulations were also done for the conditions listed in 
Table 1. Loss regions can be included in viscous simulations. The 
loss for the valve was simulated by including a loss region, with 
loss factor, K = 0.5, over a length of 50 mm around the valve 
location. The value of K was chosen based on table 6.5 of White 
[5].  

 
Figure 3. Experimental (green) and inviscid simulation (red) plenum 

pressure traces for conditions of shot 9291  

     The plenum pressure traces from the viscous simulations for 
all conditions showed good agreement with the corresponding 
experimental traces. Figure 4 shows the comparison for shot 
9291. 

 
Figure 4. Experimental (green) and viscous simulation (red) plenum 

pressure trace for shot 9291 conditions  

 

     The viscous simulations can be used to quantify the influence 
of the assumption pp = Gp0 made in the theoretical model. 

Viscous simulations were done with various loss coefficient 
factors K to check the pressure loss across the valve (gas-
interface). The results are as shown in the table 2. 
 

K Stagnation pressure (kPa) Pressure 

drop (kPa) Start of valve End of valve 

0.25 714 690 24 

0.50 717 684 33 

0.75 720 680 40 

1.00 724 675 49 

 
Table 2. Pressure drop for different valve loss coefficients from viscous 

simulation of shot 9293 conditions 

 

     Note that G will vary with the applied loss coefficients. From 
the results shown in Table 2, the average value of G is 0.95.  
Table 3 shows the comparison of the plenum pressure from both 
inviscid and viscous simulations and the experiment. 
     The simulation pressures indicated in Table 3 are average 
values taken over the period of steady flow. The pressures from 

the inviscid and viscous simulations are, on average, within ±7% 
and ±4% respectively of the corresponding experimental values. 
Since the viscous simulations show better agreement with 
experiments than do the inviscid simulations, viscous flow 
simulations have been used in further analysis.  

 

T4 shot no. Plenum pressure (kPa) 

Inviscid 

simulation 

Viscous 

simulation 

Experimental 

9291 1352 1290 1250 

9292 1059 1008 950 

9293 809 769 740 

Calibration 3 783 743 800 

Calibration 4 904 859 890 

Calibration 5 1881 1795 1775 

 
Table 3. Overview of steady plenum pressures from the simulations and 

experiments 

 

          The fuel mass flow-rates from the viscous simulations are 

calculated using the basic mass flow-rate equation, fm Au . 

These results are compared with the actual mass flow-rate 
calculated by using α obtained from equation (8) for each shot 
and then substituting it in equation (5). Comparisons between the 
mass flow-rates are shown in Table 4. 
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T4 shot no. 
0i

p  

(kPa) 

Simulation Experimental 

pp 

(kPa) 
fm  

(kg/s) 

810  

(m
2
/s) 

fm  

(kg/s) 

9291 1680 1290 0.0180 1.360 0.0182 

9292 1315 1008 0.0130 1.179 0.0123 

9293 1005 769 0.0108 1.186 0.0094 

Calibration3 970 743 0.0108 1.136 0.0087 

Calibration4 1120 859 0.0116 1.010 0.0090 

Calibration5 2330 1795 0.0252 1.235 0.0230 

 
Table 4. Fuel mass flow-rate obtained from simulations and experiments 

 

     Table 4 shows that the fuel mass flow-rates from the viscous 
simulations are, on average, within ±13% of the corresponding 
experimental values. The uncertainties in the mass flow rates 
from the viscous simulations and for the experiments are 
calculated be ±9% and ±7% respectively. 
 

 
5. Conclusions 

     The results indicate that the assumptions made in the 
theoretical model are reasonable and that the L1d simulations are 
able to give approximate values of the fuel mass flow-rates for 
the experiments. Viscous L1d simulations show better agreement 
with measurements for the present Ludwieg-tube fuel delivery 
system than do inviscid simulations. 
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