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Abstract

Vortices with intense rotation occur in nature at very different
scales, with the bathtub vortex representing one of the smallest
and atmospheric vortices – tornadoes, mesocyclones and cy-
clones – representing vortices of much greater scales. Large
vortices have been also found in the atmospheres of other plan-
ets – the famous Jovian Great Read Spot (GRS), whose size ex-
ceeds the Earth diameter, has been observed for more than 300
years. Fujita [10] in his classical work on vortices in planetary
atmospheres introduced a unified treatment of the vortical mo-
tion of different scales starting from a lab vortex (that is referred
to here as a bathtub vortex) and finishing with the largest known
vortex of GRS. The vortices were classified according to their
scales, and vortical motions of this kind are viewed by Fujita as
a truly universal feature of the nature. Modern science tends to
view these vortices as completely different phenomena and has
good reasons for this: the vortices are characterized not only by
different scales but also by different levels of buoyancy, turbu-
lence and axial symmetry present in the flow. Thus, although we
cannot expect that any common approach can fully characterize
the whole structure of these vortices, this does not eliminate the
possibility of finding common explanations for certain features
of the vortices. The term ”bathtub-like vortical flows” is used
to characterize axisymmetric vortices with significant intensi-
fication of rotation at the center due to converging secondary
motion present in the flow.

We first give the overview of the theory which is based on as-
ymptotic analysis of the evolution of vorticity in axisymmetric
bathtub-like flows under assumptions of prime influence of the
convective terms. If the axial vorticity is sufficiently strong, the
bathtub-like flows are expected to be controlled by the compen-
sating regime that prevents further increases of the relative ro-
tation strength. We examine applicability of this theory to cer-
tain intermediate regions of large atmospheric vortices (torna-
does and hurricanes) and compare theoretical predictions with
atmospheric measurements. We also discuss vortices observed
on other planets.

Equations governing axisymmetric vortical flows

The normalized system of equations governing axisymmetric
incompressible flows with vorticity can be written in the form
[1, 14, 15, 16]
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where the dimensionless parameters — the Reynolds number,
the Strouhal number, the rotation vorticity number and the geo-

metrical parameter — are introduced as
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The viscous terms are shown by dots in (1)-(3). The cylindri-
cal coordinates z, r, θ, the velocities vz, vr, vθ the vorticity ωz,
ωr, ωθ, the stream function ψ and the circulation γ = vθr are
normalized according to
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where t∗ = γ∗/(ω∗v∗r∗L∗). The characteristic values and para-
meters based on these values are indicated by asterisk.

The rotational vorticity parameter K∗ = (S∗/Ro∗)1/2 represents
a geometrical average of the swirl ratio (S∗ ≡ γ∗/(v∗r∗)) and
the inverse Rossby number (Ro∗ ≡ v∗/(r∗ω∗)). The parameter
K∗ determines the rate of generation of tangential vorticity Ωθ

by equation (2). If K∗ is small, the flow on the planes passing
through the axis must be close to potential (the term potential is
used here to indicate that Ωθ ≈ 0); while the high values of K∗
correspond to the strong vortex approximation [5, 17, 18, 14,
15, 16]. As vorticity is accumulated near the axis, γ∗ increases,
St∗ becomes small and the flow can be treated as quasi-steady
(but not fully steady).

Strong vortex approximation

Different aspects of the strong vortex solution for axisymmetric
flows were repeatedly considered in publications [5, 17, 18, 14,
15, 16]. This approximation is characterized by strong vorticity
in the flow so that 1/K2

∗ can be assumed to be small. The case
of small K∗ resulting in Ωθ ≈ 0 is quite simple and less inter-
esting for bathtub-like vortical flows. The relatively slow rate
of evolution that is common for bathtub-like flows can be math-
ematically expressed by the condition St∗ � 1. We follow the
analysis of refs. [14, 15, 16], which involves higher-order terms
related to velocity/vorticity interactions. The quasi-steady ver-
sion of the strong vortex approximation is obtained by expand-
ing all values (Ψ, Vz, Vr, Γ, St∗Ωz, St∗Ωr, Ωθ, ) according to
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Several terms in these expansions (specifically Ψ01, Γ10 and the
corresponding dependent terms Vz01, Ωz10, etc.) are not needed
and can be set to zero. We note first the following relationships
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The leading and following order equations are given by

Γ0i = Γ0i(R,T ), Ωr0i = 0, Ψ0i = F0 (R,T )i +F1(R,T )iZ,
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where i, j = 0,1.

We are interested in the intensification region, which is located
between the inner (core) and outer (peripheral) scales of the vor-
tex and characterized by significant intensification of rotational
motion as the fluid flows towards the axis of the flow. The con-
vective evolution of vorticity is presumed to be of prime im-
portance for the intensification region. The inviscid approxi-
mation of the quasi-steady strong vortex is now considered to
obtain a solution for the flow in the intensification region. We
put Re−1

∗ = 0 and simplify equations (9)-(10)
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In a bathtub-like vortical flow F0 = 0 since Z = 0 is a stream-
line. Assuming that the stream function can be represented by a
power law F1 ∼ Rα with the exponent α unknown a priori, we
find the following consistent expressions
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The asymptotic correctness of the strong vortex approximation
is determined by the following parameter
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Large values of ς indicate that the asymptotic expansion corre-
sponding to the strong vortex approximation is no longer valid.
If α < 4/3 and α 6= 0 then ς→ ∞ as R→ 0. Hence, the strong
vortex approximation can not be sustained over a wide range of
radii for any α less than 4/3 and greater than 0. The physical
explanation for this fact is given in the next section.

Note that α = 2 and α = 0 represent special cases (potential
vortex and vortical sink) where the flow image on r-z-plane is
potential and the correcting terms are nullified Ωr11 = Γ11 =
Vr10 = Ψ10 = 0. A large K∗ is not needed to sustain the flow in
this case. Equations (13) are formally valid for α = 0 but the

case of α = 2, which is more interesting for the present study,
needs a special treatment:
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The compensating regime

The leading terms of the solution (13) are used their dimen-
sional form for the stream function ψ, velocity components vz
and vr, tangential vorticity ωθ and the flow convergence λ
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The values of α from the range 1 < α ≤ 2 correspond to a
bathtub-like flow. Note that ωθ = 0 for α = 2, while smaller
values of α from the range 1 < α < 2 correspond to greater ωθ

as illustrated by the following equation obtained from (16)
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r
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(18)

Vortical flows usually have a sufficiently wide range of radii
to create conditions for substantial amplification of the ax-
ial vorticity. Since different radii r∗ can be characterized by
different characteristic values of the parameter K∗, we intro-
duce the local value K defined in terms of local parameters by
K = (γωz)1/2/vz. In principle, K may exhibit a strong depen-
dence on r as specified by the equation

K2 ≡ γωz

v2
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= K2
∗

ΓΩz

V 2
z
∼ γ

r3α−4 (19)

The main argument used here is that the local values of para-
meter K∗ can not be very small or very large in a developed
bathtub-like vortical flow due to a velocity/vorticity interac-
tion mechanism that compensates for possible increases and de-
creases of the parameter. The value of α that ensures that the
magnitude of the parameters K is independent of r is denoted
α∗. In general, the condition K ∼ const does not correspond
to exact power law but simple estimates of α∗ can be obtained
under the limiting conditions of γ0 � γ1 or γ0 � γ1

α
∗ =

{
4/3, γ0 � γ1
3/2, γ0 � γ1

}
(20)

The regime of K ∼ const is called compensating since the flow
effectively compensates for possible deviations of α from α∗.
Indeed, if α < α∗ and K→ 0 as r→ 0, then no sufficient amount
of the tangential vorticity can be generated near the axis and the
flow must become potential (ωθ ≈ 0) there. This leads us to a
contradiction since the potential flow corresponds to α = 2. If α

falls below α∗, K decreases towards the axis as determined by
(19) resulting in undergeneration of ωθ and this increases the ef-
fective value of α according to (18). If, on the contrary, K → ∞

as r → 0, then, on one hand, equation (19) requires sufficiently
large α > α∗ while, on the other hand, the large magnitudes
of tangential vorticity ωθ generated by (2) would, according to
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Figure 1: Dependence of axial vorticity on radius for different vortices: a) bathtub vortex [25], b) hurricanes Hilda (x) and Inez (o)
[12, 13], c) tornado 4 of McLean storm [8] and d) typical characteristics of large supercell tornados according to [4, 8, 3], outer scales:
ωz ∼ 0.01s−1 at r ∼ 1.5-3.5km (scale of 3-7km) and inner (core) scales: ωz ∼ 1s−1 r ∼ 50-100m (scale of 100-200m). In all figures,
the dashed lines show three exponents of α = 2, 3/2 and 4/3 in ωz ∼ 1/rα. The references point to sources of data used in evaluation
of the curves.

(18), decrease α below α∗. In addition we note that small val-
ues K do not correspond to bathtub-like flow since the case of
ωθ ≈ 0 and α = 0 does not have increasing flow convergence
towards the vortex center which is observed in developed vor-
tices; while excessively large K near the axis is likely to trigger
vortex breakdown and instabilities (as discussed in the follow-
ing sections). Thus we expect that α falls below 2 to the range
of 4/3 . α . 3/2 as vorticity strengthens in bathtub-like vorti-
cal flow. This power law is applicable only within the intensifi-
cation region, where inviscid velocity/vorticity interactions are
presumed to be dominant, while the core and the outer regions
of the flow may be subject to the dominant influence of (turbu-
lent) viscosity, buoyancy and other case-dependent factors.

In realistic vortices (bathtub vortex, tornadoes, hurricanes, etc)
the compensating regime is essentially based on prime impor-
tance of the convective evolution of vorticity. This regime is
expected to be valid only in asymptotically intermediate region
located between the inner and the outer scales. This region is
called intensification region due to significant amplification of
circular motion occurring there. The inner scale is related to
the core (eye) of the flow where the influence of viscosity and
buoyancy is most significant. The structure of the vortex at its

outer scales is not necessarily symmetric and the outer scale of
the compensating regime may of order of few centimeters in
case of a bathtub vortex, few kilometers in case of a tornado
and as large as 250km in case of a hurricane. The peripheral in-
fluence of a strong hurricane extends even further to the radius
of ∼500km. Examples of vortices different scales are shown in
Figure 1. The profiles of axial vorticity evaluated as ωz ∼ 1/rα

according to (17) are compared with the lines of α = 2, 3/2 and
4/3.

The condition K ∼ const and the exponent of α = 4/3 were
introduced in refs. [15, 16] as a general feature of the intensi-
fication region in bathtub-like vortical flows. The fact that the
exponent of β = 0.5 in vθ = γ/r ∼ 1/rβ (which corresponds to
α = β + 1 = 3/2) represents a reasonable empirical approxi-
mation for the measurements of the rotational velocities in hur-
ricanes was known for a long time and is mentioned in many
publications (see [22, 11, 7]). Riehl [22] noted that assuming
both the moment of the tangential component of the surface
stress rσθ and the drag coefficient CD to be independent of r
is sufficient (but not necessary) for α to be 1.5. Pearce [21] put
forward arguments supporting this assumption. The data re-
ported by Hawkins and Rubsam [12] and by Palmen and Riehl
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[20] indicate, however, that CD ∼ 1/rζ with ζ ranging between
0.4 and 0.7 while Palmen and Riehl [20] determined that, on
average, rσθ ∼ 1/r0.6. In his thermodynamic theory of steady
tropical cyclones, Emanuel [6] demonstrated that α ≈ 1.5 just
outside the radius of maximal winds is consistent with typical
temperature changes on the sea surface and in the tropopause.

Although tornadoes generates the fastest winds, they are much
more susceptible to atmospheric fluctuations than hurricanes.
Even large supercell tornadoes are significantly affected by at-
mospheric irregularities. There are very few direct measure-
ments of wind profiles in tornadoes and measurements may suf-
fer from underresolving the core of tornadoes. Wurman and Gill
[26] conducted high resolution measurements of a F4 tornado
formed in a supercell storm near Dimmitt (Texas) in 1995 and
reported β = 0.6±0.1 in vθ ∼ 1/rβ (γ0 is small in the reported
profile) that corresponds to α = β + 1 = 1.6± 0.1. The value
of α∗ = 3/2 is within this range.

The most comprehensive analysis of the exponent in vortical
flows by Mallen et. al. [19] reported averages for axisymmet-
ric tangential velocity and axial vorticity distribution in tropical
storms involving 251 (!) different cases. The best approxima-
tion for the exponent is α = 1.37 was determined as the average
over all storms with standard deviation of 0.14 while the aver-
ages of 1.31 and 1.48 were suggested for the weakest and the
strongest storms. These values are quite close to 4/3 and 3/2
advocated here. While the fact that the exponent of 3/2 can be
used to approximate the tangential velocity in hurricanes was
known from wind measurements in hurricanes for a long time
[22, 11, 7], the exponent of 4/3 was theoretically introduced for
bathtub-like flows [15, 16] prior to the major work of Mallen et.
al. [19] which determined that 1.31 is the average value of the
exponent α for weak hurricanes.

Unsteady inviscid evolution of the vorticity

Obtaining solution for unsteady vortical flow with strong vortic-
ity/velocity interactions is not simple. We can, however, inves-
tigate the unsteady convection of the initially uniform axial vor-
ticity ωz = ω0 = const by a given velocity field with the stream
function given by ψ = c0rαz as in (16). The flow is presumed
inviscid. The Lagrangian trajectories rt = rt(t) and zt = zt(t)
with the initial conditions rt(t0) = r0 and zt(t0) = z0 are evalu-
ated by integration of drt/dt = vr and dzt/drt = vz/vr:

ωzt

ω0
=
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z0
=
(

rt

r0

)−α

, φ(r0)−φ(rt) = τ≡
Z t

t0
c0(t)dt, (21)

where φ(r) = for α = 2 and φ(r) = for α < 2.

φ(r)≡
{

ln(r), α = 2
r2−α/(2−α), 0≤ α < 2

}
(22)

In evaluation of the Lagrangian value of axial vorticity ωzt =
ωzt(t) from the initial condition ωzt(t0) = ω0 we use the fact
that the vortical lines are frozen into inviscid flows. Substitution
of the ratio rt/r0 evaluated from second equation results in

ωz

ω0
=

{
exp(2τ), α = 2(

1+(2−α)τrα−2)α/(2−α)
, 0≤ α < 2
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(23)

γ =

{
ω0
2 r2 exp(2τ), α = 2

ω0
2
(
(2−α)τ+ r2−α

)2/(2−α)
, 0≤ α < 2

}
(24)

There is an essential difference between these equations: the
second equation in (23) with α 6= 2 does approach the quasi-
steady solution (17) so that ωz ∼ r−α for sufficiently large t− t0

or sufficiently small r while, in the first equation of (23) with
α = 2, the vorticity remains ωz = ωz(t) and does not become
quasi-steady at any time. For the case of 0 ≤ α < 2, the quasi-
steady (long-term) asymptotics for ωz given by

ωz

ω0
= ((2−α)τ)α/(2−α)r−α + ..., 0≤ α < 2 (25)

is induced by the vertical shear and is essentially independent
of the initial conditions.

Vortex breakdown

According to Benjamin [2] vortex breakdown is controlled by
the equation

R
∂

∂R

(
1
r

∂Ψ′
r

∂R

)
+

(
k2 +

2K2
0 (R)
R2 +Φ(R)

)
Ψ
′
r = 0 (26)

which is written here in its dimensionless form and
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Vz0
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while Ψ′ = Ψ′
r(R)exp(kz) represents a small disturbance of the

stream function Ψ = Ψ0 + Ψ′ and the subscript ”0” denotes in
(26) the values related to the undisturbed flow. Equation (26)
is a linearization of the Long-Squire equation which is used
to characterize axisymmetric inviscid steady vortical flows and
can be seen as substitution of a non-linear expression for Ωθ

expressed in terms of Ψ into (1) [2]. Although the vortical
flow considered here is unsteady, equation (26) can be approxi-
mately applied in a region which is close to the flow axis [15]. If
K(R)∼ Rβ, the solution of (26) with k = 0 can be expressed in
terms of the Bessel function [15]. Benjamin [2] noted that ex-
istence of non-positive eigenvalues k2 ≤ 0 corresponds to vor-
tex breakdown. Mathematically, negative values of k2 appear
if K2

0 becomes sufficiently large. Thus the breakdown can be
expected to occur in a vortex which is characterized by suffi-
ciently large values of K in a region close to the axis. It should
be noted that, due to the influence of viscosity in the core of
the flow, the rotation there is similar to solid-body rotation so
that γ∗ ∼ ω∗r2

∗ . Hence (K2
∗ )core ∼ K2

∗/St∗ is larger in the core
than in the surrounding flow. This indicates that vortex break-
downs are more likely to occur within the core (as observed in
some most intensive tornadoes). Benjamin [2] argued that if
Long-Squire equation is non-linear (this is true with exception
of few special cases such as solid-body rotation) then it allows
for an alternative solution that the flow will take after its break-
down. In the case of linear Long-Squire equation, the flow does
not have any other solution to switch to, becomes unstable and
losses its symmetry.

Vortices on the other planets

The intensification region, which is primarily responsible for
rapid rotation in the central sections of bathtub-like vortices,
does not have its own characteristic scale but is limited by
the inner and outer scales which depend on the factors other
than inertial evolution of vorticity (turbulent or laminar vis-
cosity, buoyancy, the scales of surrounding flow etc). Thus,
in principle, we may observe vortices that are larger than the
terrestrial cyclones as long as atmospheric conditions on other
planets allow for the outer scale to be noticeably greater than
1000km. However, no distinct extraterrestrial hurricane has yet
been found [9]. With significant heat released from the their
interiors, Jupiter and Saturn have very active atmospheres but
most of their vortices including the Great Red Spot (GRS) are
anticyclonic. The anticyclonic vortices resemble a vortex with
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solid-body rotation more than a bathtub vortex since bathtub-
like vortical flows (including hurricanes and tornadoes) demon-
strate a significant intensification of rotation near the axis of the
flow. GRS is a strong and persistent vortex but not a hurricane.
Cyclonic vortices are also present on Jupiter but mostly in form
of filament vortices that have rather irregular shapes – these vor-
tices also are not characterized by a symmetric structure with a
high rotational activity at the centre. During their encounter
with Jupiter, Voyagers 1 and 2 detected a very interesting phe-
nomenon of vortex evolution and breakdown [23]. The Voy-
agers observed a cyclonic vortex of a regular oval shape. The
scale of the vortex was around 10 000 km that is more or less
consistent with the relative scale of terrestrial hurricanes. The
vortex existed for some time until a bright spot appeared in its
centre. This is indicative of a high cyclonic activity in the core
regions that is likely to be induced by the formation of a distinct
convergence point in the vortex. The bright spot then bifur-
cated and became S-shaped. In few revolutions of the planet,
the vortex was transformed into a filament vortex. It seems that
the Voyagers detected a failed attempt to form a hurricane on
Jupiter. It is difficult to overestimate the importance of detect-
ing the phenomenon of vortex breakdown that may shed some
light on why we are so unlucky to have hurricanes on Earth (and
not on Jupiter). This issue is examined in the next section.

During the Voyager mission [24], no vortices have been found
in the atmosphere of Uranus but several large vortices were de-
tected on Neptune. The Great Dark Spot (GDS) of Neptune is
similar to GRS in its relative size, position and rotation (anticy-
clonic). The most suitable candidate for a hurricane was Dark
Spot 2 (DS2) which had an intense cloudy activity at the cen-
ter of the vortex and its relative size would be comparable to
that of terrestrial hurricanes. Unfortunately it was impossible
to determine the direction of rotation for DS2 (cyclonic or anti-
cyclonic) [24]. Although it is not unreasonable to assume that
DS2 is a cyclonic vortex with significant intensification of ro-
tation at the center, this assumption will remain speculative, at
least until the next space mission can reach Neptune. Even if
DS2 was a cyclone, its structure appears to be quite different
from that of terrestrial hurricanes.
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Figure 2: Generation of ωθ in bathtub-like vortical flows stimu-
lates the updraft and converging motion: (a) vorticity evolution
in hurricanes and tornadoes (b) vorticity evolution in a bathtub
vortex (shown upside down)

How the vortices form?

Formation of a bathtub-like vortex starts from existence of a
converging flow in a region that has relatively weak uniform

(i.e. solid-body-like) rotation. During the initial period of vor-
tex formation, the axial vorticity level is, generally, low and K
is uniformly small; hence this vortex can be treated as weak and
α = 2 in the vortex. At this stage, evolution of the vortex can
be characterized by equations (21)-(25) with α = 2. As rota-
tion is amplified K also increases: K ∼ r2 exp(c0(t− t0)) (here
c0 = const is assumed for simplicity). At certain moment K ∼ 1
is achieved at the outer rim of the region under consideration,
which continues to shrink towards its center. Assuming ωr is
exactly zero in the flow, equation (2) does not generate any ωθ

even if K becomes large. The vortex continues to evolve ac-
cording to (21)-(25) with α = 2 until exponentially increasing
K becomes large near the center and the vortex looses its sym-
metry and stability as discussed in the paragraph after equation
(26).

If some radial vorticity ωr of ”correct” sign (illustrated in Figure
2) is present in the flow, then equation (2) does generate vortic-
ity ωθ directed as shown in Figure 2. In tornadoes and hurri-
canes ωr is induced by the flow shear induced by the boundary
layer (Figure 2a) while in a bathtub vortex ωr appears due to a
similar shear which is simply induced by inviscid and potential
flow over the drain (Figure 2b). A more detailed physical ex-
planation for the mechanism of generating ωθ is given in Refs.
[16, 14]. The generated vorticity changes the nature of the flow
enforcing, as discussed previously, α < 2 in the region where
K is sufficiently large. This amplifies the updraft near the axis,
stimulates the flow convergence λ, terminates the exponential
increase of K (see equations (21)-(25) with α < 2) and stabilizes
the vortex. Even if the vortex is disturbed by the surrounding
flow, equation (23) indicates that the steady-state distribution
ωz ∼ 1/rα is continuously reproduced by the vertical shear pro-
vided α < 2. According to (20), α is expected to eventually fall
to its equilibrium value of α∗ which lays within the range of
4/3 . α . 3/2. The vortex formation is completed when the
region of α < 2 reaches the center of the flow. The presence
of circumferential vorticity ωθ stabilizes the convergence point
and makes the vortex resilient with respect to external distur-
bances. The compensating regime, however, does not prevent
continuing relatively slow growth of K due to increase γ0 in
(17). This growth may eventually cause the vortex breakdown.
It seems that, in stable vortices, this growth is effectively re-
stricted by losses of angular momentum.

In terrestrial hurricanes, existence of the atmospheric boundary
layer ensures that ωr 6= 0 and generates vorticity ωθ enforcing
α < 2. This moderates any further increases in K and stabilizes
the vortex. The Jovian atmosphere is bottomless. This allows
for a cyclonic vortex with α = 2 to grow beyond the point of
its stability due to rapid and unconstrained increase of para-
meter K. This vortex is likely to rapidly disintegrate but even
if the vortex survives the exponential growth by switching to
the compensating regime, the insufficient loss of angular mo-
mentum will eventually brake the vortex due to slow but per-
sistent increase in γ0. It seems that the Voyagers have detected
the hurricane breakdown phenomenon on Jupiter when a strong
and powerful hurricane was quickly destroyed by instabilities.
Could this strategy be used to destroy the terrestrial hurricanes?
The atmosphere of Neptune has a more significant fraction of
methane and this may result in larger density gradients towards
the center of the planet (if not in a phase transition at the bot-
tom of the atmosphere). It could be the case that these density
gradients have a stabilizing effect on cyclonic vortices.

Conclusions

Bathtub-like vortical flows (including hurricane and tornadoes),
which are characterized by significant intensification of rotation
near the center due to convergence of the flow, are considered.
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The region in these flows, which is intermediate between the
core and peripheral scales, is called intensification region and
inviscid axisymmetric interactions of velocity and vorticity are
presumed to be of prime importance in this region. Assuming
that this assumption is correct, the developed vortical flow can
not have too large or too small values of the parameter K within
the intensification region at least because the contrary assump-
tion leads to physical contradictions. Moderation of the parame-
ter K requires that the exponent α must fall below its potential
value of 2 in the intensification region if the vortex is to remain
stable. The condition K ∼ const does not result in a strict power
law and the exponents are likely to fluctuate around their equi-
librium values due to various disturbances present in the flow.
Nevertheless, the range of exponents 4/3 . α . 3/2 obtained
from this condition seems to be in a very good agreement with
available data. The breakdowns of cyclonic vortices on Jupiter
are also explained well by their inability to lower the value of α

below 2.
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